Skip to main content
Log in

Finding an optimum location for biogas plant: a case study for Duzce, Turkey

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study is a case study for modelling and solving a real-life problem. In this study, a practical approximation for finding an optimum location of a foundation was realized with k-means clustering and optimization. Duzce, in the northwest of Turkey, has been researched for the biogas potential to found biogas plant. With this aim, the number of poultry in Duzce has been determined and presented their potential of biogas. Since the number of poultry is quite enough to found a biogas plant, later the location of the poultry farms and their potentials has been determined. Since there are more than 400 poultry farms in Duzce, firstly locations are clustered with classical k-means algorithm. k is specified as 6–8 with an expert knowledge. Later, the nearest location for each cluster center has been attained with simulated annealing with the objective of minimizing the transportation cost. As a result, it has been determined an optimum location for probable biogas plant for Duzce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://www.google.com/green/bigpicture. Latest Access date 28 May 2015

  2. International Energy Agency. Renewable energy outlook (2012). www.worldenergyoutlook.org/media/weowebsite/2012/WEO2012_Renewables.pdf

  3. Jebli MB, Youssef SB (2015) Output, renewable and non-renewable energy consumption and international trade: evidence from a panel of 69 countries. Renew Energy 83:799–808

    Article  Google Scholar 

  4. Havukainen J, Uusitalo V, Niskanen A, Kapustina V, Horttanainen M (2014) Evaluation of methods for estimating energy performance of biogas production. Renew Energy 66:232–240

    Article  Google Scholar 

  5. Ganzoury MA, Allam NK (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sustain Energy Rev 50:1392–1404

    Article  Google Scholar 

  6. Lebuhn M, Munk B, Effenberger M (2014) Agricultural biogas production in Germany-from practice to microbiology basics. Energy Sustain Soc 4:10

    Article  Google Scholar 

  7. Bo Z, Hongbo C (2010) Research on Chinese household or livestock farms biogas practical energy technologies. In: 2010 International conference on internet technology and applications, pp 1–4, 20–22 Aug 2010

  8. Duan N, Lin C, Wang P, Meng J, Chen H, Li X (2014) Ecological analysis of a typical farm-scale biogas plant in China. Front Earth Sci 8(3):375–384

    Article  Google Scholar 

  9. Khelidj B, Abderezzak B, Kellaci A (2012) Biogas production potential in Algeria: waste to energy opportunities. In: 2012 International conference on renewable energies for developing countries (REDEC), pp 1–5, 28–29 Nov 2012

  10. Ingrao C, Rana R, Tricase C, Lombardi M (2015) Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy. Appl Energy 149:75–88

    Article  Google Scholar 

  11. Sulistyo H, Syamsiah S, Herawati DA, Wibawa AA (2012) Biogas production from traditional market waste to generate renewable energy. In: 2012 7th International forum on strategic technology (IFOST), pp 1–4, 18–21 Sept 2012. doi:10.1109/IFOST.2012.6357507

  12. Anbu ER, Mohan P (2014) Bio-gas power plants—Green energy options for Indian villages. In: 2014 International conference on green computing communication and electrical engineering (ICGCCEE), pp 1–3, 6–8 March 2014. doi:10.1109/ICGCCEE.2014.6922457

  13. Noorollahi Y, Kheirrouz M, Asl HF, Yousefi H, Hajinezhad A (2015) Biogas production potential from livestock manure in Iran. Renew Sustain Energy Rev 50:748–754. doi:10.1016/j.rser.2015.04.190

    Article  Google Scholar 

  14. Igliński B, Buczkowski R, Cichosz M (2015) Biogas production in Poland—Current state, potential and perspectives. Renew Sustain Energy Rev 50:686–695. doi:10.1016/j.rser.2015.05.013

    Article  Google Scholar 

  15. Sovacool BK, Kryman M, Smith T (2015) Scaling and commercializing mobile biogas systems in Kenya: a qualitative pilot study. Renew Energy 76:115–125. doi:10.1016/j.renene.2014.10.070

    Article  Google Scholar 

  16. Evrendilek F, Ertekin C (2002) Agricultural sustainability in Turkey: integrating food, environmental and energy securities. Land Degrad Dev 13(1):61–67

    Article  Google Scholar 

  17. Evrendilek F, Ertekin C (2003) Assessing the potential of renewable energy sources in Turkey. Renew Energy 28:2303–2315

    Article  Google Scholar 

  18. Melikoglu M (2013) Vision 2023: feasibility analysis of Turkey’s renewable energy projection. Renew Energy 50:570–575

    Article  Google Scholar 

  19. Kaygusuz K, Kaygusuz A (2002) Renewable energy and sustainable development in Turkey. Renew Energy 25(3):431–453. doi:10.1016/S0960-1481(01)00075-1

    Article  Google Scholar 

  20. Yuksel I (2012) Global warming and environmental benefits of hydroelectric for sustainable energy in Turkey. Renew Sustain Energy Rev 16(6):3816–3825

    Article  Google Scholar 

  21. Kaygusuz K, Türker MF (2002) Biomass energy potential in Turkey. Renew Energy 26(4):661–678. doi:10.1016/S0960-1481(01)00154-9

    Article  Google Scholar 

  22. Ozgur MA (2008) Review of Turkey’s renewable energy potential. Renew Energy 33(11):2345–2356. doi:10.1016/j.renene.2008.02.003

    Article  Google Scholar 

  23. Yüksel I (2010) Energy production and sustainable energy policies in Turkey. Renew Energy 35(7):1469–1476. doi:10.1016/j.renene.2010.01.013

    Article  Google Scholar 

  24. Basaran ST, Dogru AO, Balcik FB, Ulugtekin NN, Goksel C, Sozen S (2015) Assessment of renewable energy potential and policy in Turkey—toward the acquisition period in European Union. Environ Sci Policy 46:82–94. doi:10.1016/j.envsci.2014.08.016

    Article  Google Scholar 

  25. Benli H (2013) Potential of renewable energy in electrical energy production and sustainable energy development of Turkey: performance and policies. Renew Energy 50:33–46. doi:10.1016/j.renene.2012.06.051

    Article  Google Scholar 

  26. Toklu E (2013) Overview of potential and utilization of renewable energy sources in Turkey. Renew Energy 50:456–463. doi:10.1016/j.renene.2012.06.035

    Article  Google Scholar 

  27. Çelik İ, Demirer GN (2015) Biogas production from pistachio (Pistacia vera L.) processing waste. Biocatal Agric Biotechnol 4(4):767–772. doi:10.1016/j.bcab.2015.10.009

    Google Scholar 

  28. Ozsoy G, Alibas I (2015) GIS mapping of biogas potential from animal wastes in Bursa, Turkey. Int J Agric Biol Eng 8(1):74–83

    Google Scholar 

  29. Coskun C, Bayraktar M, Oktay Z, Dincer I (2012) Investigation of biogas and hydrogen production from waste water of milk-processing industry in Turkey. Int J Hydrog Energy 37(21):16498–16504. doi:10.1016/j.ijhydene.2012.02.174

    Article  Google Scholar 

  30. URL, Turkey Statistic Institute. http://tuikapp.tuik.gov.tr/hayvancilikapp/hayvancilik.zul. Access date 19 Dec 2014

  31. Turkey Renewable Energy Directorate General. http://www.eie.gov.tr/yenilenebilir/biyogaz.aspx. Access date 30 May 2015

  32. MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. Oakland, CA, pp 281–297

  33. Öztürk MM, Cavusoglu U, Zengin A (2015) A novel defect prediction method for web pages using k-means++. Expert Syst Appl 42(19):6496–6506. doi:10.1016/j.eswa.2015.03.013

    Article  Google Scholar 

  34. Al-Mohair HK, Saleh JM, Suandi SA (2015) Hybrid human skin detection using neural network and k-means clustering technique. Appl Soft Comput 33:337–347. doi:10.1016/j.asoc.2015.04.046

    Article  Google Scholar 

  35. Isakov SV, Zintchenko IN, Rønnow TF, Troyer M (2015) Optimised simulated annealing for Ising spin glasses. Comput Phys Commun 192:265–271. doi:10.1016/j.cpc.2015.02.015

    Article  MathSciNet  MATH  Google Scholar 

  36. Blum C, Roli A (2001) Metaheuristics in combinatorial optimization: overview and conceptual comparasion. Technical Report, TR/IRIDIA/2001-13

  37. http://duzce.tarim.gov.tr/Sayfalar/EN/AnaSayfa.aspx. Access date 1 July 2015

  38. https://www.google.com/maps/place/40%C2%B053’24.0%22N+31%C2%B009’36.0%22E/@40.8874045,31.1572534,13z/data=!4m2!3m1!1s0x0:0x0. Access date 1 July 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pakize Erdogmus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuruk, F., Erdogmus, P. Finding an optimum location for biogas plant: a case study for Duzce, Turkey. Neural Comput & Applic 29, 157–165 (2018). https://doi.org/10.1007/s00521-016-2424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2424-3

Keywords

Navigation