Skip to main content
Log in

Prototype selection for dynamic classifier and ensemble selection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In dynamic ensemble selection (DES) techniques, only the most competent classifiers, for the classification of a specific test sample, are selected to predict the sample’s class labels. The key in DES techniques is estimating the competence of the base classifiers for the classification of each specific test sample. The classifiers’ competence is usually estimated according to a given criterion, which is computed over the neighborhood of the test sample defined on the validation data, called the region of competence. A problem arises when there is a high degree of noise in the validation data, causing the samples belonging to the region of competence to not represent the query sample. In such cases, the dynamic selection technique might select the base classifier that overfitted the local region rather than the one with the best generalization performance. In this paper, we propose two modifications in order to improve the generalization performance of any DES technique. First, a prototype selection technique is applied over the validation data to reduce the amount of overlap between the classes, producing smoother decision borders. During generalization, a local adaptive K-Nearest Neighbor algorithm is used to minimize the influence of noisy samples in the region of competence. Thus, DES techniques can better estimate the classifiers’ competence. Experiments are conducted using 10 state-of-the-art DES techniques over 30 classification problems. The results demonstrate that the proposed scheme significantly improves the classification accuracy of dynamic selection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The term base classifier refers to a single classifier belonging to an ensemble or a pool of classifiers.

References

  1. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S (2011) KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult Valued Log Soft Comput 17(2–3):255–287

    Google Scholar 

  2. Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml

  3. Britto AS, Sabourin R, de Oliveira LES (2014) Dynamic selection of classifiers: a comprehensive review. Pattern Recognit 47(11):3665–3680

    Article  Google Scholar 

  4. Calvo-Zaragoza J, Valero-Mas JJ, Rico-Juan JR (2016) Prototype generation on structural data using dissimilarity space representation. Neural Comput Appl. doi:10.1007/s00521-016-2278-8

    Google Scholar 

  5. Cavalin PR, Sabourin R, Suen CY (2012) Logid: an adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs. Pattern Recognit 45(9):3544–3556

    Article  Google Scholar 

  6. Cavalin PR, Sabourin R, Suen CY (2013) Dynamic selection approaches for multiple classifier systems. Neural Comput Appl 22(3–4):673–688

    Article  Google Scholar 

  7. Cruz RMO, Sabourin R, Cavalcanti GDC (2015) A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers. CoRR arXiv:1509.00825

  8. Cruz RMO, Sabourin R, Cavalcanti GDC (2015) META-DES.H: a dynamic ensemble selection technique using meta-learning and a dynamic weighting approach. In: International joint conference on neural networks, pp 1–8

  9. Cruz RMO, Sabourin R, Cavalcanti GDC, Ren TI (2015) META-DES: a dynamic ensemble selection framework using meta-learning. Pattern Recognit 48(5):1925–1935

    Article  Google Scholar 

  10. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  11. Díez-Pastor J, Rodríguez JJ, García-Osorio C, Kuncheva LI (2015) Diversity techniques improve the performance of the best imbalance learning ensembles. Inf Sci 325:98–117

    Article  MathSciNet  Google Scholar 

  12. Dos Santos EM, Sabourin R, Maupin P (2008) A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit 41:2993–3009

    Article  MATH  Google Scholar 

  13. Duin RPW, Juszczak P, de Ridder D, Paclik P, Pekalska E, Tax DM (2004) Prtools, a matlab toolbox for pattern recognition http://www.prtools.org

  14. Garcia S, Derrac J, Cano J, Herrera F (2012) Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans Pattern Anal Mach Intell 34(3):417–435

    Article  Google Scholar 

  15. Giacinto G, Roli F (2001) Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognit 34:1879–1881

    Article  MATH  Google Scholar 

  16. King RD, Feng C, Sutherland A (1995) Statlog: comparison of classification algorithms on large real-world problems. Appl Artif Intell Int J 9(3):289–333

    Article  Google Scholar 

  17. Ko AHR, Sabourin R, Britto uS Jr (2008) From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit 41:1735–1748

    Article  MATH  Google Scholar 

  18. Kuncheva L (2004) Ludmila kuncheva collection LKC. http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm

  19. Nanni L, Fantozzi C, Lazzarini N (2015) Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158:48–61

    Article  Google Scholar 

  20. Sabourin M, Mitiche A, Thomas D, Nagy G (1993) Classifier combination for handprinted digit recognition. In: International conference on document analysis and recognition, pp 163–166

  21. Smith MR, Martinez TR, Giraud-Carrier CG (2014) An instance level analysis of data complexity. Mach Learn 95(2):225–256

    Article  MathSciNet  Google Scholar 

  22. Smits PC (2002) Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Trans Geosci Remote Sens 40(4):801–813

    Article  Google Scholar 

  23. Sun Z, Song Q, Zhu X, Sun H, Xu B, Zhou Y (2015) A novel ensemble method for classifying imbalanced data. Pattern Recognit 48(5):1623–1637

    Article  Google Scholar 

  24. Triguero I, Derrac J, García S, Herrera F (2012) A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans Syst Man Cybern Part C 42(1):86–100

    Article  Google Scholar 

  25. Valentini G (2003) Ensemble methods based on bias-variance analysis. Ph.D. thesis, Dipartimento di Informatica e Scienze dell’ Informazione (DISI)—Università di Genova

  26. Wang J, Neskovic P, Cooper LN (2007) Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit Lett 28:207–213

    Article  Google Scholar 

  27. Wilson DL (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern 2(3):408–421

    Article  MathSciNet  MATH  Google Scholar 

  28. Woloszynski T, Kurzynski M (2010) A measure of competence based on randomized reference classifier for dynamic ensemble selection. In: International conference on pattern recognition (ICPR), pp 4194–4197

  29. Woloszynski T, Kurzynski M (2011) A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognit 44:2656–2668

    Article  MATH  Google Scholar 

  30. Woloszynski T, Kurzynski M, Podsiadlo P, Stachowiak GW (2012) A measure of competence based on random classification for dynamic ensemble selection. Inf Fusion 13(3):207–213

    Article  Google Scholar 

  31. Woods K, Kegelmeyer WP Jr, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19:405–410

    Article  Google Scholar 

  32. Zhu X, Wu X, Yang Y (2004) Dynamic classifier selection for effective mining from noisy data streams. In: Proceedings of the 4th IEEE international conference on data mining, pp 305–312

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the École de technologie supérieure (ÉTS Montréal) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael M. O. Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, R.M.O., Sabourin, R. & Cavalcanti, G.D.C. Prototype selection for dynamic classifier and ensemble selection. Neural Comput & Applic 29, 447–457 (2018). https://doi.org/10.1007/s00521-016-2458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2458-6

Keywords

Navigation