Skip to main content
Log in

Heat and mass transfer in a micropolar fluid with Newtonian heating: an exact analysis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Heat and mass transfer phenomenon in a micropolar fluid is analyzed. The fluid occupies the space over an infinite oscillating vertical plate with Newtonian heating. The plate executes cosine type of oscillations. Exact solutions are obtained using the Laplace transform technique. Expressions for velocity, microrotation, temperature and concentration are obtained. Graphs for velocity and microrotation are plotted for various embedded parameters and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

C :

Species concentration (mol m−3)

C w :

Species concentration near the plate (mol m−3)

C :

Species concentration far away from the plate (mol m−3)

C p :

Heat capacity at a constant pressure (J kg−1 K−1)

D :

Mass diffusivity (m2 s−1)

g :

Acceleration due to gravity (m s−2)

n :

Scalar constant

i :

Unit vector

h s :

Heat transfer coefficient

Gr :

Thermal Grashof number

Gm :

Modified Grashof number

k :

Thermal conductivity (W m−1 K−1)

Pr:

Prandtl number

q r :

Radiative heat flux (W m−2)

R :

Radiation parameter

Sc :

Schmidt number

T :

Temperature of the fluid (K)

T :

Ambient temperature (K)

t :

Time (s)

u :

Velocity of the fluid (m s−1)

j :

Microinertia per unit mass (m2)

ωt :

Phase angle

N :

Angular velocity (m s−1)

U :

Amplitude of plate oscillations (m)

H(t):

Unit step function

erfc:

Complementary error function

α :

Vortex viscosity (kg m−1 s−1)

β :

Microrotation parameter

β T :

Volumetric coefficient of thermal expansion (K−1)

β C :

Volumetric coefficient of mass expansion (K−1)

γ :

Conjugate parameter for Newtonian heating

γ 0 :

Spin gradient viscosity (kg m s−1)

η :

Spin gradient viscosity parameter

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Fluid density (kg m−3)

σ*:

Stefan–Boltzmann constant (W m−2 K−4)

θ :

Dimensionless temperature

ω :

Frequency of oscillation

w :

Condition at wall

:

Condition at infinity

*:

Dimensional variables

References

  1. Eringen AC (1966) Theory of micropolar fluids. J Appl Math Mech 16:1–18

    MathSciNet  Google Scholar 

  2. Hsu PT, Chen CK, Wang CC (2000) Mixed convection of micropolar fluids along a vertical wavy surface. Acta Mech 144:231–247

    Article  MATH  Google Scholar 

  3. Hassanien IA (1999) Flow and heat transfer in the boundary layer of a micropolar fluid on a continuous moving. Int J Numer Meth Heat Fluid Flow 9:643–659

    Article  MATH  Google Scholar 

  4. Kim YJ (1999) Thermal boundary layer flow of a micropolar fluid past a wedge with constant wall temperature. Acta Mech 138:113–121

    Article  MATH  Google Scholar 

  5. Damseh RA, Azab TAA, Shannak BA, Husein MA (2007) Unsteady natural convection heat transfer of micropolar fluid over a vertical surface with constant heat flux. Turk J Eng Environ Sci 31:225–233

    Google Scholar 

  6. Rahman MM, Sultana Y (2008) Radiative heat transfer flow of micropolar fluid with variable heat flux in a porous medium. Nonlinear Anal Model Control 13:71–87

    MATH  Google Scholar 

  7. Reddy MG (2012) Magnetohydrodynamics and radiation effects on unsteady convection flow of micropolar fluid past a vertical porous plate with variable wall heat flux. ISRN Thermodyn 2012:1–8

    Google Scholar 

  8. Mahmoud MAA, Waheed SE (2012) MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity. J Egypt Math Soc 20:20–27

    Article  MathSciNet  MATH  Google Scholar 

  9. Si X, Zheng L, Lin P, Zhang X, Zhang Y (2013) Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls. Int J Heat Mass Transf 67:885–895

    Article  Google Scholar 

  10. Sheikholeslami M, Ashorynejad HR, Ganji DD, Rashidi MM (2014) Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal 2014:1–20

    Article  MathSciNet  Google Scholar 

  11. Hakiem MAE (2014) Heat transfer from moving surfaces in a micropolar fluid with internal heat generation. J Eng Appl Sci 1:30–36

    Google Scholar 

  12. Sherief HH, Faltas MS, Ashmawy EA (2011) Exact solution for the unsteady flow of a semi-infinite micropolar fluid. Acta Mech Sin 27:354–359

    Article  MathSciNet  MATH  Google Scholar 

  13. Qasim M, Hayat T (2010) Effects of thermal radiation on unsteady magnetohydrodynamic flow of a micropolar fluid with heat and mass transfer. Zeitschrift für Naturforschung A 64:950–960

    Google Scholar 

  14. Qasim M, Khan I, Sharidan S (2013) Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating. PLoS One 8:e59393

    Article  Google Scholar 

  15. Bakier AY (2011) Natural convection heat and mass transfer in a micropolar fluid-saturated non-darcy porous regime with radiation and thermophoresis effects. Therm Sci 15:317–326

    Article  Google Scholar 

  16. Aurangzaib, Kasim ARM, Mohammad NF, Sharidan S (2013) Unsteady MHD mixed convection flow with heat and mass transfer over a vertical plate in a micropolar fluid-saturated porous medium. J Appl Sci Eng 16:141–150

    Google Scholar 

  17. Khan I, Qasim M, Sharidan S (2015) Flow of an Erying–Powell fluid over a stretching sheet in presence of chemical reaction. Therm Sci. doi:10.2298/TSCI131129111K

    Google Scholar 

  18. Fetecau C, Vieru D, Fetecau C, Pop I (2015) Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source. Eur Phys J Plus 130:1–13

    Article  Google Scholar 

  19. Srinivasacharya D, Upendar M (2013) Effect of double stratification on MHD free convection in a micropolar fluid. J Egypt Math Soc 21:370–378

    Article  MathSciNet  MATH  Google Scholar 

  20. Srinivasacharya D, Upendar M (2014) Thermal radiation and chemical reaction effects on magnetohydrodynamic free convection heat and mass transfer in a micropolar fluid. Turk J Eng Environ Sci. doi:10.3906/muh-1209-3

    MATH  Google Scholar 

  21. Fakour M, Vahabzadeh A, Ganjib DD, Hatami M (2015) Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J Mol Liq 204:198–204

    Article  Google Scholar 

  22. Merkin JH (1994) Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15:392–398

    Article  Google Scholar 

  23. Mohamed KAM, Salleh MZ, Nazar R, Ishak A (2012) Stagnation point flow over a stretching sheet with Newtonian heating. Sains Malays 41:1467–1473

    Google Scholar 

  24. Merkin JH, Nazar R, Pop I (2012) The development of forced convection heat transfer near a forward stagnation point with Newtonian heating. J Eng Math 76:53–60

    Article  MathSciNet  MATH  Google Scholar 

  25. Salleh MZ, Nazar R, Pop I (2012) Numerical solutions of free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid. Meccanica 47:1261–1269

    Article  MathSciNet  MATH  Google Scholar 

  26. Alkasasbeh HT, Salleh MZ (2014) Numerical solutions of radiation effect on MHD free convection boundary layer flow about a solid sphere with Newtonian heating. Appl Math Sci 8:6989–7000

    Google Scholar 

  27. Mebine P, Adigio EM (2009) Unsteady free convection flow with thermal radiation past a vertical porous plate with Newtonian heating. Turk J Phys 33:109–119

    Google Scholar 

  28. Narahari M, Nayan MY (2011) Free convection flow past an impulsively started infinite vertical plate with Newtonian heating in the presence of thermal radiation and mass diffusion. Turk J Eng Environ Sci 35:187–198

    Google Scholar 

  29. Hussanan A, Khan I, Sharidan S (2013) An exact analysis of heat and mass transfer past a vertical plate with Newtonian heating. J Appl Math 2013:1–9

    Article  MathSciNet  MATH  Google Scholar 

  30. Hussanan A, Zakaria MN (2013) Samiulhaq, Khan, I., Sharidan, S., Radiation effect on unsteady magnetohydrodynamic free convection flow in a porous medium with Newtonian heating. Int J Appl Math Stat 42:474–480

    Google Scholar 

  31. Hussanan A, Khan I, Salleh MZ, Sharidan S (2015) Slip effects on unsteady free convective heat and mass transfer flow with Newtonian heating. Therm Sci. doi:10.2298/TSCI131119142A

    Google Scholar 

  32. Vieru D, Fetecau C, Fetecau C, Nigar N (2014) Magnetohydrodynamic natural convection flow with Newtonian heating and mass diffusion over an infinite plate that applies shear stress to a viscous fluid. Zeitschrift für Naturforschung A 69:714–724

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Universiti Malaysia Pahang, Malaysia for the financial support through Vote Numbers RDU140111 (FRGS) and RDU150101 (FRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Zuki Salleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussanan, A., Salleh, M.Z., Khan, I. et al. Heat and mass transfer in a micropolar fluid with Newtonian heating: an exact analysis. Neural Comput & Applic 29, 59–67 (2018). https://doi.org/10.1007/s00521-016-2516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2516-0

Keywords

Navigation