Skip to main content
Log in

Fault analysis in TCSC-compensated lines using wavelets and a PNN

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper describes an algorithm to detect, localize and classify fault events in overhead transmission lines compensated with a thyristor-controlled series capacitor (TCSC). During a fault event, a complex pattern of traveling wave reflections and refractions is generated at the point of fault inception. The proposed algorithm uses the discrete wavelet transform combined with a probabilistic neural network to analyze all this information and determine whether a fault condition exists in the line, the fault type and also the fault distance. In order to assess the algorithm performance, several studies were carried out under varied conditions. The obtained results demonstrate that the algorithm accuracy for calculating the fault distance is smaller than 1% of the total line length, and a 100% efficiency for determining the fault type. The algorithm is also immune to harmonic interaction due to low-frequency harmonics generated by the TCSC. A comparative advantage over previous algorithms for TCSC-compensated transmission lines is the fact that the proposed algorithm not only identifies the faulted line section but also localizes accurately the distance to the fault, using only measurements at one end of the line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dosoglu MK, Arsoy AB, Guvenc U (2016) Application of STATCOM-supercapacitor for low-voltage ride-through capability in DFIG-based wind farm. Neural Comput Appl. doi:10.1007/s00521-016-2219-6

    Google Scholar 

  2. Adrees A, Milanović JV (2016) Optimal Compensation of Transmission Lines Based on Minimisation of the Risk of Subsynchronous Resonance. IEEE Trans Power Syst 31(2):1038–1047. doi:10.1109/TPWRS.2015.2422775

    Article  Google Scholar 

  3. Naresh G, Ramalinga Raju M, Narasimham SVL (2016) Coordinated design of power system stabilizers and TCSC employing improved harmony search algorithm. Swarm Evol Comput 27:169–179. doi:10.1016/j.swevo.2015.11.003

    Article  Google Scholar 

  4. Rezaee-Jordehi A (2015) Optimal setting of TCSCs in power systems using teaching–learning-based optimization algorithm. Neural Comput Appl 26(5):1249–1256. doi:10.1007/s00521-014-1791-x

    Article  Google Scholar 

  5. Shrivastava NA, Panigrahi BK, Meng-Hiot L (2016) Electricity price classification using extreme learning machines. Neural Comput Appl 27(1):9–18. doi:10.1007/s00521-013-1537-1

    Article  Google Scholar 

  6. Dubey R, Samantaray SR, Panigrahi BK (2016) Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm. IET Gener Transm Distrib 10(1):247–256. doi:10.1049/iet-gtd.2015.0775

    Article  Google Scholar 

  7. Cormane J, Nascimento FA (2016) Spectral shape estimation in data compression for smart grid monitoring. IEEE Trans Smart Grid 7(3):1214–1221. doi:10.1109/TSG.2015.2500359

    Article  Google Scholar 

  8. Islam B, Baharudin Z, Nallagownden P (2016) Development of chaotically improved meta-heuristics and modified BP neural network-based model for electrical energy demand prediction in smart grid. Neural Comput Appl 27:1–15. doi:10.1007/s00521-016-2408-3

    Google Scholar 

  9. Yao Y, He X, Huang T, Li C, Xia D (2016) A projection neural network for optimal demand response in smart grid environment. Neural Comput Appl 27:1–9. doi:10.1007/s00521-016-2532-0

    Google Scholar 

  10. Somayajula D, Crow ML (2015) An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid. IEEE Trans Sustain Energy 6(2):616–624. doi:10.1109/TSTE.2015.2402221

    Article  Google Scholar 

  11. Mohammadi MB, Rahmat-Allah H, Fesharaki FH (2016) A new approach for optimal placement of PMUS and their required communication infrastructure in order to minimize the cost of the WAMS. IEEE Trans Smart Grid 7(1):84–93. doi:10.1109/TSG.2015.2404855

    Article  Google Scholar 

  12. Abdollahzadeh H, Mozafari B, Jazaeri M (2016) Realistic insights into impedance seen by distance relays of a SSSC-compensated transmission line incorporating shunt capacitance of line. Int J Electr Power Energy Syst 65(1):394–407. doi:10.1016/j.ijepes.2014.10.037

    Google Scholar 

  13. Manori A, Tripathy M, H O Gupta HO (2016) Investigation of an Advanced Compensated Mho Relay on Double Circuit Series Compensated Transmission Line. TENCON—2015 IEEE Region 10 Conference. doi:10.1109/TENCON.2015.7372936

  14. Zellagui M, Chaghi A (2013) Impact of TCSC on Distance Protection Setting based Modified Particle Swarm Optimization Techniques. I.J. Intell Syst Appl 06:12–24. doi:10.5815/ijisa.2013.06.02

    Google Scholar 

  15. Dash PK, Samantaray SR (2004) Phase selection and fault section identification in thyristor controlled series compensated line using discrete wavelet transform. Int J Electr Power Energy Syst 26(9):725–732. doi:10.1016/j.ijepes.2004.05.005

    Article  Google Scholar 

  16. Dash PK, Samantaray SR, Panda G (2007) Fault classification and section identification of an advanced series-compensated transmission line using support vector machine. IEEE Trans Power Deliv 22:67–73. doi:10.1109/TPWRD.2006.876695

    Article  Google Scholar 

  17. Samantaray SR (2008) Decision tree-based fault zone identification and fault classification in flexible AC transmissions-based transmission line. IET Gener Transm Distrib 3:425–436. doi:10.1049/iet-gtd.2008.0316

    Article  Google Scholar 

  18. El-Zonkoly AM, Desouki H (2011) Wavelet entropy based algorithm for fault detection and classification in FACTS compensated transmission line. Int J Electr Power Energy Syst 33(8):1368–1374. doi:10.1016/j.ijepes.2011.06.014

    Article  Google Scholar 

  19. Vyas BY, Maheshwari RP, Das B (2013) Improved fault analysis technique for protection of Thyristor controlled series compensated transmission line. Int J Electr Power Energy Syst 55:321–330. doi:10.1016/j.ijepes.2013.09.015

    Article  Google Scholar 

  20. Nobakhti SM, Akhbari M (2014) A new algorithm for fault location in series compensated transmission lines with TCSC. Int J Electr Power Energy Syst 57:79–89. doi:10.1016/j.ijepes.2013.11.052

    Article  Google Scholar 

  21. Abur A, Magnago FH (2000) Use of time delays between modal components in wavelet based fault localization. Int J Electr Power Energy Syst 22(6):397–403. doi:10.1016/S0142-0615(00)00010-7

    Article  Google Scholar 

  22. Daneshpooy A, Gole AM (2001) Frequency Response of the Thyristor Controlled Series Capacitor. IEEE Trans Power Deliv 16:53–58. doi:10.1109/61.905587

    Article  Google Scholar 

  23. Oppenheim M., Poggi, JM (2001). Wavelet Toolbox Users Guide, The Math Work Inc

  24. Jiang S, Annakkage UD, Gole AM (2006) A Platform for Validation of FACTS Models. IEEE Trans Power Deliv 21:484–491. doi:10.1109/TPWRD.2005.852301

    Article  Google Scholar 

  25. Specht D (1990) Probabilistic neural networks. Neural Netw 1990(3):109–118. doi:10.1016/0893-6080(90)90049-Q

    Article  Google Scholar 

  26. Gaing ZL (2004) Wavelet-based neural network for power disturbance recognition and classification. IEEE Trans Power Deliv 2004(19):1560–1568. doi:10.1109/TPWRD.2004.835281

    Article  Google Scholar 

  27. Huang N, Xu D, Liu X, Lin L (2012) Power quality disturbances classification based on S-transform and probabilistic neural network. Neurocomputing 98:12–23. doi:10.1016/j.neucom.2011.06.041

    Article  Google Scholar 

  28. Perera N, Rajapakse AD (2008) Fast isolation of faults in transmission systems using current transients. Electr Power Syst Res 78(9):1568–1578. doi:10.1016/j.epsr.2008.01.018

    Article  Google Scholar 

  29. García-Gracia M, Montañés A, El Halabi N, Comech MP (2012) High resistive zero-crossing instant faults detection and localization scheme based on wavelet analysis. Electr Power Syst Res 92:138–144. doi:10.1016/j.epsr.2012.06.005

    Article  Google Scholar 

  30. Swetapadma A, Yadav A (2015) Improved fault location algorithm for multi-location faults, transforming faults and shunt faults in thyristor controlled series capacitor compensated transmission line. IET Gener Transm Distrib 9(13):1597–1607. doi:10.1049/iet-gtd.2014.0981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Reyes-Archundia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Table 12 shows the electrical parameters for the TCSC depicted in Fig. 10. The TCSC compensates from 50 to 70% of the impedance for the 345 kV transmission line.

Table 12 TCSC electrical parameters
Fig. 10
figure 10

TCSC structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Archundia, E., Guardado, J.L., Gutiérrez-Gnecchi, J.A. et al. Fault analysis in TCSC-compensated lines using wavelets and a PNN. Neural Comput & Applic 30, 891–904 (2018). https://doi.org/10.1007/s00521-016-2725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2725-6

Keywords

Navigation