Skip to main content
Log in

Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents iterative reproducing kernel algorithm for obtaining the numerical solutions of Bagley–Torvik and Painlevé equations of fractional order. The representation of the exact and the numerical solutions is given in the \( \hat{W}_{2}^{3} \left[ {0,1} \right] \), \( W_{2}^{3} \left[ {0,1} \right] \), and \( W_{2}^{1} \left[ {0,1} \right] \) inner product spaces. The computation of the required grid points is relying on the \( \hat{R}_{t}^{{\left\{ 3 \right\}}} \left( s \right) \), \( R_{t}^{{\left\{ 3 \right\}}} \left( s \right) \), and \( R_{t}^{{\left\{ 1 \right\}}} \left( s \right) \) reproducing kernel functions. An efficient construction is given to obtain the numerical solutions for the equations together with an existence proof of the exact solutions based upon the reproducing kernel theory. Numerical solutions of such fractional equations are acquired by interrupting the \( n \)-term of the exact solutions. In this approach, numerical examples were analyzed to illustrate the design procedure and confirm the performance of the proposed algorithm in the form of tabulate data, numerical comparisons, and graphical results. Finally, the utilized results show the significant improvement in the algorithm while saving the convergence accuracy and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  MATH  Google Scholar 

  2. Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  4. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives theory and applications. Gordon and Breach, New York

    MATH  Google Scholar 

  5. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  6. Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51:294–298

    Article  MATH  Google Scholar 

  7. Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748

    Article  MATH  Google Scholar 

  8. Ghorbani A, Alavi A (2008) Application of He’s variational iteration method to solve semidifferential equations of nth order. Math Probl Eng. doi:10.1155/2008/627983

    MATH  Google Scholar 

  9. Podlubny I, Skovranek T, Jara BMV (2009) Matrix approach to discretization of fractional derivatives and to solution of fractional differential equations and their systems. In: Proceedings of the IEEE conference on emerging technologies and factory automation (ETFA’09), pp 1–6

  10. Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley–Torvik equation using evolutionary computational intelligence. Math Probl Eng. doi:10.1155/2011/675075

    MathSciNet  MATH  Google Scholar 

  11. Fadravi HH, Nik HS, Buzhabadi R (2011) Homotopy analysis method based on optimal value of the convergence control parameter for solving semi-differential equations. J Math Ext 5:105–121

    MathSciNet  MATH  Google Scholar 

  12. Zolfaghari M, Ghaderi R, Eslami AS, Ranjbar A, Hosseinnia SH, Momani S (2009) Sadati J (2009) Application of the enhanced homotopy perturbation method to solve the fractional-order Bagley–Torvik differential equation. Phys Scr T136:014032

    Article  Google Scholar 

  13. Wang ZH, Wang X (2010) General solution of the Bagley–Torvik equation with fractional-order derivative. Commun Nonlinear Sci Numer Simul 15:1279–1285

    Article  MathSciNet  MATH  Google Scholar 

  14. Ray SS (2012) On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl Math Comput 218:5239–5248

    MathSciNet  MATH  Google Scholar 

  15. Yüzbaşi S (2013) Numerical solution of the Bagley–Torvik equation by the Bessel collocation method. Math Methods Appl Sci 36:300–312

    Article  MathSciNet  MATH  Google Scholar 

  16. Cenesiz Y, Keskin Y, Kurnaz A (2010) The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J Frankl Inst 347:452–466

    Article  MathSciNet  MATH  Google Scholar 

  17. Hesameddini E, Peyrovi A (2009) The use of variational iteration method and homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871

    MATH  Google Scholar 

  18. Raja MAZ, Khan JA, Ahmad SUL, Qureshi IM (2012) A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci. doi:10.1155/2012/721867

    Google Scholar 

  19. Raja MAZ, Khan JA, Shah SM, Samar R, Behloul D (2015) Comparison of three unsupervised neural network models for first Painlevé transcendent. Neural Comput Appl 26:1055–1071

    Article  Google Scholar 

  20. Dehghan M, Shakeri F (2009) The numerical solution of the second Painlevé equation. Numer Methods Partial Differ Equ 25:1238–1259

    Article  MATH  Google Scholar 

  21. Saadatmandi A (2012) Numerical study of second Painlevé equation. Commun Numer Anal. doi:10.5899/2012/cna-00157

    Google Scholar 

  22. Raja MAZ, Khan JA, Siddiqui AM, Behloul D, Haroon T, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256

    Article  Google Scholar 

  23. Fornberg B, Weideman JAC (2011) A numerical methodology for the Painlevé equations. J Comput Phys 230:5957–5973

    Article  MathSciNet  MATH  Google Scholar 

  24. Fornberg B, Weideman JAC (2015) A computational overview of the solution space of the imaginary Painlevé II equation. Phys D 309:108–118

    Article  MathSciNet  MATH  Google Scholar 

  25. Hesameddini E, Latifizadeh H (2012) Homotopy analysis method to obtain numerical solutions of the Painlevé equations. Math Methods Appl Sci 35:1423–1433

    Article  MathSciNet  MATH  Google Scholar 

  26. Cui M, Lin Y (2009) Nonlinear numerical analysis in the reproducing kernel space. Nova Science, New York

    MATH  Google Scholar 

  27. Berlinet A, Agnan CT (2004) Reproducing kernel Hilbert space in probability and statistics. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  28. Daniel A (2003) Reproducing kernel spaces and applications. Springer, Basel

    MATH  Google Scholar 

  29. Weinert HL (1982) Reproducing kernel Hilbert spaces: applications in statistical signal processing. Hutchinson Ross, Stroudsburg

    Google Scholar 

  30. Lin Y, Cui M, Yang L (2006) Representation of the exact solution for a kind of nonlinear partial differential equations. Appl Math Lett 19:808–813

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu B, Li X (2010) Iterative reproducing kernel method for nonlinear oscillator with discontinuity. Appl Math Lett 23:1301–1304

    Article  MathSciNet  MATH  Google Scholar 

  32. Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948

    MathSciNet  MATH  Google Scholar 

  33. Abu Arqub O, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922

    MathSciNet  MATH  Google Scholar 

  34. Momani S, Abu Arqub O, Hayat T, Al-Sulami H (2014) A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl Math Comput 240:229–239

    MathSciNet  MATH  Google Scholar 

  35. Abu Arqub O, Al-Smadi M, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4

    MATH  Google Scholar 

  36. Abu Arqub O (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.1007/s00521-015-2110-x

    Google Scholar 

  37. Abu Arqub O (2016) The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math Methods Appl Sci. doi:10.1002/mma.3884

    MathSciNet  MATH  Google Scholar 

  38. Abu Arqub O (2016) Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam Inform 145:1–24

    Article  MathSciNet  MATH  Google Scholar 

  39. Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Modell 39:5592–5597

    Article  MathSciNet  Google Scholar 

  40. Jiang W, Chen Z (2013) Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl Math Comput 219:10225–10230

    MathSciNet  MATH  Google Scholar 

  41. Wang WY, Han B, Yamamoto M (2013) Inverse heat problem of determining time-dependent source parameter in reproducing kernel space. Nonlinear Anal Real World Appl 14:875–887

    Article  MathSciNet  MATH  Google Scholar 

  42. Geng FZ, Qian SP (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang W, Chen Z (2014) A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer Methods Partial Differ Equ 30:289–300

    Article  MathSciNet  MATH  Google Scholar 

  44. Geng FZ, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the unknown referees for carefully reading the paper and their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abu Arqub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Arqub, O., Maayah, B. Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates. Neural Comput & Applic 29, 1465–1479 (2018). https://doi.org/10.1007/s00521-016-2484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2484-4

Keywords

Mathematics Subject Classification

Navigation