Skip to main content

Advertisement

Log in

Stochastic numerical treatment for solving Falkner–Skan equations using feedforward neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this article, the artificial intelligence techniques have been used for the solution of Falkner–Skan (FS) equations based on neural networks optimized with three methods including active set technique, sequential quadratic programming and genetic algorithms (GA) hybridization. Log-sigmoid activation function is used in artificial neural network architecture. The proposed techniques are applied to a number of cases for Falkner–Skan problems, and results were compared with GA hybrid results in all cases and were found accurate. The level of accuracy is examined through statistical analyses based on a sufficiently large number of independent runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Falkner VM, Skan SW (1931) Some approximate solutions of the boundary layer equations. Philos Mag 12:865–896

    Article  MATH  Google Scholar 

  2. Hartree DR (1937) On an equation occurring in Falkner and Skan’s approximate treatment of the equation of the boundary layer. Proc Camb Phil Soc 33:223–239

    Article  MATH  Google Scholar 

  3. Harris SD, Ingham DB, Pop I (2002) Unsteady heat transfer in impulsive Falkner–Skan flows: constant wall temperature case. Eur J Mech B 21:447–468

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal RP, O’Regan D (2003) Infinite interval problems arising in nonlinear mechanics and non-Newtonian flows. Int J Non Linear Mech 38:1369–1376

    Article  MATH  Google Scholar 

  5. Pantokratoras A (2006) The Falkner–Skan flow with constant wall temperature and variable viscosity. Int J Therm Sci 45:378–389

    Article  Google Scholar 

  6. Sandile M et al (2011) An improved spectral homotopy analysis method for solving boundary layer problems. Bound Value Probl. doi:10.1186/1687-2770-2011-3

  7. Olagunju DO (2006) A self-similar solution for forced convection boundary layer flow of a FENE-P fluid. Appl Math Lett 19(5):432–436

    Article  MathSciNet  MATH  Google Scholar 

  8. Asaithambi A (2004) Numerical solution of the Falkner–Skan equation using piecewise linear functions. Appl Math Comput 159:267–273

    MathSciNet  MATH  Google Scholar 

  9. Bhatnagar RK, Gupta G, Rajagopal KR (1995) Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non Linear Mech 30(3):391–405

    Article  MATH  Google Scholar 

  10. Magyari E, Keller B (2000) Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur J Mech B Fluids 19:109–122

    Article  MathSciNet  MATH  Google Scholar 

  11. Massoudi M (2003) Boundary layer flow of a second grade fluid with variable heat flux at the wall. Appl Math Comput 143:201–212

    MathSciNet  MATH  Google Scholar 

  12. Weyl H (1942) On the differential equations of the simplest boundary-layer problems. Ann Math 43(2):381–407

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosenhead L (1963) Laminar boundary layers. Clarendon Press, Oxford, England

    MATH  Google Scholar 

  14. Tam KK (1970) A note on existance of a solution of Falkner-Skan equation. Can Math Bull 13(1):125

    Article  MATH  Google Scholar 

  15. Hartman P (1972) On the existence of similar solutions of some boundary layer problems. SIAM J Math Anal 3(1):120–147

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang GC (2008) New results of Falkner-Skan equation arising in boundary layer theory. Appl Math Comput 202(1):406–412

    MathSciNet  MATH  Google Scholar 

  17. Ahmad I, Mukhtar A (2015) Stochastic approach for the solution of multi-pantograph differential equation arising in cell-growth model. Appl Math Comput 261:360

    MathSciNet  Google Scholar 

  18. Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415

    Article  MathSciNet  MATH  Google Scholar 

  19. Abo-Hammour Z, Abu Arqub O, Momani S, Shawagfeh N (2014) Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discrete Dyn Nat Soc. Article ID 401696. doi:10.1155/2014/401696

  20. Raja MAZ, Khan JA, Siddiqui AM, Behloul D, Haroon T, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painleve equation. Appl Soft Comput 26:244–256

    Article  Google Scholar 

  21. Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery–Hamel problem. Appl Math Mech 36(12):1611–1638. doi:10.1007/s10483-015-2000-6

    Article  MathSciNet  Google Scholar 

  22. Arqub OA, Mohammed AS, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4

    MATH  Google Scholar 

  23. Arqub OA (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.1007/s00521-015-2110-x

    Google Scholar 

  24. Judice JJ, Sherali HD, Ribeiro IM, Faustino AM (2007) Complementarity active-set algorithm for mathematical programming problems with equilibrium constraints. J Optim Theory Appl 134(3):467–481

    Article  MathSciNet  MATH  Google Scholar 

  25. Hager WW, Zhang H (2006) A new active set algorithm for box constrained optimization. SIAM J Optim 17(2):526–557

    Article  MathSciNet  MATH  Google Scholar 

  26. Sloan SW (2005) A steepest edge active set algorithm for solving sparse linear programming problems. Int J Numer Methods Eng 26(12):2671–2685

    Article  MathSciNet  MATH  Google Scholar 

  27. Khan JA, Raja MAZ (2013) Artificial intelligence based solver for governing model of radioactivity cooling, self-gravitating clouds and clusters of galaxies. Res J Appl Sci Eng Technol 6(3):450–456

    Google Scholar 

  28. Zahoor Raja MA, Khan JA, Qureshi IM (2010) A new stochastic approach for solution of Riccati differential equation of fractional order. Ann Math Artif Intell 60:229–250

    Article  MathSciNet  MATH  Google Scholar 

  29. Zahoor Raja MA, Samar R (2014) Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124:178–193

    Article  Google Scholar 

  30. Saini I, Singh P, Malik V (2013) Genetic algorithem approach for solving the Falkner–Skan equation. World Acad Sci Eng Technol IJC Inf Sci Eng 7:3

    Google Scholar 

  31. Hartree DR (1921) On an equation occurring in Falkner and Skan’s approximate treatment of the equations boundary layer. Proc Camb Philos Soc 33:223–239

    Article  MATH  Google Scholar 

  32. Asaithambi A (1998) A finite-difference method for the solution of the Falkner–Skan equation. Appl Math Comput 92:135–141

    Article  MathSciNet  MATH  Google Scholar 

  33. Asaithambi NS (1997) A numerical method for the solution of the Falkner–Skan equation. Appl Math Comput 81:259–264

    MathSciNet  MATH  Google Scholar 

  34. Salama AA (2004) Higher-order method for solving free boundary-value problems. Numer Heat Transf Part B Fundam 45:385–394

    Article  Google Scholar 

  35. Zhang J, Chen B (2009) An iterative method for solving the Falkner–Skan equation. Appl Math Comput 210:215–222

    MathSciNet  MATH  Google Scholar 

  36. Vera MR, Valencia A (2010) Solutions of Falkner–Skan equation with heat transfer by Fourier series. Int Commun Heat Mass Transf 37:761–765

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Muhammad Asif Zahoor Raja for help in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Ahmad, SuI., Bilal, M. et al. Stochastic numerical treatment for solving Falkner–Skan equations using feedforward neural networks. Neural Comput & Applic 28 (Suppl 1), 1131–1144 (2017). https://doi.org/10.1007/s00521-016-2427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2427-0

Keywords

Navigation