Skip to main content
Log in

A new ASM framework for left ventricle segmentation exploring slice variability in cardiac MRI volumes

  • IBPRIA 2015
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Three-dimensional active shape models use a set of annotated volumes to learn a shape model. Using unique landmarks to define the surface models in the training set, the shape model is able to learn the expected shape and variation modes of the segmentation. This information is then used during the segmentation process to impose shape constraints. A relevant problem in which these models are used is the segmentation of the left ventricle in 3D MRI volumes. In this problem, the annotations correspond to a set of contours that define the LV border at each volume slice. However, each volume has a different number of slices (thus, a different number of landmarks), which makes model learning difficult. Furthermore, motion artifacts and the large distance between slices make interpolation of voxel intensities a bad choice when applying the learned model to a test volume. These two problems raise the following questions: (1) how can we learn a shape model from volumes with a variable number of slices? and (2) how can we segment a test volume without interpolating voxel intensities between slices? This paper provides an answer to these questions by proposing a framework to deal with the variable number of slices in the training set and a resampling strategy for the test phase to segment the left ventricle in cardiac MRI volumes with any number of slices. The proposed method was evaluated on a public database with 660 volumes of both healthy and diseased patients, with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.fil.ion.ucl.ac.uk/spm/.

  2. http://fsl.fmrib.ox.ac.uk/fsl/.

References

  1. Abi-Nahed J, Jolly MP, Yang GZ (2006) Robust active shape models: a robust, generic and simple automatic segmentation tool. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention–MICCAI 2006. Springer, Berlin, Heidelberg, pp 1–8

  2. Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357

    Article  Google Scholar 

  3. Billet F, Sermesant M, Delingette H, Ayache N (2009) Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Ayache N, Delingette H, Sermesant M (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 376–385

  4. Blake A, Isard M (1998) Image processing techniques for feature location. In: Active contours. Springer, London, pp 97–113

  5. Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Kamp O, Sonka M, Reiber JHC (2002) Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21(11):1374–1383

    Article  Google Scholar 

  6. Carneiro G, Georgescu B, Good S, Comaniciu D (2008) Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans Med Imaging 27(9):1342–1355

    Article  Google Scholar 

  7. Carneiro G, Nascimento JC (2010) Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures. In: Confernce computer vision and pattern recognition (CVPR)

  8. Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094

    Article  Google Scholar 

  9. Cootes T, Beeston C, Edwards G, Taylor C (1999) A unified framework for atlas matching using active appearance models. In: Kuba A, Šáamal M, Todd-Pokropek A (eds) Information processing in medical imaging. Springer, Berlin, Heidelberg, pp 322–333

  10. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  11. Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2007) Automated, accurate and fast segmentation of 4D cardiac MR images. In: Sachse FB, Seemann G (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 474–483

  12. Cremers D (2006) Dynamical statistical shape priors for level set-based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273

    Article  Google Scholar 

  13. Cremers D, Osher S, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351

    Article  Google Scholar 

  14. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  15. Georgescu B, Zhou XS, Comaniciu D, Gupta A (2005) Database-guided segmentation of anatomical structures with complex appearance. In: Confernce computer vision and pattern recognition (CVPR)

  16. Gopal S, Terzopoulos D (2014) A unified statistical/deterministic deformable model for LV segmentation ins cardiac MRI. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A (eds) Statistical atlases and computational models of the heart. Imaging and modelling challenges. Springer, Berlin, Heidelberg, pp 180–187

  17. Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6(5):573–581

    Article  Google Scholar 

  18. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  19. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67

    Article  MATH  Google Scholar 

  20. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2614–2662

    Article  Google Scholar 

  21. Jolly M (2009) Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J Cardiac MR Left Ventricle Segm Chall 4

  22. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  23. Kaus MR, Jv Berg, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254

    Article  Google Scholar 

  24. Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265

    Article  Google Scholar 

  25. Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Med Image Anal 8(3):371–386

    Article  Google Scholar 

  26. Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203

    Article  Google Scholar 

  27. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175

    Article  Google Scholar 

  28. Medrano-Gracia P, Cowan BR, Bluemke DA, Finn JP, Lima JA, Suinesiaputra A, Young AA (2013) Large scale left ventricular shape atlas using automated model fitting to contours. In: Ourselin S, Rueckert D, Smith N (eds) Functional imaging and modeling of the Heart, vol 7945., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 433–441

    Chapter  Google Scholar 

  29. Mitchell S, Lelieveldt B, van der Geest R, Bosch H, Reiber J, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423

    Article  Google Scholar 

  30. Mitchell SC, Bosch JG, Lelieveldt BP, van der Geest RJ, Reiber JH, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178

    Article  Google Scholar 

  31. Nascimento JC, Marques JS (2008) Robust shape tracking with multiple models in ultrasound images. IEEE Trans Image Process 17(3):392–406

    Article  MathSciNet  Google Scholar 

  32. O’Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D time left ventricular segmentation technique. IEEE Trans Med Imaging 30(2):461–474

    Article  Google Scholar 

  33. Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776

    Article  Google Scholar 

  34. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  MATH  Google Scholar 

  35. Petitjean C, Dacher J (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184

    Article  Google Scholar 

  36. Rogers M, Graham J (2006) Robust active shape model search. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer vision–ECCV 2002. Springer, Berlin, Heidelberg, pp 517–530

  37. Santiago C, Nascimento J, Marques J (2015) 2D Segmentation using a robust active shape model with the EM algorithm. IEEE Trans Image Process 24(8):2592–2601. doi:10.1109/TIP.2015.2424311

    Article  Google Scholar 

  38. Santiago C, Nascimento JC, Marques JS (2013) Performance evaluation of point matching algorithms for left ventricle motion analysis in MRI. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, pp 4398–4401

  39. Santiago C, Nascimento JC, Marques JS (2015) Automatic 3-D segmentation of endocardial border of the left ventricle from ultrasound images. IEEE J Biomed Health Inform 19(1):339–348. doi:10.1109/JBHI.2014.2308424

    Article  Google Scholar 

  40. Santiago C, Nascimento JC, Marques JS (2015) Robust 3D active shape model for the segmentation of the left ventricle in MRI. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis—IbPRIA’15. Springer, Switzerland, pp 283–290

  41. Sonka M, Zhang X, Siebes M, Bissing M, Dejong S, Collins S, Mckay C (1995) Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans Med Imaging 14:719–732

    Article  Google Scholar 

  42. Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24(1):25–35

    Article  Google Scholar 

  43. Tzimiropoulos G, Pantic M (2013) Optimization problems for fast aam fitting in-the-wild. In: Proceedings of the IEEE international conference on computer vision. pp 593–600

  44. Uzunbas MG, Zhang S, Pohl KM, Metaxas D, Axel L (2012) Segmentation of myocardium using deformable regions and graph cuts. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE, pp 254–257

  45. Weng J, Singh A, Chiu M (1997) Learning-based ventricle detection from cardiac mr and ct images. IEEE Trans Med Imaging 16(4):378–391

    Article  Google Scholar 

  46. Zhang L, Geiser E (1984) An effective algorithm for extracting serial endocardial borders from 2-D echocardiograms. IEEE Trans Biomed Eng BME–31:441–447

    Article  Google Scholar 

  47. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681

    Article  Google Scholar 

  48. Zhou XS, Comaniciu D, Gupta A (2005) An information fusion framework for robust shape tracking. IEEE Trans Pattern Anal Mach Intell 27(1):115–129

    Article  Google Scholar 

  49. Zhuang X, Hawkes D, Crum W, Boubertakh R, Uribe S, Atkinson D, Batchelor P, Schaeffter T, Razavi R, Hill D (2008) Robust registration between cardiac MRI images and atlas for segmentation propagation. In: Reinhardt JM, Pluim JPW (eds) Medical imaging. International Society for Optics and Photonics, SPIE, pp 691408

  50. Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FCT [UID/EEA/50009/2013] and [SFRH/BD/87347/2012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Santiago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago, C., Nascimento, J.C. & Marques, J.S. A new ASM framework for left ventricle segmentation exploring slice variability in cardiac MRI volumes. Neural Comput & Applic 28, 2489–2500 (2017). https://doi.org/10.1007/s00521-016-2337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2337-1

Keywords

Navigation