Skip to main content
Log in

A Mahalanobis metric learning-based polynomial kernel for classification of hyperspectral images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, to combine the advantage of both polynomial kernel and the Mahalanobis distance metric learning (DML) methods, we propose a Mahalanobis DML based polynomial kernel for the classification of hyperspectral images. To ensure the method is computing-saving, we adapt a fast iterative method to learn the Mahalanobis matrix. Simulation experiment is conducted on two real hyperspectral data sets. To evaluate the proposed method, we compare it with the traditional radial basis function (RBF) kernel, polynomial kernel and the RBF-based Mahalanobis kernel, the result shows the performance of the proposed method did improve the capability of the polynomial kernel and also perform better than the RBF-based Mahalanobis kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhong Y, Lin X, Zhang L (2014) A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1314–1330

    Article  Google Scholar 

  2. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  3. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of annual workshop on computational learning theory, vol 5. ACM, pp 144–152

  4. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  5. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  6. Camps-Valls G, Gomez-Chova L, Calpe-Maravilla J, Martin-Guerrero JD, Soria-Olivas E, Alonso-Chorda L, Moreno J (2004) Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans Geosci Remote Sens 42(7):1530–1542

    Article  Google Scholar 

  7. Foody GM, Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42(6):1335–1343

    Article  Google Scholar 

  8. Gualtieri JA, Cromp RF (1999) Support vector machines for hyperspectral remote sensing classification. Proc SPIE Int Soc Opt Eng 3584(25):1–28

    Google Scholar 

  9. Gu Y, Wang Q, Liu P, Zuo D (2014) Linear discriminant multiple kernel learning for multispectral image classification. In: 2014 IEEE international conference on image processing (ICIP)

  10. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Article  Google Scholar 

  11. Lanckriet GRG, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI (2002) Learning the kernel matrix with semi-definite programming. In: Proceedings of the nineteenth international conference on machine learning, pp 27–72

  12. Gu Y, Wang Q, Wang H, You D (2015) Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2739–2751

    Article  Google Scholar 

  13. Gu Y, Wang C, You D, Zhang Y, Wang S, Zhang Y (2012) Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans Geosci Remote Sens 50(7):2852–2865

    Article  Google Scholar 

  14. Gu Y, Liu H (2016) Sample-screening mkl method via boosting strategy for hyperspectral image classification. Neurocomputing 173:1630–1639

    Article  Google Scholar 

  15. Xie X, Li B, Chai X (2016) A framework of quasiconformal mapping-based kernel machine with its application to hyperspectral remote sensing. Measurement 80:270–280

    Article  Google Scholar 

  16. Xie X, Li B, Chai X (2015) Kernel-based nonparametric fisher classifier for hyperspectral remote sensing imagery. J Inf Hiding Multimed Signal Process 6(3):591–599

    Google Scholar 

  17. Xie X, Li B (2016) A unified framework of multiple kernels learning for hyperspectral remote sensing big data. J Inf Hiding Multimed Signal Process 7(2):296–303

    Google Scholar 

  18. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1531–1565

    MathSciNet  MATH  Google Scholar 

  19. Clark RN, Gallagher AJ, Swayze GA (1990) Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In: Proceedings of the 2nd airborne visible infrared imaging spectrometer (AVIRIS) workshop. Jet Propulsion Laboratory, Publication

  20. Chang CI (1999) Spectral information divergence for hyperspectral image analysis. In: Geoscience and remote sensing symposium, 1999. IGARSS ’99 Proceedings. IEEE 1999 International, vol 1, pp 509–511

  21. Meer FVD (2000) Spectral curve shape matching with a continuum removed ccsm algorithm. Int J Remote Sens 21(16):3179–3185

    Article  Google Scholar 

  22. Bue BD (2014) An evaluation of low-rank mahalanobis metric learning techniques for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1079–1088

    Article  Google Scholar 

  23. Amari S, Wu S (1999) Improving support vector machine classifiers by modifying kernal functions. Neural Netw 12(6):783–789

    Article  Google Scholar 

  24. Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460–474

    Article  Google Scholar 

  25. Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance metric learning, with application to clustering with side-information. Adv Neural Inf Process Syst 15:505–512

    Google Scholar 

  26. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: NIPS 2006 workshop on learning to compare examples, pp 209–216

  27. Alipanahi B, Biggs M, Ghodsi A (2008) Distance metric learning vs. fisher discriminant analysis. In: Proceedings of the 23rd national conference on artificial intelligence, vol 2

  28. Goldberger J, Roweis ST, Hinton GE, Salakhutdinov R (2004) Neighbourhood components analysis. Adv Neural Inf Process Syst 83(6):513–520

    Google Scholar 

  29. Globerson A, Roweis ST (2005) Metric learning by collapsing classes. Nips 18:451–458

    Google Scholar 

  30. Tsang IW, Cheung PM, Kwok JT (2005) Kernel relevant component analysis for distance metric learning. In: IEEE international joint conference on neural networks (IJCNN), pp 954–959

  31. Goldberger LWJ (2009) Classification of hyperspectral remote-sensing images using discriminative linear projections. Int J Remote Sens 30(21):5605–5617(13)

    Article  Google Scholar 

  32. Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10(1):207–244

    MATH  Google Scholar 

  33. Baghshah MS, Shouraki SB (2010) Kernel-based metric learning for semi-supervised clustering. Neurocomputing 73(7–9):1352–1361

    Article  MATH  Google Scholar 

  34. Bruske J, Mernyi E (1999) Estimating the intrinsic dimensionality of hyperspectral images. In: Proceedings of European symposium on artificial neural networks. D Facto Publications, pp 105–110

  35. Green RO, Boardman J (2000) Exploration of the relationship between information content and signal-to-noise ratio and spatial resolution in AVIRIS spectral data. Spectrum 7:8

    Google Scholar 

  36. Bue BD, Thompson DR, Gilmore MS, Castao R (2011) Metric learning for hyperspectral image segmentation. In: 2011 3rd workshop on, hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), pp 1–4

  37. Thompson DR, Bornstein BJ, Chien SA, Schaffer S, Tran D, Bue BD, Castano R, Gleeson DF, Noell A (2013) Autonomous spectral discovery and mapping onboard the EO-1 spacecraft. IEEE Trans Geosci Remote Sens 51(6):3567–3579

    Article  Google Scholar 

  38. Wu G, Chang EY, Panda N (2005) Formulating context-dependent similarity functions. In: ACM international conference on multimedia, pp 725–734

  39. Hoi SCH, Liu W, Lyu MR, Ma WY (2006) Learning distance metrics with contextual constraints for image retrieval. In: 2013 IEEE conference on computer vision and pattern recognition, pp 2072–2078

  40. Kwok JT, Tsang IW (2003) Learning with idealized kernels. In: Proceedings of ICML, vol 1, pp 400–407

  41. Zhang Z (2003) Learning metrics via discriminant kernels and multidimensional scaling: toward expected euclidean representation. In: ICML, vol 2, pp 872–879

  42. Gomez J, Blasco J, Molto E, Camps-Valls G (2007) Hyperspectral detection of citrus damage with mahalanobis kernel classifier. Electron Lett 43(20):1082–1084

    Article  Google Scholar 

  43. Xiang S, Nie F, Zhang C (2008) Learning a mahalanobis distance metric for data clustering and classification. Pattern Recogn 41(12):3600–3612

    Article  MATH  Google Scholar 

  44. Guo YF, Li SJ, Yang JY, Shu TT, Wu LD (2003) A generalized foleysammon transform based on generalized fisher discriminant criterion and its application to face recognition. Pattern Recogn Lett 24(1–3):147–158

    Article  MATH  Google Scholar 

  45. Golub GH, Van Loan CF (1983) Matrix computations. Math Gaz 47(5 Series II):392–396

    MATH  Google Scholar 

  46. Zhao M, Zhang H, Zhang Z (2013) Learning from local and global discriminative information for semi-supervised dimensionality reduction. Inf Sci 324:286–309

    Article  Google Scholar 

  47. Luo F, Liu J, Huang H, Liu Y (2014) Hyperspectral image classification using local spectral angle-based manifold learning. Int J Pattern Recog Artif Intell 28(06):1450016

    Article  Google Scholar 

  48. Xu J, Liu RHQ (2014) Patch-based active learning ptal for spectral-spatial classification on hyperspectral data. Int J Remote Sens 35(5):1846–1875

    Article  Google Scholar 

  49. He Z, Li J (2015) Multiple data-dependent kernel for classification of hyperspectral images. Expert Syst Appl 42(3):1118–1135

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Program for New Century Excellent Talents in University under Grant No. NCET-13-0168 and National Science Foundation of China under Grant No. 61371178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Sun, C., Lin, L. et al. A Mahalanobis metric learning-based polynomial kernel for classification of hyperspectral images. Neural Comput & Applic 29, 1103–1113 (2018). https://doi.org/10.1007/s00521-016-2499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2499-x

Keywords

Navigation