Skip to main content
Log in

A frame-based ANN for classification of hyperspectral images: assessment of mechanical damage in mushrooms

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Imaging spectroscopy integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Processing and analysis of a hypercube can be a hard task. Robust methods for hyperspectral data classification are required, insensitive to imaging deficiencies and high input dimension. Mushrooms have a thin and porous epidermal structure, and are sensitive to handling and transportation practices. Mechanical damage triggers a browning process within the tissue changing its metabolic state. The objective is to quantify different levels of physical perturbation on the mushroom pilei, using near-infrared spectral images and machine learning approaches. An ANN classifier is implemented, whose input is a small set of vectors containing representative information, and output is the set of categorical labels that correspond to different levels of mechanical vibration. For obtaining a salient dataset for classifying the images, the Harris corner detection algorithm is employed. The advantage of using interest points is to replace an exhaustive search over the entire image space by a computation over a concise set of highly informative points. A frame-based classification approach is proposed and shown to produce an increase in the classification accuracy, since feature vectors regarded as single instances may not always carry sufficient discriminant information. Comparisons with statistical features computed from wavelet coefficients showed that interest points are more suitable in assessing mechanical perturbation. Comparisons on a classifier level with support vector machines showed that ANNs perform better for the specific application, implying a connection between the classification method and the underlying learning problem. Overall, the frame-based classification scheme reduced the misclassification rate. This approach is suited for challenging classification problems where the degree of class separation is variable, i.e., assessment of mechanical damage in mushrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci Tech 18:590–598

    Article  Google Scholar 

  2. Kerekes JP, Schott JR (2007) Hyperspectral imaging systems. In: Chang CI (ed) Hyperspectral data exploitation: theory and applications. Wiley, Hoboken, pp 19–46

    Google Scholar 

  3. Mukherjee A, Velez-Reyes M, Roysam B (2009) Interest points for hyperspectral image data. IEEE T Geosci Remote 47:748–760

    Article  Google Scholar 

  4. Camps-Valls G, Gomez-Chova L, Calpe-Maravilla J, Martin-Guerrero JD, Soria-Olivas E, Alonso-Chorda L, Moreno J (2004) Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans Geosci Remote 42:1530–1542

    Article  Google Scholar 

  5. Dai Q, Sun D-W, Xiong Z, Cheng J-H, Zheng X-A (2014) Recent advances in data mining techniques and their applications in hyperspectral image processing for the food industry. Compr Rev Food Sci F 13:891–905

    Article  Google Scholar 

  6. Dai Q, Cheng J-H, Sun D-W, Zeng X-A (2015) Advances in feature selection methods for hyperspectral image processing in food industry applications: a review. Crit Rev Food Sci Nutr 55:1368–1382

    Article  Google Scholar 

  7. Gowen AA, Tsenkova R, Esquerre C, Downey G, O’Donnell CP (2009) Use of near infrared hyperspectral imaging to identify water matrix co-ordinates in mushrooms (Agaricus bisporus) subjected to mechanical vibration. J Near Infrared Spectrosc 17:363–371

    Article  Google Scholar 

  8. Esquerre C, Gowen AA, O’Donnell CP, Downey G (2009) Water absorbance pattern of physically-damaged mushrooms stored at ambient conditions. J Near Infrared Spectrosc 17:353–361

    Article  Google Scholar 

  9. Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact. CRC Press, Boston

    Book  Google Scholar 

  10. Esquerre C, Gowen AA, O’Donnell CP, Downey G (2009) Initial studies on the quantitation of bruise damage and freshness in mushrooms using visible-near-infrared spectroscopy. J Agric Food Chem 57:1903–1907

    Article  Google Scholar 

  11. Jolivet S, Arpin N, Wichers HJ, Pellon G (1998) Agaricus bisporus browning: a review. Mycol Res 102:1459–1483

    Article  Google Scholar 

  12. O’Gorman A, Barry-Ryan C, Frias JM (2012) Evaluation and identification of markers of damage in mushrooms (Agaricus bisporus) postharvest using a GC/MS metabolic profiling approach. Metabolomics 8:120–132

    Article  Google Scholar 

  13. Ortiz C, Blasco J, Balasch S, Torregrosa A (2011) Shock absorbing surfaces for collecting fruit during the mechanical harvesting of citrus. Biosyst Eng 110:2–9

    Article  Google Scholar 

  14. ElMasry G, Wang N, Vigneault C, Qiao J, ElSayed A (2008) Early detection of apple bruises on different background colors using hyperspectral imaging. LWT–Food. Sci Technol 41:337–345

    Google Scholar 

  15. Jiménez-Jiménez F, Castro-García S, Blanco-Roldán GL, Agüera-Vega J, Gil-Ribes JS (2012) Non-destructive determination of impact bruising on table olives using Vis–NIR spectroscopy. Biosyst Eng 113:371–378

    Article  Google Scholar 

  16. Van Zeebroeck M, Tijskens E, Van Liedekerke P, Deli V, De Baerdemaeker J, Ramon H (2003) Determination of the dynamical behaviour of biological materials during impact using a pendulum device. J Sound Vib 266:465–480

    Article  Google Scholar 

  17. Hahn F (2004) Mango firmness sorter. Biosyst Eng 89:309–319

    Article  Google Scholar 

  18. Rivera NV, Gómez-Sanchis J, Chanona-Pérez J, Carrasco JJ, Millán-Giraldo M, Lorente D, Cubero S, Blasco J (2014) Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst Eng 122:91–98

    Article  Google Scholar 

  19. Blasco J, Aleixos N, Gómez-Sanchis J, Moltó E (2009) Recognition and classification of external skin damages in citrus fruits using multispectral data and morphological features. Biosyst Eng 103:137–145

    Article  Google Scholar 

  20. Nanyam Y, Choudhary R, Gupta L, Paliwal J (2012) A decision-fusion strategy for fruit quality inspection using hyperspectral imaging. Biosyst Eng 111:118–125

    Article  Google Scholar 

  21. Burger J, Gowen AA (2011) Data handling in hyperspectral image analysis. Chemometr Intell Lab 108:13–22

    Article  Google Scholar 

  22. Harris C, Stephens M (1998) A combined corner and edge detector. In: Proceedings of the 4th Alvey vision conference. pp 147–151

  23. Lunga D, Prasad S, Crawford MM, Esroy O (2014) Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal Proc Mag 31:55–66

    Article  Google Scholar 

  24. Sebe N, Lew MS (2003) Comparing salient point detectors. Pattern Recogn Lett 24:89–96

    Article  MATH  Google Scholar 

  25. Chen L, Lu W, Ni J, Sun W, Huang J (2013) Region duplication detection based on Harris corner points and step sector statistics. J Vis Commun Image Represent. 24:244–254

    Article  Google Scholar 

  26. Kulkarni AD (2001) Computer vision and fuzzy-neural systems. Prentice-Hall, New Jersey

    Google Scholar 

  27. Plaza J, Plaza A, Pérez R, Martínez P (2008) Parallel classification of hyperspectral images using neural networks. In: Grana M, Duro RJ (eds) Computational intelligence for remote sensing. Springer, Berlin, pp 193–216

    Chapter  Google Scholar 

  28. Li Y, Rad AB, Peng W (1999) An enhanced training algorithm for multilayer neural networks based on reference output of hidden layer. Neural Comput Appl 8:218–225

    Article  Google Scholar 

  29. Shrivastava S, Singh MP (2011) Performance evaluation of feed-forward neural network with soft computing techniques for hand written English alphabets. Appl Soft Comput 11:1156–1182

    Article  Google Scholar 

  30. Morais J, Pires Y, Cardoso C, Klautau A (2007) Data mining applied to the electric power industry: classification of short-circuit faults in transmission lines. In: Proceedings of IEEE international conference on intelligent systems design and applications. pp 943–948

  31. Petisco C, García-Criado B, Vázquez de Aldana BR, Zabalgogeazcoal I, Mediavilla S, García-Ciudad A (2005) Use of near-infrared reflectance spectroscopy in predicting nitrogen, phosphorus and calcium contents in heterogeneous woody plant species. Anal Bioanal Chem 382:458–465

    Article  Google Scholar 

  32. Monteiro ST, Minekawa Y, Kosugi T, Akazawa T, Oda K (2007) Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J Photogramm 62:2–12

    Article  Google Scholar 

  33. Tsai F, Philpot W (1998) Derivative analysis of hyperspectral data. Remote Sens Environ 66:41–51

    Article  Google Scholar 

  34. Sipiran I, Bustos B (2011) Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis Comput 27:963–976

    Article  Google Scholar 

  35. Gevrekci M, Gunturk BK (2009) Illumination robust interest point detection. Comput Vis Image Underst 113:565–571

    Article  Google Scholar 

  36. Yu B, Wang L, Niu Z (2014) A novel algorithm in buildings/shadow detection based on Harris detector. Optik 125:741–744

    Article  Google Scholar 

  37. Pudil P, Novovičová J, Somol P (2002) Feature selection toolbox software package. Pattern Recogn Lett 23:487–492

    Article  MATH  Google Scholar 

  38. Qian Y, Tessier PJC (1995) Modelling of a woodchip refiner using artificial neural network. Chem Eng Technol 18:337–342

    Article  Google Scholar 

  39. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal 2:303–314

    Article  MathSciNet  MATH  Google Scholar 

  40. Azar AT (2013) Fast neural network learning algorithms for medical applications. Neural Comput Appl 23:1019–1034

    Article  Google Scholar 

  41. Gupta VK, Khani H, Ahmadi-Roudi B, Mirakhorli S, Fereyduni E, Agarwal S (2011) Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks. Talanta 83:1014–1022

    Article  Google Scholar 

  42. Bhattacharya S, Pal K, Pal SK (2012) Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models. Appl Soft Comput 12:498–505

    Article  Google Scholar 

  43. Singh AP, Kamal TS, Kumar S (2005) Virtual curve tracer for estimation of static response characteristics of transducers. Measurement 38:166–175

    Article  Google Scholar 

  44. Saini LM, Soni MK (2002) Artificial neural network-based peak load forecasting using conjugate gradient methods. IEEE Trans Power Syst 17:907–912

    Article  Google Scholar 

  45. Tan CC, Eswaran C (2010) Reconstruction and recognition of face and digit images using autoencoders. Neural Comput Appl 19:1069–1079

    Article  Google Scholar 

  46. Kuhn M, Johnson K (2013) Applied predictive modelling. Springer, New York

    Book  MATH  Google Scholar 

  47. Bruce LM, Koger CH, Li J (2002) Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans Geosci Remote 40:2331–2338

    Article  Google Scholar 

  48. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recogn Lett 24:1513–1521

    Article  MATH  Google Scholar 

  49. Avci E (2008) Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system. Appl Soft Comput 8:225–231

    Article  Google Scholar 

  50. Muneeswaran K, Ganesan L, Arumugam S, Soundar KR (2005) Texture classification with combined rotation and scale invariant wavelet features. Pattern Recogn 38:1495–1506

    Article  MATH  Google Scholar 

  51. Subasi A (2012) Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput Biol Med 42:806–815

    Article  Google Scholar 

  52. Martis RJ, Acharya UR, Min LC (2013) ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Proces 8:437–448

    Article  Google Scholar 

  53. Camps-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. Wiley, Hoboken

    Book  MATH  Google Scholar 

  54. Chorowski J, Wanga J, Zurada JM (2014) Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing 128:507–516

    Article  Google Scholar 

  55. Anand A, Suganthan PN (2009) Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. J Theor Biol 259:533–540

    Article  Google Scholar 

  56. Lorena AC, De Carvalho ACPLF (2008) Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 71:3326–3334

    Article  Google Scholar 

  57. Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141

    MathSciNet  MATH  Google Scholar 

  58. Bakhtiarizadeh MR, Moradi-Shahrbabak M, Ebrahimic M, Ebrahimie E (2014) Neural network and SVM classifiers accurately predict lipid binding proteins irrespective of sequence homology. J Theor Biol 356:213–222

    Article  Google Scholar 

  59. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27

    Article  Google Scholar 

  60. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    Article  Google Scholar 

  61. Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25:80–108

    Article  Google Scholar 

  62. García-Nieto J, Alba E, Jourdan L, Talbi E (2009) Sensitivity and specificity based multiobjective approach for feature selection: application to cancer diagnosis. Inform Process Lett 109:887–896

    Article  MathSciNet  MATH  Google Scholar 

  63. Elmasry G, Barbin DF, Sun D-W, Allen P (2012) Meat quality evaluation by hyperspectral imaging technique: an overview. Crit Rev Food Sci Nutr 52:689–711

    Article  Google Scholar 

  64. Willett RM, Duarte MF, Davenport MA, Baraniuk RG (2014) Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Proc Mag 31:116–126

    Article  Google Scholar 

  65. Camps-Valls G, Tuia D, Bruzzone L, Atli Benediktsson J (2014) Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Proc Mag 31:45–54

    Article  Google Scholar 

  66. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Optics 19:010901

    Article  Google Scholar 

  67. Zabalza J, Ren J, Ren J, Liu Z, Marshall S (2014) Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging. Appl Optics 53:4440–4449

    Article  Google Scholar 

  68. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101:652–675

    Article  Google Scholar 

  69. Romero E, Toppo D (2007) Comparing support vector machines and feed-forward neural networks with similar hidden-layer weights. IEEE Trans Neural Netw 18:959–963

    Article  Google Scholar 

  70. Moraes R, Valiati JF, Neto WPG (2013) Document-level sentiment classification: an empirical comparison between SVM and ANN. Expert Syst Appl 40:621–633

    Article  Google Scholar 

Download references

Acknowledgments

R. Rojas-Moraleda is funded by the Chilean National Commission for Scientific and Technological Research (CONICyT), and research projects FONDECYT 1120579, BNI (ICM P09-015-F), and FONDEF D11/1096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm O’Donnell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Moraleda, R., Valous, N.A., Gowen, A. et al. A frame-based ANN for classification of hyperspectral images: assessment of mechanical damage in mushrooms. Neural Comput & Applic 28 (Suppl 1), 969–981 (2017). https://doi.org/10.1007/s00521-016-2376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2376-7

Keywords

Navigation