Skip to main content
Log in

Nature-inspired computational intelligence integration with Nelder–Mead method to solve nonlinear benchmark models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, nature-inspired computing technique has been designed for the solution of nonlinear systems by exploiting the strength of particle swarm optimization (PSO) hybrid with Nelder–Mead method (NMM). Fitness function based on least square approximation theory is developed for the systems, while optimization of the design variables is performed with PSO, an efficient global search method, refined with NMM for rapid local convergence. Sixteen variants of the proposed hybrid scheme PSO-NMM have been evaluated on five benchmark nonlinear systems, namely interval arithmetic benchmark model, kinematic application model, neurophysiology problem, combustion model and chemical equilibrium system. Reliability and effectiveness of the proposed solver have been validated after comparison with the results of statistical analysis based on massive data generated for sufficiently large number of independent executions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nazemi AR (2013) Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng Appl Artif Intell 26:685–696

    Article  Google Scholar 

  2. Nazemi AR (2014) A neural network model for solving convex quadratic programming problems with some applications. Eng Appl Artif Intell 32:54–62

    Article  Google Scholar 

  3. Nazemi AR, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cogn Comput 6:484–495

    Article  Google Scholar 

  4. Khan JA, Raja MAZ, Syam MI, Tanoli SAK, Awan SE (2015) Design and application of nature inspired computing approach for non-linear stiff oscillatory problems. Neural Comput Appl 26(7):1763–1780. doi:10.1007/s00521-015-1841-z

    Article  Google Scholar 

  5. Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect Sci 26(3):195–214. doi:10.1080/09540091.2014.907555

    Article  Google Scholar 

  6. Raja MAZ, Ahmad SUI, Samar R (2014) Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput Appl 25:1723–1739. doi:10.1007/s00521-014-1664-3

    Article  Google Scholar 

  7. Nazemi AR, Omidi F (2012) A capable neural network model for solving the maximum flow problem. J Comput Appl Math 236:3498–3513

    Article  MathSciNet  MATH  Google Scholar 

  8. Raja MAZ, Khan JA, Haroon T (2014) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J Chem Inst Taiwan 48:26–39. doi:10.1016/j.jtice.2014.10.018

    Article  Google Scholar 

  9. Mall S, Chakraverty S (2014) Chebyshev neural network based model for solving Lane–Emden type equations. Appl Math Comput 247:100–114

    MathSciNet  MATH  Google Scholar 

  10. Raja MAZ (2014) Stochastic numerical techniques for solving Troesch’s Problem. Inf Sci 279:860–873. doi:10.1016/j.ins.2014.04.036

    Article  MATH  Google Scholar 

  11. Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery–Hamel problem. Appl Math Mech 36(12):1611–1638

    Article  MathSciNet  Google Scholar 

  12. Mall Susmita, Chakraverty S (2015) Numerical solution of nonlinear singular initial value problems of Emden–Fowler type using Chebyshev Neural Network method. Neurocomputing 149:975–982

    Article  Google Scholar 

  13. Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.1016/j.asoc.2014.10.009

    Article  Google Scholar 

  14. Raja MAZ, Khan JA, Shah SM, Bhahoal D, Samar R (2015) Comparison of three unsupervised neural network models for first Painlevé Transcendent. Neural Comput Appl 26(5):1055–1071. doi:10.1007/s00521-014-1774-y

    Article  Google Scholar 

  15. Mall S, Chakraverty S (2015) Multi layer versus functional link single layer neural network for solving nonlinear singular initial value problems. In: Proceedings of the third international symposium on women in computing and informatics (pp 678–683). ACM

  16. Raja MAZ (2014) Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl Soft Comput 24:806–821. doi:10.1016/j.asoc.2014.08.055

    Article  Google Scholar 

  17. Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP”. Appl Math Model 39(10):3075–3093. doi:10.1016/j.apm.2014.11.024

    MathSciNet  Google Scholar 

  18. Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016) Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 38:561–586

    Article  Google Scholar 

  19. Raja MAZ, Shah FH, Khan AA, Khan NA (2016) Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson-Segalman fluid on vertical cylinder for drainage problems. J Taiwan Inst Chem Eng 60:59–75

    Article  Google Scholar 

  20. Li Min (2014) A Polak–Ribière–Polyak method for solving large-scale nonlinear systems of equations and its global convergence. Appl Math Comput 248:314–322

    MathSciNet  MATH  Google Scholar 

  21. Amat S, Hernández-Verón MA, Rubio MJ (2014) Improving the applicability of the secant method to solve nonlinear systems of equations. Appl Math Comput 247:741–752

    MathSciNet  MATH  Google Scholar 

  22. Sharma JR, Arora H, Petković MS (2014) An efficient derivative free family of fourth order methods for solving systems of nonlinear equations. Appl Math Comput 235:383–393

    MathSciNet  MATH  Google Scholar 

  23. Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables, vol 30. Siam, Philadelphia

    MATH  Google Scholar 

  24. Kelley CT (2003) Solving nonlinear equations with Newton’s method, vol 1. Siam, Philadelphia

    Book  MATH  Google Scholar 

  25. Kelley CT (1999) Iterative methods for optimization, vol 18. Siam, Philadelphia

    Book  MATH  Google Scholar 

  26. Campbell SL et al (1996) GMRES and the minimal polynomial. BIT Numer Math 36(4):664–675

    Article  MathSciNet  MATH  Google Scholar 

  27. Darvishi MT, Barati A (2007) A fourth order method from quadrature formulae to solve the system of nonlinear equations. Appl Math Comput 188:257–261

    MathSciNet  MATH  Google Scholar 

  28. Knoll DA, Keyes DE (2004) Jacobian free Newton–Krylov methods: a survey of approaches and applications. J Comput Phys 193:357–397

    Article  MathSciNet  MATH  Google Scholar 

  29. Saad Y, van der Vorst HA (2000) Iterative solution of non linear system in the 20th century. J Comput Appl Math 123:1–33

    Article  MathSciNet  MATH  Google Scholar 

  30. Jafari H, Gejji VD (2006) Revised Adomian decomposition method for solving a system of nonlinear equation. J Appl Math Comput 175:1–7

    Article  MathSciNet  MATH  Google Scholar 

  31. Abbasbandy S (2005) Extended Newton method for a system on non linear equations by modified domain decomposition method. J Appl Math Comput 170:648–656

    Article  MATH  Google Scholar 

  32. Vahidi AR, Javadi S, Khorasani SM (2012) Solving system of nonlinear equations by restarted Adomain’s method. J Appl Math Comput 6:509–516

    MATH  Google Scholar 

  33. Sharma JR, Guha RK, Gupta P (2013) Improved King’s methods with optimal order of convergence based on rational approximations. Appl Math Lett 26(4):473–480

    Article  MathSciNet  MATH  Google Scholar 

  34. Sharma JR, Gupta P (2014) An efficient fifth order method for solving systems of nonlinear equations. Comput Math Appl 67(3):591–601

    Article  MathSciNet  MATH  Google Scholar 

  35. Sharma JR, Gupta P (2013) On some efficient techniques for solving systems of nonlinear equations. Adv Numer Anal 2013:11, Art ID 252798. doi:10.1155/2013/252798

    MathSciNet  MATH  Google Scholar 

  36. Sharma JR, Arora H (2014) An efficient family of weighted-Newton methods with optimal eighth order convergence. Appl Math Lett 29:1–6

    Article  MathSciNet  MATH  Google Scholar 

  37. Arqub OA, Al-Smadi M, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4

    MATH  Google Scholar 

  38. Abu O (2015) Arqub, adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.1007/s00521-015-2110-x

    Google Scholar 

  39. Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415

    Article  MathSciNet  MATH  Google Scholar 

  40. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, Australia, vol 4. IEEE Service Center, Piscataway, pp 1942–1948

  41. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325

    Article  MathSciNet  MATH  Google Scholar 

  42. Ping Tian D (2013) A review of convergence analysis of particle swarm optimization. Int J Grid Distrib Comput 6(6):117–128

    Article  Google Scholar 

  43. Schmitt M, Wanka R (2015) Particle swarm optimization almost surely finds local optima. Theor Comput Sci 561:57–72

    Article  MathSciNet  MATH  Google Scholar 

  44. García-Gonzalo E, Fernández-Martínez JL (2012) A brief historical review of particle swarm optimization (PSO). J Bioinform Intell Control 1(1):3–16

    Article  Google Scholar 

  45. Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:38, Art ID 931256. doi:10.1155/2015/931256

    MathSciNet  Google Scholar 

  46. Jiang S, Wang Y, Ji Z (2015) A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm. Nonlinear Dyn 79(4):2553–2576

    Article  MathSciNet  Google Scholar 

  47. Lu Y et al (2015) Improved particle swarm optimization algorithm and its application in text feature selection. Appl Soft Comput 35:629–636

    Article  Google Scholar 

  48. Saeid S, Sadeghi MT, Marvas MA (2014) High reliability estimation of product quality using support vector regression and hybrid meta-heuristic algorithms. J Taiwan Inst Chem Eng 45:2225–2232

    Article  Google Scholar 

  49. Prawin J, Rao ARM, Lakshmi K (2016) Nonlinear parametric identification strategy combining reverse path and hybrid dynamic quantum particle swarm optimization. Nonlinear Dyn 84(2):797–815

    Article  MathSciNet  Google Scholar 

  50. Liu X (2016) Optimization design on fractional order PID controller based on adaptive particle swarm optimization algorithm. Nonlinear Dyn 84(1):379–386

    Article  MathSciNet  Google Scholar 

  51. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  MATH  Google Scholar 

  52. Dennis JE, Woods DJ (1987) Optimization on microcomputers: the Nelder-Mead simplex algorithm. In: Wouk A (ed) New computing environments: microcomputers in large-scale computing. SIAM, Philadelphia, pp 116–122

    Google Scholar 

  53. Grosan Crina, Abraham Ajith (2008) A new approach for solving nonlinear equations systems. IEEE Trans Syst Man Cybern Part A Syst Hum 38(3):698–714

    Article  Google Scholar 

  54. Grosan Crina, Abraham Ajith (2008) Multiple solutions for a system of nonlinear equations. Int J Innov Comput Inf Control 4(9):2161–2170

    Google Scholar 

  55. Van Hentenryck P, McAllester D, Kapur D (1997) Solving polynomial systems using a branch and prune approach. SIAM J Numer Anal 34(2):797–827

    Article  MathSciNet  MATH  Google Scholar 

  56. Hong H, Stahl V (1994) Safe starting regions by fixed points and tightening. Computing 53(3/4):323–335

    Article  MathSciNet  MATH  Google Scholar 

  57. Meintjes K, Morgan AP (1990) Chemical equilibrium systems as numerical test problems. ACM Trans Math Softw 16(2):143–151

    Article  MATH  Google Scholar 

  58. Verschelde J, Verlinden P, Cools R (1994) Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J Numer Anal 31(3):915–930

    Article  MathSciNet  MATH  Google Scholar 

  59. Morgan AP (1987) Solving polynomial system using continuation for scientific and engineering problems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  60. Pires ES, Machado JT, de Moura Oliveira PB, Cunha JB, Mendes L (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1–2):295–301

    Article  MATH  Google Scholar 

  61. Couceiro MS, Rocha RP, Ferreira NF, Machado JT (2012) Introducing the fractional-order Darwinian PSO. Signal Image Video Process 6(3):343–350

    Article  Google Scholar 

  62. Couceiro MS, Martins FM, Rocha RP, Ferreira NM, Sivasundaram S (2012) Introducing the fractional order robotic Darwinian PSO. In: AIP conference proceedings, American institute of physics, vol 1493, no 1, p 242

  63. Pires EJS, Machado JAT, de Moura Oliveira PB (2013) Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12):5475–5491

    Article  MATH  Google Scholar 

  64. Couceiro M, Ghamisi P (2016) Fractional-order Darwinian PSO. In: Merkle D (ed) Fractional order Darwinian particle swarm optimization. Springer, Berlin, pp 11–20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Zameer, A., Kiani, A.K. et al. Nature-inspired computational intelligence integration with Nelder–Mead method to solve nonlinear benchmark models. Neural Comput & Applic 29, 1169–1193 (2018). https://doi.org/10.1007/s00521-016-2523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2523-1

Keywords

Mathematics Subject Classification

Navigation