Skip to main content
Log in

Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals

  • New Trends in data pre-processing methods for signal and image classification
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Electrocardiogram is widely used to diagnose the congestive heart failure (CHF). It is the primary noninvasive diagnostic tool that can guide in the management and follow-up of patients with CHF. Heart rate variability (HRV) signals which are nonlinear in nature possess the hidden signatures of various cardiac diseases. Therefore, this paper proposes a nonlinear methodology, empirical mode decomposition (EMD), for an automated identification and classification of normal and CHF using HRV signals. In this work, HRV signals are subjected to EMD to obtain intrinsic mode functions (IMFs). From these IMFs, thirteen nonlinear features such as approximate entropy \( (E_{\text{ap}}^{x} ) \), sample entropy \( (E_{\text{s}}^{x} ) \), Tsallis entropy \( (E_{\text{ts}}^{x} ) \), fuzzy entropy \( (E_{\text{f}}^{x} ) \), Kolmogorov Sinai entropy \( (E_{\text{ks}}^{x} ) \), modified multiscale entropy \( (E_{{{\text{mms}}_{y} }}^{x} ) \), permutation entropy \( (E_{\text{p}}^{x} ) \), Renyi entropy \( (E_{\text{r}}^{x} ) \), Shannon entropy \( (E_{\text{sh}}^{x} ) \), wavelet entropy \( (E_{\text{w}}^{x} ) \), signal activity \( (S_{\text{a}}^{x} ) \), Hjorth mobility \( (H_{\text{m}}^{x} ) \), and Hjorth complexity \( (H_{\text{c}}^{x} ) \) are extracted. Then, different ranking methods are used to rank these extracted features, and later, probabilistic neural network and support vector machine are used for differentiating the highly ranked nonlinear features into normal and CHF classes. We have obtained an accuracy, sensitivity, and specificity of 97.64, 97.01, and 98.24 %, respectively, in identifying the CHF. The proposed automated technique is able to identify the person having CHF alarming (alerting) the clinicians to respond quickly with proper treatment action. Thus, this method may act as a valuable tool for increasing the survival rate of many cardiac patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aboamer MM, Azar AT, Wahba K, Mohamed ASA (2014) Linear model-based estimation of blood pressure and cardiac output for normal and paranoid cases. Neural Comput Appl 25(6):1223–1240

    Article  Google Scholar 

  2. Aboamer MM, Azar AT, Mohamed ASA, Bär KJ, Berger BS, Wahba K (2014) Nonlinear features of heart rate variability in paranoid schizophrenic. Neural Comput Appl 25(7–8):1535–1555

    Article  Google Scholar 

  3. Acharya UR, Bhat PS, Iyengar SS, Rao A, Dua S (2003) Classification of heart rate using artificial neural network and fuzzy equivalence relation. Pattern Recogn 36:61–68

    Article  MATH  Google Scholar 

  4. Acharya UR, Ng EYK, Lim WJE, Noronha KP, Lim CM, Nayak KP (2015) Decision support system for the glaucoma using Gabor transformation. Biomed Signal Process Control 15:18–26

    Article  Google Scholar 

  5. Acharya UR, Fujita H, Vidya KS, Shreya B, Koh KEW (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl-Based Syst 88:85–96

    Article  Google Scholar 

  6. Ahmed MU, Mandic DP (2012) Multivariate multiscale entropy analysis. IEEE Signal Processing Letter 19:91–94

    Article  Google Scholar 

  7. Arbolishvili GN, Mareev VY, Orlova YA, Belenkov YN (2006) Heart rate variability in chronic heart failure and its role in prognosis of the disease. Kardiologiya 46:4–11

    Google Scholar 

  8. Asyali MH (2003) Discrimination power of long term heart rate variability measures. In: Engineering in medicine and biology society. Proceedings of the 25th annual international conference of the IEEE, vol 201, pp 200–203

  9. Baim DS, Colucci WS, Monrad ES, Smith HS, Wright RF, Lanoue A, Gauthier DF, Ransil BJ, Grossman W, Brauneald E (1986) Survival of patients with severe congestive heart failure treated with oral milrinone. J American College of Cardiology 7:661–670

    Article  Google Scholar 

  10. Bajaj V, Pachori R (2012) Classification of seizure and non-seizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed 16:1135–1142

    Article  Google Scholar 

  11. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88:174102

    Article  Google Scholar 

  12. Bezerianos A, Tong S, Thakor N (2003) Time dependent entropy of EEG rhythm changes following brain ischemia. Ann Biomed Eng 31:221–232

    Article  Google Scholar 

  13. Box FJ (1987) Guinness, Gosset, Fisher, and small samples. Statistical Science 2:45–52

    Article  MathSciNet  MATH  Google Scholar 

  14. Butler GC, Ando S, Floras JS (1997) Fractal component of variability of heat rate and systolic blood pressure in congestive heart failure. Clin Sci 92:543–550

    Article  Google Scholar 

  15. Chen W, Wang Z, Xie H, Yu W (2007) Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng 15:266–272

    Article  Google Scholar 

  16. Clifford GD, Azuaje F, McSharry PE (2006) Advanced methods and tools for ECG data analysis. Artech House, Norwood

    Google Scholar 

  17. Costa M, Cygankiewicz I, Zareba W, Luna AB, Goldberger AL, Lobodzinski S (2006) Multiscale complexity analysis of heart rate dynamics in heart failure: preliminary findings from the MUSIC study. Computers in Cardiology 33:101–103

    Google Scholar 

  18. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiological time series. Phys Rev Lett 89(1–4):068102

  19. Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev 71:021906

    MathSciNet  Google Scholar 

  20. Dash M, Liu H (2000) Feature selection for clustering. In: Proceedings of fourth pacific-Asia conference on knowledge discovery and data mining

  21. Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, Schouten EG (2000) Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities. Circulation 102:1239–1244

    Google Scholar 

  22. Dickstein K, Cohen-Solal A, Filppatos G et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the European society of intensive care medicine (ESICM). Eur Heart J 29:2388–2442

    Article  Google Scholar 

  23. Doyne Farmer J (1982) Information dimension and the probabilistic structure of chaos. Z fur Naturforsch A 3a:1304–1325

    MathSciNet  Google Scholar 

  24. Duda RO, Peter EH, David GS (2012) Pattern classification. Wiley, Hoboken

    MATH  Google Scholar 

  25. Falniowski F (2014) On the connections of generalized entropies with Shannon and Kolmogorov–Sinai entropies. Entropy 16:3732–3753

    Article  MathSciNet  MATH  Google Scholar 

  26. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, O’Connor CM, Sun JL, Yancy CW, Young JB (2007) Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF registry. J Am Coll Cardiol 50:768–777

    Article  Google Scholar 

  27. Galinier M, Pathak A, Fourcade J et al (2000) Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur Heart J 21:475–482

    Article  Google Scholar 

  28. Gao J, Hu J, Tung WW, Blasch E (2012) Multiscale analysis of biological data by scale dependent Lyapunov exponent. Frontiers in Physiology 2:1–13

    Article  Google Scholar 

  29. Gao J, Hu J, Tung WW (2011) Complexity measures of brain wave dynamics. Cogn Neurodyn 5:171–182

    Article  Google Scholar 

  30. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC (2000) PhysioBank, PhysioToolKit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:e215–e220

    Article  Google Scholar 

  31. Gonzalez RC, Wood RE (2007) Digital image processing, 3rd edn. Prentice-Hall, Inc. Upper Saddle River, NJ, USA

  32. Grassberger P, Schreiber T, Schaffrath C (1991) Nonlinear time sequence analysis. Int J Bifurcation Chaos 1:521–547

    Article  MathSciNet  MATH  Google Scholar 

  33. Guzzetti S, Magatelli R, Borroni E, Mezzetti S (2001) Heart rate variability in chronic heart failure. Autonomic Neuroscience-Basic & Clinical 90:102–105

    Article  Google Scholar 

  34. Hadase M, Azuma A, Zen K, Asada S, Kawasaki T, Kamitani T, Kawasaki S, Sugihara H, Matsubara H (2004) Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ J 68:343–347

    Article  Google Scholar 

  35. Han J, Kamber M, Pei J (2005) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, Burlington

    MATH  Google Scholar 

  36. Hjorth B (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29:306–310

    Article  Google Scholar 

  37. Ho KK, Moody GB, Peng CK, Mietus JE, Larson MG et al (1997) Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848

    Article  Google Scholar 

  38. Hunt SA, Abraham WT, Chin MS et al (2009) Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American college of cardiology foundation/American heart association task force on practice guidelines: developed in collaboration with the international society for heart and lung transplantation. J Am Coll Cardiol 53:1–90

    Article  Google Scholar 

  39. Hu J, Gao J, Tung WW (2009) Characterizing heart rate variability by scale dependent Lyapunov exponent. Chaos 19:028506

    Article  MathSciNet  Google Scholar 

  40. Hu J, Gao JB, Tung WW, Cao YH (2010) Multiscale analysis of heart rate variability: a comparison of different complexity measures. Ann Biomed Eng 38:854–864

    Article  Google Scholar 

  41. Hu M, Liang H (2012) Adaptive multiscale entropy analysis of multivariate neural data. IEEE Trans Biomed Eng 59:12–15

    Article  Google Scholar 

  42. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. In: Proceedings royal society, vol 454

  43. Isler Y, Kuntalp M (2007) Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Comput Biol Med 37:1502–1510

    Article  Google Scholar 

  44. Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA (1996) Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol 271:1078–1084

    Google Scholar 

  45. Jabbar MA, Deekshatulu BL, Chndra P (2014) Alternating decision trees for early diagnosis of heart disease. In: Proceedings of international conference on circuits, communication, control and computing (I4C), India, IEEE

  46. Jong TL, Chang B, Kuo CD (2011) Optimal timing in screening patients with congestive heart failure and healthy subjects during circadian observation. Ann Biomed Eng 39:835–849

    Article  Google Scholar 

  47. Kailath T (1967) The divergence and Bhattacharyya distance measures in signal selection. IEEE transactions on communication technology 15:52–60

    Article  Google Scholar 

  48. Kamath C (2015) A new approach to detect congestive heart failure using detrended fluctuation analysis of electrocardiogram signals. Journal of Engineering Science and Technology 10:145–159

    Google Scholar 

  49. Kamath C (2012) A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals. Med Eng Phys 34:1503–1509

    Article  Google Scholar 

  50. Kamath C (2012) A new approach to detect congestive heart failure using Teager energy nonlinear scatter plot of R-R interval series. Med Eng Phys 34:841–848

    Article  Google Scholar 

  51. Kamath C (2012) A new approach to detect congestive heart failure using symbolic dynamics analysis of electrocardiogram signal. Journal of Advances in Computer Research 3:35–52

    Google Scholar 

  52. Kamath C (2015) Entropy measures of irregularity and complexity for surface electrocardiogram time series in patients with congestive heart failure. Journal of Advances in Computer Research 6:1–11

    Google Scholar 

  53. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

  54. Khaled AS, Owis MI, Mohamed ASA (2006) Employing time-domain methods and Poincare plot of heart rate variability signals to detect congestive heart failure. BIME Journal 1:35–41

    Google Scholar 

  55. Khushaba RN, Kodagoda S, Lal S, Dissanayake G (2011) Driver drowsiness classification using fuzzy wavelet packet based feature extraction algorithm. IEEE Trans Biomed Eng 58:121–131

    Article  Google Scholar 

  56. Kuntamalla S, Lekkala RR (2014) Reduced dualscale entropy analysis of HRV signals for improved congestive heart failure detection. Measurement Science Review 14:294–301

    Article  Google Scholar 

  57. Lahiri MK, Kannankeril PJ, Goldberger JJ (2008) Assessment of autonomic function in cardiovascular disease. J Am Coll Cardiol 51:1725–1733

    Article  Google Scholar 

  58. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484

    Article  Google Scholar 

  59. Liao KYK, Chiu CC, Yeh SJ (2015) A novel approach for classification of congestive heart failure using relatively short-term ECG waveforms and SVM classifier. In: Proceedings of the international multiconference of engineers and computer scientists, Hong Kong

  60. Li X, Ouyang G, Richards DA (2007) Predictability analysis of absence seizures with permutation entropy. Epilepsy Res 77:70

    Article  Google Scholar 

  61. Liu GZ, Huang BY, Wang L (2011) A wearable respiratory biofeedback system based on generalized body sensor network. Telemedicine and e-health 17:348–357

    Article  Google Scholar 

  62. Liu GZ, Guo YW, Zhu QS, Huang BY, Wang L (2011) Estimation of respiration rate from three-dimensional acceleration data based on body sensor network. Telemedicine and e-health 17:705–711

    Article  Google Scholar 

  63. Liu G, Wang L, Wang Q, Zhou G, Wang Y, Jiang Q (2014) A new approach to detect congestive heart failure using short-term heart rate variability measures. PLoS ONE 9:93399

    Article  Google Scholar 

  64. Lucreziotti S, Gavazzi A, Scelsi L, Inserra C, Klersy C, Campana C, Ghio S, Vanoli E, Tavazzi L (2000) Five-minute recording of heart rate variability in severe chronic heart failure: correlates with right ventricular function and prognostic implications. Am Heart J 139:1088–1095

    Article  Google Scholar 

  65. Malliani A, Lombardi F, Pagani M, Cerutti S (1994) Power spectral analysis of cardiovascular variability in patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol 5:274–286

    Article  Google Scholar 

  66. Martis RJ, Acharya UR, Lim CM (2012) ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Knowledge Based-Systems. 8(5):437–448

    Google Scholar 

  67. Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK, Ng EY, Tong L (2012) Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. Int J Neural Syst 22:1250027

    Article  Google Scholar 

  68. Masetic Z, Subasi A (2013) Detection of congestive heart failure using C4.5 decision tree. Southeast Europe Journal of Soft Computing 2:74–77

    Article  Google Scholar 

  69. Melillo P, Fusco R, Sansone M, Bracale M, Pecchia L (2011) Discrimination power of long-term heart rate variability measures for chronic heart failure detection. Med Bio Eng Comput 49:67–74

    Article  Google Scholar 

  70. Melillo P, Luca ND, Bracale M, Pecchia L (2013) Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE Journal of Biomedical and Health Informatics 17:727–733

    Article  Google Scholar 

  71. Misiurewicz M (1976) A short proof of the variational principle for Z n+ action on a compact space. Asterisque 40:147–157

    MathSciNet  Google Scholar 

  72. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    Article  Google Scholar 

  73. Mussalo H, Vanninen E, Ikaheimo R, Laitinen T, Laakso M, Lansimies E, Hartikainen J (2001) Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin Physiol 21:594–604

    Article  Google Scholar 

  74. Musialik-Lydka A, Sredniawa B, Pasyk S (2003) Heart rate variability in heart failure. Kardiol Pol 58:10–16

    Google Scholar 

  75. Mythili T, Mukherji D, Padalia N, Naidu A (2013) A heart disease prediction model using SVM-decision trees-logistic regression (SDL). Int J Comput Appl 68:11–15

    Google Scholar 

  76. Narin A, Isler Y, Ozer M (2014) Investigating the performance improvement of HRV indices in CHF using feature selection methods based on backward elimination and statistical significance. Comput Biol Med 45:72–79

    Article  Google Scholar 

  77. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl 39:202–209

    Article  Google Scholar 

  78. Oh SH, Kim HN (2014) A novel EEG feature extraction method using Hjorth parameter. International journal of Electronics and Electrical Engineering 2:106–110

    Article  Google Scholar 

  79. Orhan U (2013) Real-time CHF detection from ECG signals using a novel discretization method. Comput Biol Med 43:1556–1562

    Article  Google Scholar 

  80. Pagani M (2000) Heart rate variability and autonomic diabetic neuropathy. Diabetes Nutr Metab 13:341–346

    Google Scholar 

  81. Pazos-Lopez P, Peteiro-Vazquez J, Carcia-Campos A, Garcia-Bueno L, Torres JPA, Castro-Beiras A (2011) The causes, consequences, and treatment of left or right heart failure. Vascular Health and Risk Management 7:237–254

    Google Scholar 

  82. Pecchia L, Melillo P, Sansone M, Bracale M (2011) Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans Inf Technol Biomed 15:40–46

    Article  Google Scholar 

  83. Pecchia L, Melillo P, Bracale M (2011) Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Trans Biomed Eng 58:800–804

    Article  Google Scholar 

  84. Peng H, Fulmi L, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  Google Scholar 

  85. Pincus S, Huang W (1992) Approximate entropy—statistical properties and applications. Commun Stat Theory Methods 21:3061–3077

    Article  MATH  Google Scholar 

  86. Ponikowski P, Anker SD, Chau TP, Szelemei R, Piepoli M, Adamopoulos S, Webb-Peploe K, Harrington D, Banasiak W, Wrabec K, Coats AJ (1997) Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79:1645–1650

    Article  Google Scholar 

  87. Renyi A (1961) On measures of entropy and information. In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, vol 1, pp 547–561

  88. Richman JS, Mooran JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:2039–2049

    Google Scholar 

  89. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, Basar E (2001) Wavelet entropy: a new tool for analysis of short duration electrical signals. J Neurosci Methods 105:65–75

    Article  Google Scholar 

  90. Shahbazi F, Asl BM (2015) Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability. Comput Methods Programs Biomed 122:191–198

    Article  Google Scholar 

  91. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  92. Sharma R, Pachori RB, Acharya UR (2015) An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 17:5218–5240

    Article  Google Scholar 

  93. Smilde TDJ, van Veldhuisen DJ, van den Berg MP (2009) Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clin. Res. Cardiol. 98:233–239

    Article  Google Scholar 

  94. Song Y, Lio P (2010) A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomedical Science and Engineering 3:556–567

    Article  Google Scholar 

  95. Stein PK, Domitrovich PP, Kleiger RE, Schechtman KB, Rottman JN (2000) Clinical and demographic determinants of heart rate variability in patients post myocardial infarction: insights from the cardiac arrhythmia suppression trial (CAST). Clin Cardiol 23:187–194

    Article  Google Scholar 

  96. Thakre TP, Smith ML (2006) Loss of lag-response curvilinearity of indices of heart rate variability in congestive heart failure. BMC Cardiovascular Disorders 6:27

    Article  Google Scholar 

  97. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic Press

  98. Thuraisingham RA (2009) A classification system to detect congestive heart failure using second-order difference plot of RR intervals. Cardiology Research and Practice 2009:807379

    Article  Google Scholar 

  99. Tomar D, Agarwal S (2015) Hybrid feature selection based weighted least squares twin support vector machine approach for diagnosing breast cancer, hepatitis, and diabetes. Advances in Artificial Neural Systems 2015:265637

    Article  Google Scholar 

  100. Tong S, Bezerianos A, Malhotra A, Zhu Y, Thakor N (2003) Parameterized entropy analysis of EEG following hypoxic ischemic brain injury. Phys Lett A 314:354–361

    Article  MathSciNet  MATH  Google Scholar 

  101. Wasserman PD (1993) Advanced methods in neural computing. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  102. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics bulletin 1:80–83

    Article  Google Scholar 

  103. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Dranzer MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WHW, Tsai EJ, Wilkoff BL (2013) ACCF/AHA guideline for the management of heart failure. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–e239

    Article  Google Scholar 

  104. Yu SN, Lee MY (2012) Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Comput Biol Med 42:816–825

    Article  Google Scholar 

  105. Zanin M, Zunino L, Rosso OA, Papo D (2012) Permutation entropy and its main biomedical and econophysics application: a review. Entropy 14:1553–1577

    Article  MATH  Google Scholar 

  106. Zhang Z, Kwoh CK, Liu J, Cheung CYL, Aung T, Wong TY (2012) Automatic glaucoma diagnosis with mRMR-based feature selection. Biometrics and biostatistics S7:008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya K. Sudarshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, U.R., Fujita, H., Sudarshan, V.K. et al. Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals. Neural Comput & Applic 28, 3073–3094 (2017). https://doi.org/10.1007/s00521-016-2612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2612-1

Keywords

Navigation