Skip to main content
Log in

Particle classification optimization-based BP network for telecommunication customer churn prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Customer churn prediction is critical for telecommunication companies to retain users and provide customized services. In this paper, a particle classification optimization-based BP network for telecommunication customer churn prediction (PBCCP) algorithm is proposed, which iteratively executes the particle classification optimization (PCO) and the particle fitness calculation (PFC). PCO classifies the particles into three categories according to their fitness values, and updates the velocity of different category particles using distinct equations. PFC calculates the fitness value of a particle in each forward training process of a BP neural network. PBCCP optimizes the initial weights and thresholds of the BP neural network, and brings remarkable improvement on customer churn prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Baesens B, Verstraeten G, Van den Poel D et al (2004) Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers. Eur J Oper Res 156(2):508–523

    Article  MATH  Google Scholar 

  2. Kisioglu P, Topcu YI (2011) Applying Bayesian belief network approach to customer churn analysis, a case study on the telecom industry of Turkey. Expert Syst Appl 38(6):7151–7157

    Article  Google Scholar 

  3. Qi J, Zhang L, Liu Y et al (2009) ADTreesLogit model for customer churn prediction. Ann Oper Res 168(1):247–265

    Article  MathSciNet  MATH  Google Scholar 

  4. Bin L, Peiji S, Juan L (2007) Customer churn prediction based on the decision tree in personal handyphone system service. In: International conference on service systems and service management, 2007, IEEE, pp 1–5

  5. Xie Y, Li X, Ngai EWT et al (2009) Customer churn prediction using improved balanced random forests. Expert Syst Appl 36(3):5445–5449

    Article  Google Scholar 

  6. Lessmann S, Vo S (2009) A reference model for customer-centric data mining with support vector machines. Eur J Oper Res 199(2):520–530

    Article  MathSciNet  MATH  Google Scholar 

  7. Xia G, Jin W (2008) Model of customer churn prediction on support vector machine. Syst Eng-Theory Pract 28(1):71–77

    Article  Google Scholar 

  8. Zhao Y, Li B, Li X et al (2005) Customer churn prediction using improved one-class support vector machine[M], advanced data mining and applications. Springer, Berlin

    Google Scholar 

  9. Hung SY, Yen DC, Wang HY (2006) Applying data mining to telecom churn management. Expert Syst Appl 31(3):515–524

    Article  Google Scholar 

  10. Song G, Yang D, Wu L, et al (2006) A mixed process neural network and its application to churn prediction in mobile communications. In: Sixth IEEE international conference on data mining workshops, 2006, ICDM Workshops 2006, IEEE, pp 798–802

  11. Pendharkar PC (2009) Genetic algorithm based neural network approaches for predicting churn in cellular wireless network services. Expert Syst Appl 36(3):6714–6720

    Article  Google Scholar 

  12. Xu E, Liangshan S, Xuedong G et al (2006) An algorithm for predicting customer churn via BP neural network based on rough set. In: IEEE Asia-Pacific conference on services computing 2006, APSCC’06. IEEE, pp 47–50

  13. Tsai CF, Lu YH (2009) Customer churn prediction by hybrid neural networks. Expert Syst Appl 36(10):12547–12553

    Article  Google Scholar 

  14. Hecht-Nielsen R (1989) Theory of the backpropagation neural network. In: International joint conference on neural networks 1989, IJCNN, IEEE, pp 593–605

  15. Da Y, Xiurun G (2005) An improved PSO-based ANN with simulated annealing technique. Neurocomputing 63:527–533

    Article  Google Scholar 

  16. Yarlagadda PKDV, Chiang ECW (1999) A neural network system for the prediction of process parameters in pressure die casting. J Mater Process Technol 89:583–590

    Article  Google Scholar 

  17. Wu JF, ZHU XY, LIU JL (1999) Groundwater management model based on simulated annealing penalty function genetic algorithm. Sci China Ser E 29:474–480

    Google Scholar 

  18. Yong-jian LIU (2004) The establishment and application of dynamic prediction model of groundwater level based on intelligent algorithm. Hydrogeol Eng Geol 3:012

    Google Scholar 

  19. Ester M, Kriegel HP, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34):226–231

    Google Scholar 

  20. Zhang JR, Zhang J, Lok TM et al (2007) A hybrid particle swarm optimization back-propagation algorithm for feedforward neural network training. Appl Math Comput 185(2):1026–1037

    MATH  Google Scholar 

  21. Dehuri S, Cho SB (2010) A comprehensive survey on functional link neural networks and an adaptive PSOCBP learning for CFLNN. Neural Comput Appl 19(2):187–205

    Article  Google Scholar 

  22. Bashir ZA, El-Hawary ME (2009) Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans Power Syst 24(1):20–27

    Article  Google Scholar 

  23. Kriegel HP, Kräger P, Sander J et al (2011) Density-based clustering. Wiley Interdiscip Rev Data Min Knowl Discov 1(3):231–240

    Article  Google Scholar 

  24. Kennedy J (2010) Particle swarm optimization[M], encyclopedia of machine learning. Springer, New York

    Google Scholar 

  25. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, 1997, IEEE, pp 303–308

  26. Liu S, Liu J, Zhang L (2008) Classification of fabric defect based on PSO-BP neural network[C]. In: Second international conference on genetic and evolutionary computing, 2008, WGEC’08, IEEE, pp 137–140

  27. Tallaneare TS (1990) Fast adaptive backpropagation with good scaling properties. Neural Netw 3(5):561–573

    Article  Google Scholar 

  28. Stäger F, Agarwal M (1997) Three methods to speed up the training of feedforward and feedback perceptrons. Neural Netw 10(8):1435–1443

    Article  Google Scholar 

  29. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Probab 1(14):281–297

    MathSciNet  MATH  Google Scholar 

  30. Steinhaus H (1956) Sur la division des corp materiels en parties. Bull Acad Pol Sci 1:801–804

    MathSciNet  MATH  Google Scholar 

  31. Kennedy J (1999) Small worlds and mega-minds, effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 congress on evolutionary computation, 1999, CEC 99. IEEE, p 3

  32. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the National Natural Science Foundation of China under Grant No. 61272529; Ministry of Education-China Mobile Research Fund under Grant No. MCM20130391; the Fundamental Research Funds for the Central Universities under Grant No. N130817003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanmiao An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., An, X., Jin, B. et al. Particle classification optimization-based BP network for telecommunication customer churn prediction. Neural Comput & Applic 29, 707–720 (2018). https://doi.org/10.1007/s00521-016-2477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2477-3

Keywords

Navigation