Skip to main content
Log in

Non-tuned machine learning approach for hydrological time series forecasting

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Stream-flow forecasting is a crucial task for hydrological science. Throughout the literature, traditional and artificial intelligence models have been applied to this task. An attempt to explore and develop better expert models is an ongoing endeavor for this hydrological application. In addition, the accuracy of modeling, confidence and practicality of the model are the other significant problems that need to be considered. Accordingly, this study investigates modern non-tuned machine learning data-driven approach, namely extreme learning machine (ELM). This data-driven approach is containing single layer feedforward neural network that selects the input variables randomly and determine the output weights systematically. To demonstrate the reliability and the effectiveness, one-step-ahead stream-flow forecasting based on three time-scale pattern (daily, mean weekly and mean monthly) for Johor river, Malaysia, were implemented. Artificial neural network (ANN) model is used for comparison and evaluation. The results indicated ELM approach superior the ANN model level accuracies and time consuming in addition to precision forecasting in tropical zone. In measureable terms, the dominance of ELM model over ANN model was indicated in accordance with coefficient determination (R 2) root-mean-square error (RMSE) and mean absolute error (MAE). The results were obtained for example the daily time scale R 2 = 0.94 and 0.90, RMSE = 2.78 and 11.63, and MAE = 0.10 and 0.43, for ELM and ANN models respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537. doi:10.1016/j.envsoft.2010.10.016

    Article  Google Scholar 

  2. Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318:7–16. doi:10.1016/j.jhydrol.2005.06.001

    Article  Google Scholar 

  3. Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23. doi:10.1016/j.neucom.2012.07.017

    Article  Google Scholar 

  4. Chang FJ, Chen YC (2001) A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J Hydrol 245:153–164. doi:10.1016/S0022-1694(01)00350-X

    Article  Google Scholar 

  5. Maier HR, Kapelan Z, Kasprzyk J et al (2014) Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ Model Softw 62:271–299. doi:10.1016/j.envsoft.2014.09.013

    Article  Google Scholar 

  6. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124. doi:10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  7. Chang TJ (1990) Effect of drought on streamflow characteristics. Eng J Irrig Drain 116:332–341

    Article  Google Scholar 

  8. Mohseni O, Stefan HG (1998) A monthly streamflow model. Water Resour Res 34:1287–1298. doi:10.1029/97WR02944

    Article  Google Scholar 

  9. Sogbedji JM, McIsaac GF (2002) Modeling streamflow from artificially drained agricultural watersheds in Illinois. J Am Water Resour Assoc 38:1753–1765. doi:10.1111/j.1752-1688.2002.tb04379.x

    Article  Google Scholar 

  10. Bourdin DR, Fleming SW, Stull RB (2012) Streamflow modelling: a primer on applications, approaches and challenges. Atmos Ocean 50:507–536. doi:10.1080/07055900.2012.734276

    Article  Google Scholar 

  11. Yaseen ZM, Kisi O, Demir V (2016) Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water Resour Manag. doi:10.1007/s11269-016-1408-5

    Google Scholar 

  12. Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control, 1st edn. Holden-Day, San Francisco

    MATH  Google Scholar 

  13. Salas JD (1980) Applied modeling of hydrologic time series. Water Resources Publication, Littleton CO

    Google Scholar 

  14. Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441. doi:10.1016/j.jhydrol.2012.11.017

    Article  Google Scholar 

  15. Valipour M, Banihabib M, Behbahani S (2012) Monthly inflow forecasting using autoregressive artificial neural network. J Appl Sci 12:2139–2147

    Article  Google Scholar 

  16. Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl n/a-n/a. doi:10.1002/met.1491

    Google Scholar 

  17. Hsu K, Gupta HV, Gao X et al (2002) Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resour Res. doi:10.1029/2001WR000795

    Google Scholar 

  18. Cigizoglu HK (2005) Application of generalized regression neural networks to intermittent flow forecasting and estimation. J Hydrol Eng 10:336–341. doi:10.1061/(ASCE)1084-0699(2005)10:4(336)

    Article  Google Scholar 

  19. Wu JS, Han J, Annambhotla S, Bryant S (2005) Artificial neural networks for forecasting watershed runoff and stream flows. J Hydrol Eng 10:216–222. doi:10.1061/(ASCE)1084-0699(2005)10:3(216)

    Article  Google Scholar 

  20. Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12:532–539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532)

    Article  Google Scholar 

  21. Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic streamflow generation. Water Resour Manag 21:1015–1029. doi:10.1007/s11269-006-9070-y

    Article  Google Scholar 

  22. Kagoda PA, Ndiritu J, Ntuli C, Mwaka B (2010) Application of radial basis function neural networks to short-term streamflow forecasting. Phys Chem Earth 35:571–581. doi:10.1016/j.pce.2010.07.021

    Article  Google Scholar 

  23. Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J Hydrol Eng 15:275–283. doi:10.1061/(ASCE)HE.1943-5584.0000188

    Article  Google Scholar 

  24. Dibike Yonas B, Velickov Slavco, Solomatine Dimitri, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comput Civ Eng 15:208–216

    Article  Google Scholar 

  25. Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36:7624–7629. doi:10.1016/j.eswa.2008.09.053

    Article  Google Scholar 

  26. Noori R, Karbassi AR, Moghaddamnia A et al (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol 401:177–189. doi:10.1016/j.jhydrol.2011.02.021

    Article  Google Scholar 

  27. Kalra A, Ahmad S (2009) Using oceanic-atmospheric oscillations for long lead time streamflow forecasting. Water Resour Res 45:1–18. doi:10.1029/2008WR006855

    Article  Google Scholar 

  28. He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386. doi:10.1016/j.jhydrol.2013.11.054

    Article  Google Scholar 

  29. El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21:533–556

    Article  Google Scholar 

  30. Nayak PC, Sudheer KP, Jain SK (2007) Rainfall-runoff modeling through hybrid intelligent system. Water Resour Res 43:1–17. doi:10.1029/2006WR004930

    Article  Google Scholar 

  31. Pramanik N, Panda RK (2009) Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol Sci J 54:247–260. doi:10.1623/hysj.54.2.247

    Article  Google Scholar 

  32. Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26:1715–1729. doi:10.1007/s11269-012-9982-7

    Article  Google Scholar 

  33. Sharma S, Srivastava P, Fang X, Kalin L (2015) Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C ++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed. Expert Syst Appl 42:2213–2223. doi:10.1016/j.eswa.2014.09.062

    Article  Google Scholar 

  34. Whigham PA, Crapper PF (2001) Modelling rainfall-runoff using genetic programming. Math Comput Model 33:707–721. doi:10.1016/S0895-7177(00)00274-0

    Article  MATH  Google Scholar 

  35. Makkeasorn A, Chang NB, Zhou X (2008) Short-term streamflow forecasting with global climate change implications—a comparative study between genetic programming and neural network models. J Hydrol 352:336–354. doi:10.1016/j.jhydrol.2008.01.023

    Article  Google Scholar 

  36. Guven A (2009) Linear genetic programming for time-series modelling of daily flow rate. J Earth Syst Sci 118:137–146. doi:10.1007/s12040-009-0022-9

    Article  Google Scholar 

  37. Kashid SS, Ghosh S, Maity R (2010) Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection. J Hydrol 395:23–38. doi:10.1016/j.jhydrol.2010.10.004

    Article  Google Scholar 

  38. Kisi O, Shiri J, Tombul M (2013) Modeling rainfall-runoff process using soft computing techniques. Comput Geosci 51:108–117. doi:10.1016/j.cageo.2012.07.001

    Article  Google Scholar 

  39. Sahay RR, Srivastava A (2014) Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Resour Manag 28:301–317. doi:10.1007/s11269-013-0446-5

    Article  Google Scholar 

  40. Nourani V, Kisi Ö, Komasi M (2011) Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J Hydrol 402:41–59. doi:10.1016/j.jhydrol.2011.03.002

    Article  Google Scholar 

  41. Danandeh Mehr A, Kahya E, Bagheri F, Deliktas E (2013) Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Sci Inform. doi:10.1007/s12145-013-0141-3

    Google Scholar 

  42. Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140. doi:10.1016/j.jhydrol.2010.12.041

    Article  Google Scholar 

  43. Pramanik N, Panda RK, Singh A (2010) Daily river flow forecasting using wavelet ANN hybrid models. J Hydroinformatics 13:49. doi:10.2166/hydro.2010.040

    Article  Google Scholar 

  44. Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91. doi:10.1016/j.jhydrol.2010.06.033

    Article  Google Scholar 

  45. Babovic V, Keijzer M (2002) Rainfall runoff modelling based on genetic programming. Nord Hydrol 33:331–346

    Article  MATH  Google Scholar 

  46. Kashani MH, Ghorbani MA, Dinpashoh Y, Shahmorad S (2016) Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. J Hydrol 540:340–354. doi:10.1016/j.jhydrol.2016.06.028

    Article  Google Scholar 

  47. Fayaed S, El-Shafie A, Jaafar O (2013) Integrated artificial neural network (ANN) and stochastic dynamic programming (SDP) model for optimal release policy. Water Resour Manag 27:3679–3696. doi:10.1007/s11269-013-0373-5

    Article  Google Scholar 

  48. Soria-Olivas E, Gómez-Sanchis J, Martín JD et al (2011) BELM: Bayesian extreme learning machine. IEEE Trans Neural Networks 22:505–509. doi:10.1109/TNN.2010.2103956

    Article  Google Scholar 

  49. Chang F-J, Chen P-A, Lu Y-R et al (2014) Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J Hydrol 517:836–846. doi:10.1016/j.jhydrol.2014.06.013

    Article  Google Scholar 

  50. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  51. Nourani V, Sayyah Fard M (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 47:127–146. doi:10.1016/j.advengsoft.2011.12.014

    Article  Google Scholar 

  52. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42:513–529. doi:10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  53. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  54. Abdullah SS, Malek MA, Abdullah NS et al (2015) Extreme Learning Machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195. doi:10.1016/j.jhydrol.2015.04.073

    Article  Google Scholar 

  55. Samat A, Du P, Member S et al (2014) Ensemble extreme learning machines for hyperspectral image classification. Sel Top Appl Earth Obs Remote Sensing, IEEE J 7:1060–1069

    Article  Google Scholar 

  56. Bencherif MA, Bazi Y, Member S et al (2015) Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. Geosci Remote Sens Lett IEEE 12:527–531

    Article  Google Scholar 

  57. Lian C, Zeng Z, Yao W, Tang H (2012) Displacement prediction model of landslide based on ensemble of extreme learning machine. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7666 LNCS:240–247. doi: 10.1007/978-3-642-34478-7_30

  58. Sun Z-L, Choi T-M, Au K-F, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46:411–419. doi:10.1016/j.dss.2008.07.009

    Article  Google Scholar 

  59. Bhat AU, Merchant SS, Bhagwat SS (2008) Prediction of melting points of organic compounds using extreme learning machines. Ind Eng Chem Res 47:920–925. doi:10.1021/ie0704647

    Article  Google Scholar 

  60. Wang B, Huang S, Qiu J et al (2015) Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 149:224–232. doi:10.1016/j.neucom.2014.03.076

    Article  Google Scholar 

  61. Li BJ, Cheng CT (2014) Monthly discharge forecasting using wavelet neural networks with extreme learning machine—Springer. Sci China Technol Sci 57:2441–2452. doi:10.1007/s11431-014-5712-0

    Article  Google Scholar 

  62. Deo RC, Şahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ Monit Assess. doi:10.1007/s10661-016-5094-9

    Google Scholar 

  63. Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443. doi:10.1016/j.jhydrol.2016.03.017

    Article  Google Scholar 

  64. Yaseen ZM, Jaafar O, Deo RC et al (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol. doi:10.1016/j.jhydrol.2016.09.035

    Google Scholar 

  65. Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262. doi:10.1016/j.jhydrol.2004.03.027

    Article  Google Scholar 

  66. Mehr AD, Kahya E, Şahin A, Nazemosadat MJ (2014) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol. doi:10.1007/s13762-014-0613-0

    Google Scholar 

  67. Yaseen ZM, El-Shafie A, Afan HA et al (2015) RBFNN versus FFNN for daily river flow forecasting at Johor River. Neural Comput Appl, Malaysia. doi:10.1007/s00521-015-1952-6

    Google Scholar 

  68. He L, Huang GH, Lu HW (2008) A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Adv Water Resour 31:1622–1635. doi:10.1016/j.advwatres.2008.07.009

    Article  Google Scholar 

  69. Bin Huang G, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062. doi:10.1016/j.neucom.2007.02.009

    Article  Google Scholar 

  70. Elzwayie A, El-shafie A, Yaseen ZM et al (2016) RBFNN-based model for heavy metal prediction for different climatic and pollution conditions. Neural Comput Appl. doi:10.1007/s00521-015-2174-7

    Google Scholar 

  71. Afan HA, El-Shafie A, Yaseen ZM et al (2014) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1

    Article  Google Scholar 

  72. Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. doi:10.1016/j.jhydrol.2015.10.038

    Article  Google Scholar 

  73. Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. doi:10.1016/j.jhydrol.2014.03.057

    Article  Google Scholar 

  74. Legates DR Jr, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241

    Article  Google Scholar 

  75. Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736. doi:10.1137/0515056

    Article  MathSciNet  MATH  Google Scholar 

  76. Korenberg MJ (1989) A robust orthogonal algorithm for system identification and time-series analysis. Biol Cybern 60:267–276. doi:10.1007/BF00204124

    Article  MathSciNet  MATH  Google Scholar 

  77. Hough PD, Vavasis SA (1997) Complete orthogonal decomposition for weighted least squares. SIAM J Matrix Anal Appl 18:369–392

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors would like the acknowledge their gratitude and appreciate for the Department of Irrigation and Drainage (DID), Malaysia, for providing the river flow data set of the studied case study and their admirable cooperation. We are also grateful to the Editor and three anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding publishing this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, Z.M., Allawi, M.F., Yousif, A.A. et al. Non-tuned machine learning approach for hydrological time series forecasting. Neural Comput & Applic 30, 1479–1491 (2018). https://doi.org/10.1007/s00521-016-2763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2763-0

Keywords

Navigation