Skip to main content
Log in

Novel generalization of Volterra LMS algorithm to fractional order with application to system identification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, a novel generalization of Volterra least mean square (V-LMS) algorithm to fractional order is presented by exploiting the renowned strength of fractional adaptive signal processing. The fractional derivative term is introduced in weight adaptation mechanism of standard V-LMS to derive the recursive relations for modified V-LMS (MV-LMS) algorithm. The design scheme of MV-LMS algorithm is applied to parameter identification of Box–Jenkins system by taking different values of fractional orders, step-size variations and small to high signal-to-noise ratios. The proposed adaptive variables of MV-LMS are compared from true parameters of Box–Jenkins systems as well as with the results of the V-LMS for each case. The correctness and reliability of the given scheme MV-LMS are also validated from the results of statistical performance measures calculated on large dataset based on multiple independent runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Love ER (1971) Fractional derivatives of imaginary order. J Lond Math Soc 2(2):x241–x259

    Article  MathSciNet  Google Scholar 

  2. Oldham KB, Spanier J (1974) The fractional calculus: integrations and differentiations of arbitrary order. Academic Press, New York

  3. Samko SG, Kilbas AA, Marichev OI (1993) fractional integrals and derivatives: theory and applications. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  4. Jalab HA, Ibrahim RW, Ahmed A (2016) Image denoising algorithm based on the convolution of fractional Tsallis entropy with the Riesz fractional derivative. Neural Comput Appl. doi:10.1007/s00521-016-2331-7

  5. Machado JAT (2015) Fractional order description of DNA. Appl Math Model 39(14):4095–4102

    Article  Google Scholar 

  6. Baskonus HM, Mekkaoui T, Hammouch Z, Bulut H (2015) Active control of a chaotic fractional order economic system. Entropy 17(8):5771–5783

    Article  Google Scholar 

  7. Baskonus HM, Bulut H (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math 13(1):547–556

  8. Baskonus HM, Belgacem FBM, Bulut H (2015) Solutions of nonlinear fractional differential equations systems through an implementation of the variational iteration method. In: Fractional Dynamics. Walter de Gruyter GmbH & Co KG, p 333

  9. Bulut H, Baskonus HM, Pandir Y (2013) The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, abstract and applied analysis, vol 2013. Hindawi Publishing Corporation, Cairo

    Google Scholar 

  10. Hu Y, Fan Y, Wei Y, Wang Y, Liang Q (2016) Subspace-based continuous-time identification of fractional order systems from non-uniformly sampled data. Int J Syst Sci 47(1):122–134

  11. Bouzeriba A, Boulkroune A, Bouden T (2016) Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control. Neural Comput Appl 27(5):1349–1360

    Article  MATH  Google Scholar 

  12. Ortigueira MD (2000) Introduction to fractional linear systems. Part 2: discrete-time case. IEE Proc Vis Image Signal Process 147(1):71–78

    Article  Google Scholar 

  13. Ortigueira MD, Machado JAT (2003) Fractional signal processing and applications. Signal Process 83(11):2285–2286

    Article  Google Scholar 

  14. Ortigueira MD, Machado JAT (2006) Fractional calculus applications in signals and systems. Signal Process 86(10):2503–2504

    Article  MATH  Google Scholar 

  15. Ortigueira MD, Ionescu CM, Machado JT, Trujillo JJ (2015) Fractional signal processing and applications. Signal Process 107:197

    Article  Google Scholar 

  16. Zahoor RMA, Qureshi IM (2009) A modified least mean square algorithm using fractional derivative and its application to system identification. Eur J Sci Res 35(1):14–21

    Google Scholar 

  17. Shah SM, Samar R, Raja MAZ, Chambers JA (2014) Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems. Electron Lett 50(14):973–975. doi:10.1049/el.2014.1275

    Article  Google Scholar 

  18. Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J 2013:1–13

    Article  Google Scholar 

  19. Raja MAZ, Chaudhary NI (2015) Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process 107:327–339

    Article  Google Scholar 

  20. Chaudhary NI, Raja MAZ (2015) Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79:1385–1397

    Article  MathSciNet  MATH  Google Scholar 

  21. Chaudhary NI, Raja MAZ (2015) Design of fractional adaptive strategy for input nonlinear Box–Jenkins systems. Signal Process 116:141–151. doi:10.1016/j.sigpro.2015.04.015

    Article  Google Scholar 

  22. Aslam MS, Raja MAZ (2015) A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional Signal Processing approach. Signal Process 107:433–443

    Article  Google Scholar 

  23. Geravanchizadeh M, Osgouei SG (2011) Dual-channel speech enhancement using normalized fractional least-mean-squares algorithm. In: 19th Iranian conf. electri. eng. (ICEE). IEEE, May 2011, pp 1–5

  24. Osgouei SG, Geravanchizadeh M (2010) Speech enhancement using convex combination of fractional least-mean-squares algorithm. 5th International symposium telecommunication (IST). IEEE, Dec 2010, pp 869–872

  25. Akhtar P, Yasin M (2012) Performance analysis of bessel beamformer and LMS algorithm for smart antenna array in mobile communication system, Emerging Trends Appl. Info. Comm. Tech. Springer, Berlin, pp 52–61

  26. Tang Y, Han Z, Wang Y, Zhang L, Lian Q (2016) A changing forgetting factor RLS for online identification of nonlinear systems based on ELM—Hammerstein model. Neural Comput Appl. doi:10.1007/s00521-016-2394-5

  27. Taouali O, Elaissi I, Messaoud H (2012) Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput Appl 21(1):161–169

    Article  Google Scholar 

  28. Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Mantilla J (2015) Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing 166:96–108

    Article  Google Scholar 

  29. Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Corbier C (2015) Balanced simplicity—accuracy neural network model families for system identification. Neural Comput Appl 26(1):171–186

    Article  Google Scholar 

  30. Corbier C, El Badaoui M, Ugalde HMR (2015) Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal. Signal Process 113:273–284

    Article  Google Scholar 

  31. Sadeghzadeh A (2014) Performance analysis for uncertain multivariable systems obtained by system identification. Int J Syst Sci 45(3):547–555

    Article  MathSciNet  MATH  Google Scholar 

  32. Ding F (2013) System identification—new theory and methods. Science, Beijing

    Google Scholar 

  33. Ding F, Deng K, Liu X (2014) Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst Signal Process 33(9):2881–2893

    Article  MathSciNet  Google Scholar 

  34. Guo Y, Guo LZ, Billings SA, Wei HL (2016) Identification of continuous-time models for nonlinear dynamic systems from discrete data. Int J Syst Sci 47(12):3044–3054

  35. Ding F (2014) Combined state and least squares parameter estimation algorithms for dynamic systems. Appl Math Model 38(1):403–412

    Article  MathSciNet  Google Scholar 

  36. Gu Y, Feng D, Li J (2014) State filtering and parameter estimation for linear systems with d-step state-delay. IET Signal Process 8(6):639–646

    Article  Google Scholar 

  37. Ding F (2013) Coupled-least-squares identification for multivariable systems. Control Theory Appl IET 7(1):68–79

    Article  MathSciNet  Google Scholar 

  38. Ding F, Liu X, Chu J (2013) Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl 7(2):176–184

    Article  MathSciNet  Google Scholar 

  39. Ding F, Shi Y, Chen T (2007) Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst Control Lett 56(5):373–380

    Article  MathSciNet  MATH  Google Scholar 

  40. Ding F, Liu PX, Liu G (2010) Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit Signal Process 20(3):664–677

    Article  Google Scholar 

  41. Wang DQ et al (2010) Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math Comput Model 52(1):309–317

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang DQ (2011) Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl 5(14):1648–1657

    Article  MathSciNet  Google Scholar 

  43. Wang D, Chu Y, Ding F (2010) Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems. Comput Math Appl 59(9):3092–3098

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang Z, Jia J, Ding R (2012) Hierarchical least squares based iterative estimation algorithm for multivariable Box–Jenkins-like systems using the auxiliary model. Appl Math Comput 218(9):5580–5587

    MathSciNet  MATH  Google Scholar 

  45. Ding F, Duan H (2013) Two-stage parameter estimation algorithms for Box–Jenkins systems. IET Signal Process 7(8):646–654

    Article  Google Scholar 

  46. Wang D, Yang G, Ding R (2010) Gradient-based iterative parameter estimation for Box–Jenkins systems. Comput Math Appl 60(5):1200–1208

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu Y, Wang D, Ding F (2010) Least squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digit Signal Process 20(5):1458–1467

    Article  Google Scholar 

  48. Raja MAZ, Chaudhary NI (2014) Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process 8(9):968–980

    Article  Google Scholar 

  49. Guérin A, Faucon G, Bouquin-Jeannes L (2003) Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans Speech Audio Process 11(6):672–683

    Article  Google Scholar 

  50. Mateo J et al (2013) Robust volterra filter design for enhancement of electroencephalogram signal processing. Circuits Syst Signal Process 32(1):233–253

    Article  MathSciNet  Google Scholar 

  51. Tan L, Jiang J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49(8):1667–1676

    Article  Google Scholar 

  52. Linlin G, Puthusserypady S (2004) Performance analysis of Volterra-based nonlinear adaptive blind multiuser detectors for DS-CDMA systems. Signal Process 84(10):1941–1956

    Article  MATH  Google Scholar 

  53. Sigrist Z, Grivel E, Alcoverro B (2012) Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process 92(4):1010–1020

    Article  Google Scholar 

  54. Pires ES et al (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1-2):295–301

    Article  MATH  Google Scholar 

  55. Ghamisi P, Couceiro MS, Benediktsson JA (2015) A novel feature selection approach based on FODPSO and SVM. IEEE Trans Geosci Remote Sens 53(5):2935–2947

  56. Couceiro MS et al (2012) Introducing the fractional-order Darwinian PSO. SIVIP 6(3):343–350

    Article  Google Scholar 

  57. Ghamisi P et al (2014) Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394

    Article  Google Scholar 

  58. Couceiro MS et al (2012) A fuzzified systematic adjustment of the robotic Darwinian PSO. Robot Auton Syst 60(12):1625–1639

    Article  Google Scholar 

  59. Shoaib B, Qureshi IM (2014) A modified fractional least mean square algorithm for chaotic and nonstationary time series prediction. Chin Phys B 23(3):030502

    Article  Google Scholar 

  60. Shoaib B, Qureshi IM, Shafqatullah I (2014) Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin Phys B 23(5):050503

    Article  Google Scholar 

  61. Chaudhary NI, Raja MAZ, Khan AUR (2015) Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn 82(4):1811–1830

  62. Tan Y, He Z, Tian B (2015) Generalization of modified LMS algorithm to fractional order. IEEE Signal Process Lett 122(9):1244–1248

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ishtiaq Chaudhary.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there are no potential conflicts of interest.

Human and animal rights statements

All the authors of the manuscript declared that there is no research involving human participants and/or animal.

Informed consent

All the authors of the manuscript declared that there is no material that required informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, N.I., Raja, M.A.Z., Aslam, M.S. et al. Novel generalization of Volterra LMS algorithm to fractional order with application to system identification. Neural Comput & Applic 29, 41–58 (2018). https://doi.org/10.1007/s00521-016-2548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2548-5

Keywords

Navigation