Skip to main content
Log in

A new global fuzzy fault-tolerant control for a double inverted pendulum based on time-delay replacement

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a delay replacement-based adaptive fault-tolerant control method is proposed for a double inverted pendulum connected by an unknown device. By combining fuzzy approximation and integer backstepping, a new time-delay assumption-independent state feedback decentralized control scheme is developed based on directly replacing the unbounded time-delay argument of fuzzy approximators with the bounded reference signals. Furthermore, all of the two typical types of actuator faults can be compensated for on-line. Compared with the existing results, the time-delay assumptions that need to be test and verify in applications are eliminated, and global bounded stability of the closed-loop system is guaranteed. Simulation results are provided to show the effectiveness of the control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yi J, Yubazaki N, Hirota K (2002) A new fuzzy controller for stabilization of parallel-type double inverted pendulum system. Fuzzy Sets Syst 126(1):105–119

    Article  MathSciNet  MATH  Google Scholar 

  2. Spooner JT, Passino KM (1999) Decentralized adaptive control of nonlinear systems using radial basis neural networks. IEEE Trans Autom Control 44(11):2050–2057

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen WS, Li JM (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern Part B-Cybern 38(1):258–266

    Article  Google Scholar 

  4. Nguang SK (2000) Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans Autom Control 45(4):756–762

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu YS, Tian ZH, Shi SJ (2003) State feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Trans Autom Control 48(2):282–286

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo T, Liu GY (2011) Adaptive fuzzy control for unknown nonlinear time-delay systems with virtual control functions. Int J Control Autom Syst 9(6):1227–1234

    Article  Google Scholar 

  7. Zhou Q, Shi P, Xu SY, Li HY (2013) Adaptive output feedback control for nonlinear time-delay systems by fuzzy approximation approach. IEEE Trans Fuzzy Syst 21(2):301–313

    Article  Google Scholar 

  8. Wu J, Chen WS, Li J (2015) Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy. Fuzzy Sets Syst 273:1–25

    Article  MathSciNet  MATH  Google Scholar 

  9. Yoo SJ, Park JB (2012) Decentralized adaptive output-feedback control for a class of nonlinear large-scale systems with unknown time-varying delayed interactions. Inf Sci 186(1):222–238

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo T, Wang AM (2012) Simplified output feedback stabilization for time-delay interconnected systems based on dynamic surface control. Int Rev Comput Softw 7(1):275–282

    Google Scholar 

  11. Yang Y, Yue D, Xue YS (2015) Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. J Frankl Inst-Eng Appl Math 352(5):2129–2151

    Article  MathSciNet  Google Scholar 

  12. Zhou Q, Shi P, Xu SY, Li HY (2013) Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Trans Neural Netw Learn Syst 24(1):71–80

    Article  Google Scholar 

  13. Chen B, Liu XP, Liu KF, Lin C (2013) Adaptive fuzzy tracking control of nonlinear MIMO systems with time-varying delays. Fuzzy Sets Syst 217:1–21

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen B, Liu XP, Liu KF, Lin C (2013) Adaptive control for nonlinear MIMO time-delay systems based on fuzzy approximation. Inf Sci 222:576–592

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang X, Lin Y (2015) Adaptive control of nonlinear time-delay systems with application to a two-stage chemical reactor. IEEE Trans Autom Control 60(4):1074–1079

    Article  MathSciNet  MATH  Google Scholar 

  16. Ge SS, Hong F, Lee TH (2004) Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans Syst Man Cyberns, Part B (Cybern) 34(1):499–516

    Article  Google Scholar 

  17. Ge SS, Hong F, Lee TH (2005) Robust adaptive control of nonlinear systems with unknown time delays. Automatica 41(7):1181–1190

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen B, Liu XP, Liu KF, Shi P, Lin C (2010) Direct adaptive fuzzy control for nonlinear systems with time-varying delays. Inf Sci 180(5):776–792

    Article  MathSciNet  MATH  Google Scholar 

  19. Tong SC, Li Y, Li YM, Liu YJ (2011) Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans Syst Man Cybern, Part B (Cybern) 41(6):1693–1704

    Article  Google Scholar 

  20. Choi JY, Farrell JA (2001) Adaptive observer backstepping control using neural networks. IEEE Trans Neural Netw 12(5):1103–1112

    Article  Google Scholar 

  21. Wang C, Hill DJ, Ge SS, Chen GR (2006) An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica 42(5):723–731

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen WS, Zhang ZQ (2010) Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign. Fuzzy Sets Syst 161(6):821–836

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen WS, Jiao LC, Wu JS (2012) Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput Appl 21(2):351–363

    Article  Google Scholar 

  24. Huang JT (2012) Global tracking control of strict-feedback systems using neural networks. IEEE Trans Neural Netw Learn Syst 23(11):1714–1725

    Article  Google Scholar 

  25. Wu J, Chen WS, Yang FZ, Li J, Zhu Q (2015) Global adaptive neural control for strict-feedback time-delay systems with predefined output accuracy. Inf Sci 301:27–43

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang ML, Zhang ZQ (2015) Globally adaptive asymptotic tracking control of nonlinear systems using nonlinearly parameterized fuzzy approximator. J Frankl Inst-Eng Appl Math 352(7):2783–2795

    Article  MathSciNet  Google Scholar 

  27. Wu J, Chen WS, Zhao D, Li J (2013) Globally stable direct adaptive backstepping NN control for uncertain nonlinear strict-feedback systems. Neurocomputing 122:134–147

    Article  Google Scholar 

  28. Wu J, Li J, Chen WS (2014) Semi-globally/globally stable adaptive NN backstepping control for uncertain MIMO systems with tracking accuracy known a priori. J Frankl Inst-Eng Appl Math 351(12):5274–5309

    Article  MathSciNet  Google Scholar 

  29. Huang JT (2015) Global adaptive neural dynamic surface control of strict-feedback systems. Neurocomputing 165:403–413

    Article  Google Scholar 

  30. Fu J, Ma RC, Chai TY (2015) Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica 54:360–373

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu B, Yang CG, Pan YP (2015) Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans Neural Netw Learn Syst 26(10):2563–2575

    Article  MathSciNet  Google Scholar 

  32. Chen WS, Ge SS, Wu J, Gong MG (2015) Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans Neural Netw Learn Syst 26(9):1842–1854

    Article  MathSciNet  Google Scholar 

  33. Tang XD, Tao G, Joshi SM (2003) Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application. Automatica 39(11):1975–1982

    Article  MathSciNet  MATH  Google Scholar 

  34. Li P, Yang GH (2009) Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults. J Control Theory Appl 7(3):248–256

    Article  MathSciNet  MATH  Google Scholar 

  35. Meng LY, Jiang B (2009) Backstepping-based active fault-tolerant control for a class of uncertain SISO nonlinear systems. J Syst Eng Electron 20(6):1263–1270

    MATH  Google Scholar 

  36. Wang W, Wen CY (2010) Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12):2082–2091

    Article  MathSciNet  MATH  Google Scholar 

  37. Fan HJ, Liu B, Shen YD, Wang W (2014) Adaptive failure compensation control for uncertain systems with stochastic actuator failures. IEEE Trans Autom Control 59(3):808–814

    Article  MathSciNet  MATH  Google Scholar 

  38. Fan HJ, Liu B, Wang W, Wen CY (2015) Adaptive fault-tolerant stabilization for nonlinear systems with Markovian jumping actuator failures and stochastic noises. Automatica 51:200–209

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang ZQ, Xu SY, Guo Y, Chu YM (2010) Robust adaptive output-feedback control for a class of nonlinear systems with time-varying actuator faults. Int J Adapt Control Signal Process 24(9):743–759

    Article  MathSciNet  MATH  Google Scholar 

  40. Tong SC, Huo BY, Li YM (2014) Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans Fuzzy Syst 22(1):1–15

    Article  Google Scholar 

  41. Xu YY, Tong SC, Li YM (2015) Adaptive fuzzy decentralised fault-tolerant control for nonlinear large-scale systems with actuator failures and unmodelled dynamics. Int J Syst Sci 46(12):2195–2209

    Article  MathSciNet  MATH  Google Scholar 

  42. Krstic M, Kokotovic PV, Kanellakopoulos I (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

  43. Boskovic JD, Mehra RK, Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In: Proceedings of the 1999 American control conference. IEEE, 2–4 June 1999, vol 3, pp 1920–1924

  44. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  45. Wang LX (1995) Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEE Trans Autom Control 40(1):11–23

    Article  MathSciNet  MATH  Google Scholar 

  46. Tang XD, Tao G, Joshi SM (2007) Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica 43(11):1869–1883

    Article  MathSciNet  MATH  Google Scholar 

  47. Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Control 41(3):447–451

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (C20150028), the Program for Science & Technology Innovation Talents in Universities of Henan Province (15HASTIT021), the Science and Technology Project of Henan Province (142300410114), and the Foundation of Henan Educational Committee (13A520017).

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Xiong, J. A new global fuzzy fault-tolerant control for a double inverted pendulum based on time-delay replacement. Neural Comput & Applic 29, 467–476 (2018). https://doi.org/10.1007/s00521-016-2576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2576-1

Keywords

Navigation