Skip to main content

Advertisement

Log in

Enhancement of hybrid renewable energy systems control with neural networks applied to weather forecasting: the case of Olvio

  • EANN
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an intelligent forecasting model, a recurrent neural network (RNN) with nonlinear autoregressive architecture, for daily and hourly solar radiation and wind speed prediction is proposed for the enhancement of the power management strategies (PMSs) of hybrid renewable energy systems (HYRES). The presented model (RNN) is applicable to an autonomous HYRES, where its estimations can be used by a central control unit in order to create in real time the proper PMSs for the efficient subsystems’ utilization and overall process optimization. For this purpose, a flexible network-based design of the HYRES is used and, moreover, applied to a specific system located on Olvio, near Xanthi, Greece, as part of Systems Sunlight S.A. facilities. The simulation results indicated that RNN is capable of assimilating the given information and delivering some satisfactory future estimation achieving regression coefficient from 0.93 up to 0.99 that can be used to safely calculate the available green energy. Moreover, it has some sufficient for the specific problem computational power, as it can deliver the final results in just a few seconds. As a result, the RNN framework, trained with local meteorological data, successfully manages to enhance and optimize the PMS based on the provided solar radiation and wind speed prediction and make the specific HYRES suitable for use as a stand-alone remote energy plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596

    Article  Google Scholar 

  2. Garcıa P, Torreglosa JP, Fernandez LM, Jurado F (2013) Optimal energy management system for standalone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic. Int J Hydrogen Energy 38:14146–14158

    Article  Google Scholar 

  3. Zhang X, Chan SH, Ho HK, Tan S-C, Li M, Li G, Li J, Feng Z (2015) Towards a smart energy network: the roles of fuel/electrolysis cells and technological perspectives. Int J Hydrogen Energy 40:6866–6919

    Article  Google Scholar 

  4. Deshmukha MK, Deshmukh SS (2008) Modeling of hybrid renewable energy systems. Renew Sustain Energy Rev 12(1):235–249

    Article  Google Scholar 

  5. Alam S, Kaushik SC, Garg SN (2006) Computation of beam solar radiation at normal incidence using artificial neural network. Renew Energy 31(10):1483–1491

    Article  Google Scholar 

  6. Mubiru J, Banda EJKB (2008) Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy 82(2):181–187

    Article  Google Scholar 

  7. Rehman S, Mohandes M (2008) Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36(2):571–576

    Article  Google Scholar 

  8. Ghanbarzadeh A, Noghrehabadi R, Assareh E, Behrang MA (2009) Solar radiation forecasting using meteorological data. In: 7th IEEE international conference on industrial informatics (INDIN 2009), UK

  9. Benghanem M, Mellit A (2010) Radial basis function network-based prediction of global solar radiation data: application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia. Energy 35:3751–3762

    Article  Google Scholar 

  10. Paoli C, Voyant C, Muselli M, Nivet ML (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84(12):2146–2160

    Article  Google Scholar 

  11. AbdulAzeez MA (2011) Artificial neural network estimation of global solar radiation using meteorological parameters in Gusau, Nigeria. Arch Appl Sci Res 3(2):586–595

    Google Scholar 

  12. Mellit A, Kalogirou SA, Hontoria L, Shaari S (2009) Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sustain Energy Rev 13(2):406–419

    Article  Google Scholar 

  13. Zeng Z, Yang H, Zhao R, Meng J (2013) Nonlinear characteristics of observed solar radiation data. Sol Energy 87:204–218

    Article  Google Scholar 

  14. Zhang N, Behera, PK (2012) Solar radiation prediction based on recurrent neural networks trained by Levenberg–Marquardt backpropagation learning algorithm. In: Innovative smart grid technologies (ISGT), 2012 IEEE PES, pp 1–7

  15. Cao Q, Ewing BT, Thompson MA (2012) Forecasting wind speed with recurrent neural networks. Eur J Oper Res 221(1):148–154

    Article  MathSciNet  MATH  Google Scholar 

  16. Grossberg S (1988) Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw 1:17–61

    Article  Google Scholar 

  17. Chang F-J, Chen P-A, Lu Y-R, Huang E, Chang K-Y (2014) Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J Hydrol 517:836–846

    Article  Google Scholar 

  18. Anderson JA (1995) Introduction to neural networks. MIT Press, Cambridge

    MATH  Google Scholar 

  19. Elman J (1990) Finding structure in time. Cogn Sci 14:179–211

    Article  Google Scholar 

  20. Pearlmutter BA (1995) Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans Neural Netw 6(5):1212–1228

    Article  Google Scholar 

  21. Hwang SY, Basawa IV (1994) Large sample inference based on multiple observations from nonlinear autoregressive processes. Stoch Process Appl 49(1):127–140

    Article  MathSciNet  MATH  Google Scholar 

  22. Kapetanios G (2006) Nonlinear autoregressive models and long memory. Econ Lett 91(3):360–368

    Article  MathSciNet  MATH  Google Scholar 

  23. Taskaya-Temizel T, Casey M (2005) A comparative study of autoregressive neural network hybrids. Neural Netw 18(5–6):781–789

    Article  Google Scholar 

  24. Guo WW, Xue H (2014) Crop yield forecasting using artificial neural networks: a comparison between spatial and temporal models. Math Prob Eng 857865:7

    MathSciNet  Google Scholar 

  25. Kohonen T (1989) Self-organization and associative memory. Springer, Berlin

    Book  MATH  Google Scholar 

  26. Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  27. Anderson JA, Rosenfield E (1989) Neurocomputing: foundations of research. MIT Press, Cambridge

    Google Scholar 

  28. Giaouris D, Papadopoulos AI, Ziogou C, Ipsakis D, Voutetakis S, Papadopoulou S, Seferlis P, Stergiopoulos F, Elmasides C (2013) Performance investigation of a hybrid renewable power generation and storage system using systemic power management models. Energy 61:621–635

    Article  Google Scholar 

  29. Chatziagorakis P, Elmasides C, Sirakoulis GCh et al (2014) Application of neural networks solar radiation prediction for hybrid renewable energy systems. In: Mladenov V et al (eds) EANN 2014, CCIS, vol 459. Sofia, Bulgaria, pp 133–144

    Google Scholar 

  30. Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C (2009) Power management strategies on a stand-alone power system using renewable energy sources and hydrogen storage. Int J Hydrogen Energy 34:7081–7095

    Article  Google Scholar 

Download references

Acknowledgments

This work is co-financed by National Strategic Reference Framework (NSRF) 2007–2013 of Greece and the European Union Research Program “SYNERGASIA” (SUPERMICRO – 09ΣYN-32-594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ch. Sirakoulis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatziagorakis, P., Ziogou, C., Elmasides, C. et al. Enhancement of hybrid renewable energy systems control with neural networks applied to weather forecasting: the case of Olvio. Neural Comput & Applic 27, 1093–1118 (2016). https://doi.org/10.1007/s00521-015-2175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2175-6

Keywords

Navigation