Skip to main content
Log in

Adaptive robust finite-time neural control of uncertain PMSM servo system with nonlinear dead zone

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an adaptive robust finite-time neural control scheme is proposed for uncertain permanent magnet synchronous motor servo system with nonlinear dead-zone input. According to the differential mean value theorem, the dead zone is represented as a linear time-varying system, and the model uncertainty including the dead zone is approximated by using a simple neural network. Then, an adaptive finite-time controller is designed based on a fast terminal sliding mode control principle, and the singularity problem in the initial TSMC is circumvented by modifying the terminal sliding manifold. Comparative experiments are conducted to validate the effectiveness and superior performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li SH, Liu Z (2009) Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans Ind Electron 56(8):3050–3059

    Article  Google Scholar 

  2. Morawiec M (2013) The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter. IEEE Trans Ind Inform 9(2):1047–1055

    Article  Google Scholar 

  3. Liu G, Chen L, Zhao W et al (2013) Internal model control of permanent magnet synchronous motor using support vector machine generalized inverse. IEEE Trans Ind Inform 9(2):890–898

    Article  Google Scholar 

  4. Tao G, Lewis FL (2001) Electric motor drives: modeling, analysis, and control. Springer, Berlin

    Google Scholar 

  5. Hu CX, Yao B, Wang QF (2011) Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments. IEEE Trans Ind Electron 58(6):2454–2464

    Article  Google Scholar 

  6. Han SI, Lee JM (2013) Precise positioning of nonsmooth dynamic systems using fuzzy wavelet echo state networks and dynamic surface sliding mode control. IEEE Trans Ind Electron 60(11):5124–5136

    Article  Google Scholar 

  7. Xia D, Wang LY, Chai TY (2014) Neural-network friction compensation based energy swing-up control of pendubot. IEEE Trans Ind Electron 61(3):1411–1423

    Article  Google Scholar 

  8. Naso D, Cupertino F, Turchiano B (2010) Precise position control of tubular linear motors with neural networks and composite learning. Control Eng Pract 18(5):515–522

    Article  Google Scholar 

  9. Wang XS, Su CY, Hong H (2014) Robust adaptive control of a class of linear systems with unknown dead-zone. Automaica 40(3):407–413

    Article  MATH  Google Scholar 

  10. Hua CC, Wang QG, Guan XP (2008) Adaptive tracking controller design of nonlinear systems with time delays and unknown dead-zone input. IEEE Trans Autom Control 53(7):1753–1759

    Article  MathSciNet  MATH  Google Scholar 

  11. Ibrir S, Xie WF, Su CY (2007) Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica 43(3):522–530

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang TP, Ge SS (2007) Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43(6):1021–1033

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang TP, Ge SS (2009) Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans Neural Netw 20(3):483–497

    Article  Google Scholar 

  14. Liu YJ, Zhou N (2010) Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input. ISA Trans 49(4):462–469

    Article  Google Scholar 

  15. Na J, Ren XM, Herrmann G, Qiao Z (2011) Adaptive neural dynamic surface control for servo systems with unknown dead zone. Control Eng Pract 19(11):1328–1343

    Article  Google Scholar 

  16. Man ZH, Paplinski AP, Wu HR (1994) A robust MIMO terminal sliding mode control scheme for rigid robotic manipulator. IEEE Trans Autom Control 39(12):2464–2469

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu XH, Man ZH (2002) Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(2):261–264

    Article  MathSciNet  MATH  Google Scholar 

  18. Hong Y, Huang J, Xu Y (2001) On an output finite-time stabilization problem. IEEE Trans Autom Control 46(2):305–309

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng Y, Yu XH, Man ZH (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu S, Yu XH, Shirinzadehc B (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao DY, Li SY, Gao F (2009) A new terminal sliding mode control for robotic manipulators. Int J Control 82(10):1804–1813

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang L, Liu YJ, Tong SC (2014) Adaptive neural control reinforcement learning for a class of robot manipulator. Neural Comput Appl 25:135–141

    Article  Google Scholar 

  23. Na J, Chen Q, Ren XM, Guo Y (2014) Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans Ind Electron 61(1):486–494

    Article  Google Scholar 

  24. Na J, Ren XM, Zheng DD (2013) Adaptive control of nonlinear pure-feedback systems with high-order sliding mode observer. IEEE Trans Neural Netw Learn Syst 24(3):370–382

    Article  Google Scholar 

  25. Wang LY, Chai TY, Zhai LF (2009) Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans Ind Electron 56(9):3296–3304

    Article  Google Scholar 

  26. Zou AM, Kumar KD, Hou ZG, Liu X (2011) Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans Syst Man Cybern B Cybern 41(4):950–963

    Article  Google Scholar 

  27. Lee MJ, Choi YK (2004) An adaptive neurocontroller using RBFNN for robot manipulators. IEEE Trans Ind Electron 51(3):711–717

    Article  Google Scholar 

  28. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would thank the support from the National Natural Science Foundation of China under Grants Nos. 61403343, 61433003 and 61573174, and China Postdoctoral Science Foundation Funded Project under Grant No. 2015M580521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Ren, X., Na, J. et al. Adaptive robust finite-time neural control of uncertain PMSM servo system with nonlinear dead zone. Neural Comput & Applic 28, 3725–3736 (2017). https://doi.org/10.1007/s00521-016-2260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2260-5

Keywords

Navigation