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Abstract 

Reliability based design optimization (RBDO) problems are important in engineering applications, 

but it is challenging to solve such problems. In this study, a new resolution method based on the 

directional Bat Algorithm (dBA) is presented. To overcome the difficulties in the evaluations of 

probabilistic constraints, the reliable design space concept has been applied to convert the yielded 

stochastic constrained optimization problem from the RBDO formulation into a deterministic 

constrained optimization problem. In addition, the constraint handling technique has also been 

introduced to the dBA so that the algorithm can solve constrained optimization problem 

effectively. The new method has been applied to several engineering problems and the results 

show that the new method can solve different varieties of RBDO problems efficiently. In fact, the 

obtained solutions are consistent with the best results in the literature.  
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1 Introduction 

Reliability Based-Design Optimization (RBDO) is a methodology used in engineering design to 

find the best compromise between safety and manufacturing costs. In general, deterministic design 

optimization methods may lead to a suboptimal design solution often at the limits of the constraints 

which usually results a final product with a high probability of failure. This is due to the 

uncertainties that exist in the manufacturing process, material properties, and others depending on 

operating conditions. In addition, these uncertainties could lead to large variations in the system 

performance and may end up in a catastrophic failure. Therefore, such uncertainties  should be 

considered in the design process [1]. Using the probability theory and statistics to model 
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uncertainties, the RBDO method requires to perform some optimization so as to find the best 

design which satisfies an allowable probability of failure [2].    

The main challenge of a RBDO problem is the evaluation of the failure probability of a design as 

it requires a considerable computation effort. Conventionally, RBDO problems are formulated as 

a stochastic optimization problem under probabilistic constraints, where the resolution is 

conducted by including the evaluation of the failure probability in the main optimization loop. This 

technique usually leads to a nested optimization problem, referred to be as the double loop 

approach which is computationally extensive [3]. The well-know methods that use this assumption 

are the Reliability Index Approach (RIA) [4] and the Performance Measure Approach (PMA) [5]. 

To reduce the computational cost, two approaches have been proposed. The first one is to separate 

the reliability assessment from the optimization loop and convert the RBDO problem into the 

sequences of deterministic optimization and reliability assessment cycles. This approach, namely 

the decoupled approach, is the key idea of the Sequential Optimization and Reliability Assessment 

(SORA) method [6]. The second approach known as the single loop approach consists of 

converting the probabilistic constraints into deterministic ones. Thus, the RBDO problem becomes 

a deterministic optimization problem. There are two main methods using this approach: the Single 

Loop Approach (SLA) proposed by [7,8] and the Reliable Design Space (RDS) method proposed 

by [9]. 

Due to their high efficiency, analytical methods or gradient methods such as Sequential Quadratic 

Programming (SQP) have been used to solve RBDO problems. Usually, these methods search for 

a solution in the neighborhood of a starting point. If the problem has multiple local minima, the 

solution will depend on the starting point [10]. In addition, if the objective function and/or 

constraints have sharp or multiple peaks, the analytical methods become unstable [10,11]. In order 

to surmount these deficiencies, a new class of optimization algorithms such as metaheuristic 

algorithms, has been introduced. These algorithms can have a high ability to find a good solution 

(near the optimum), taking advantage of the best features inspired by the successful characteristics 

of natural and biological systems in nature. For example,  evolutionary algorithms such as Genetic 

Algorithm (GA) [12] and Differential Evolution (DE) [13] were inspired from the Darwinian 

evolution process. Particle Swarm Optimization (PSO) [14] was inspired from bird flocks 

behavior. Simulated Annealing (SA) [15] and Gravitational Search Algorithm (GSA) [16] are 

based on physics laws. On the other hand, Cuckoo Search (CS) was based on the brood parasitism 

of some cuckoo species [17], while the Firefly Algorithm (FA) was based on the flashing behavior 

of tropical fireflies [18]. 

Because of their simple structure, these algorithms, also called bio-inspired algorithms, become 

very popular among the community of researchers and engineers. Recently, a new algorithm 

inspired from the echolocation behavior of micro-bats, namely the Bat Algorithm (BA), was 

introduced by Xin-She Yang [19]. Micro-bats are naturally use echolocation to determine their 

positions and their surroundings. When they are flying and hunting preys, they emit continuously 

ultrasound pulses and hear the echoes. By analyzing the time between emitting and receiving and 
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the time delay between the two ears, they can create a 3D mental image of their surrounding and 

determine if there is food or not. This behavior was the basic idea that has been used to develop 

the bat algorithm. Several studies showed that BA can solve optimization problems with higher 

efficiency compared to standard algorithms such as PSO and GA [19-22]. 

Despite the fact that BA is a powerful optimization algorithm, it may suffer from the premature 

convergence that can occur under certain conditions, which is also true for all other algorithms 

such as PSO and GA. To overcome this problem, several techniques have been proposed to 

increase the exploitation and exploration capability of the algorithm. In [23], the authors proposed 

to use simulated annealing and Gaussian perturbation to speed up the convergence rate. In [24], 

the authors suggested to use chaotic maps to control the pulse rate and loudness. In [25], the authors 

recommended to use the Lévy flights and the differential operator to generate the bats’ movements 

and, in [26], the authors proposed to consider the bats’ habitat selection and their self-adaptive 

compensation for the Doppler effect in the algorithm formulation. Other studies suggested 

hybridization between the standard BA and classical algorithm such as PSO [27], Artificial Bee 

Colony (ABC) [28], differential evolution [29,30] and Invasive Weed Optimization (IWO) [31]. 

Lately, a new variant of the bat algorithm called directional Bat Algorithm (dBA) has been 

introduced [32]. The authors employ the property of directional echolocation used by micro-bats 

to define the direction of the next movement of bats. By integrating this characteristic, the 

exploitation and exploration capabilities of the algorithm have significantly improved, and the 

results showed that the directional bat algorithm perform better than several bat algorithm variants 

such as [23,24,30,31], and other state-of-the-art algorithms such as the Self-adaptive Differential 

Evolution (SaDE) [33] and IPOP-CMA-ES [34]. 

In this study, a new RBDO solution method based on the directional bat algorithm is presented. 

The reliable design space concept is used to convert the RBDO problem into a deterministic 

constrained optimization problem where the resolution is carried out using the dBA. In addition 

the constraints handling technique (CHT) [35] is introduced to dBA so that the algorithm can 

handle the constraints of the yielded deterministic optimization problem. Therefore, this study is 

organized as follows: The next section provides an overview of the reliability based design 

optimization. The proposed RBDO method based on dBA is described in Section 3, followed by 

the experimental results in Section 4, and we then provide some discussions and conclusions in 

Section 5.  

 

 

 

2. Reliability based design optimization 
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2.1 Basics of RBDO 

A reliability based design optimization model may include in general deterministic design 

variables which have to be determined while neglecting the uncertainties, and a set of random 

parameters and random design variables whose means are to be determined. The random design 

variables and parameters are described by probability distributions in which their variation is 

controlled by the mean and the standard deviation. A typical RBDO problem can be formulated as 

a stochastic optimization problem, in which the fitness or the objective function is subjected to 

deterministic and probabilistic constraints as follows: 

  ,

Minimize ( , )

Subject to

( , , ) 0 , 1...

( , , ) 0, 1...

, 1...

, 1...

x

i f i

i x p

dj j dj

xj xj xj

f d µ

P g d x p P i m

h d µ µ i m n

L d U j ND

L µ U j NX

  

  

  

  

        (1) 

where d = [d1,d2,..,dND]T is a vector of  the deterministic design variables, x = [x1,x2,..,xNX]T is the 

vector of random design variables and p = [p1,p2,..,pNP]T is the vector of random parameters. The 

parameter () is the mean of its corresponding variable, and L and U refer to as the lower and 

upper bounds, respectively. In addition, P(.) is the probability of condition to happen and Pf is the 

admissible probability of failure. The dimension of the problem is thus N=ND+NX. 

The evaluation of a probabilistic constraint is not straightforward. It requires the evaluation of the 

following integral: 

  ,

( , , ) 0

( , , ) 0 ( , )i x p

g d x p

P g d x p f x p dx


  
       

(2) 

where fx,p is the Joint Probability Density Function (JPDF) of the random design variables and 

parameters. As the exact evaluation of this integral is very difficult, two sets of approximation 

methods are usually used, and they are simulation methods such as crude Monte Carlo Simulation 

(MCS) [36] and Importance Sampling (IS) [37], and moment methods such as the First Order 

Reliability Method (FORM) [38,39] and the Second Order Reliability Method (SORM) [40,41]. 

The principal idea of the FORM is to compute the reliability index  which represents the 

minimum distance from the limit state surface to the origin in the normal space. The reliability 

index is obtained by solving the following optimization problem: 
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2 2Minimize

Subject to: ( , , )=0

NX NP

xi pi

i i

x p

u u

G d u u

   
        (3) 

where u is the standard normal (or Gaussian) random variable obtained through Rosenblatt 

transformation   1

i i iu CDF x  [42] (same formulation for p). Here, Φ-1 is the inverse normal 

Cumulative Distribution Function, and CDFi (.) is the cumulative distribution function of the 

random variable xi. The solution of the previous problem u* is called the Most Probable Point 

(MPP).  The normalized limit state function (G) is computed as follows: 

      1 1, , , ( ) , ( )x p x x p pG d u u g d CDF u CDF u         (4) 

Therefore, the failure probability can be approximated as: 

 ( , , ) 0 ( ).iP g d x p    

         

(5) 

2.2 Overview on resolution methodologies of RBDO problem 

The key problem in the resolution of RBDO problems is the evaluations of the probabilistic 

constraints, as they require considerable computation efforts. Depending on the probabilistic 

constraint evaluation technique, there exist basically three categories of RBDO resolution 

methodologies, namely, double loop approach, single loop approach and decoupled approach.  

The Double Loop Approach (DLA) as its name indicates (Fig. 1a), consists of two loops: inner 

and outer. In the inner loop, the reliability assessment is conducted using different iterative and 

sampling methods, while the outer loop optimizes the design variables. This approach leads to a 

nested optimization problem with a high computational cost. Two main algorithms use this 

approach. The first is the reliability index approach  [4] in which the optimization problem in Eq. 

(3) is solved to estimate the probability of failure. The second is the performance measure approach 

[5] where the probability estimation is converted into a performance measure by solving the 

inverse problem of Eq. (3). The obtained solution is called the Minimum Performance Target Point 

(MPTP). It is based on the idea that optimizing a complex function under a simple constraint is 

easier than the other way around. 

The Decoupled Approach (DA) consists of separating the reliability assessment from the 

optimization loop (Fig. 1b). The promising algorithms in this category are the sequential 

optimization and reliability assessment methods [6]. The SORA method transforms the RBDO 

problem to a sequence of deterministic optimization and reliability assessments. The idea is to use 

the reliability information from the previous cycle to shift the deterministic constraints in the 

reliable domain. There are many other methods that use the decoupling approach, such as the 

Safety Factor Approach (SFA) [43,44] which has the same idea of shifting deterministic 
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constraints basing on the target MPP. The Sequential Approximate Programming concept (SAP) 

proposed by [45] formulated the reliability assessment problem as a sub-programming problem 

where the probabilistic constraints were linearized as the MPP. 

The Single Loop Approach (SLA) consists of transforming a probabilistic constraint into an 

optimally equivalent deterministic constraint (Fig. 1c). In [46], the authors replaced the 

probabilistic constraints by Karush-Kuhn-Tucker (KKT) optimality conditions of the first order 

reliability method. The authors in [47] reported that the KKT method has a weak stability and 

highly computationally expensive than the double loop methods due to the increase of the number 

of the equality constraints. The Single Loop Single Vector (SLSV) approach proposed by [48] 

consists of evaluating the limit state function at a point far from the design point with T (target 

reliability index) in the direction of the MPP instead of the computation of the probability of 

failure. As a result, the inner loop was removed, and the RBDO problem became a deterministic 

one. Based on the same concept, the authors in [8] developed the single loop approach, where the 

system reliability requirement was considered. In [9], authors proposed an new single loop method 

based on the Reliable Design Space (RDS), where the RBDO problem was converted to 

deterministic optimization problem in the reliable design space. This method has the same 

principle as the SLA proposed in [48,8,7]. 

2.3 RBDO and metaheuristic algorithms 

Due to the increasing power of computers, several studies proposed to use metaheuristic 

algorithms to solve RBDO problems [49-59]. Following the double loop approach, the authors in 

[49] used the hierarchical genetic algorithm to solve the RBDO problem of composite structures. 

The reliability constraints were evaluated using the Hasofer-Lind second-order-second-moment 

approximation where the reliability index was evaluated using the Newton-Raphson iterative 

procedure and the arc-length method. In [50], authors used the genetic algorithm as an optimization 

tool and the first order reliability method (FORM) to estimate the probabilistic constraints, to 

design a water distribution systems. In [51], the authors applied a modified PSO algorithm, namely 

Auto-tuning and Boundary-approaching PSO (AB-PSO) algorithm, to optimize truss structures 

with discrete variables under reliability constraints. The last ones were evaluated using subset 

simulation. In [52], the authors employed the PSO method to perform the RBDO of a composite 

pressure vessel. They have used an iterative procedure to evaluate the reliability index of the 

probabilistic constraints, obtained through a finite element model.  

In [53], the authors proposed a method based on PSO, Subset Simulation (SS) and Support Vector 

Machine (SVM). First, an initial design solutions were produced randomly, where their satisfaction 

of the probabilistic constraints were checked using subset simulation. The solutions and their 

feasibility labels were used by the SVM classifier as the training data set to obtain the decision 

functions. These functions were fed to the PSO algorithm to check the feasibility of the generated 

solutions. After a specific number of generations the PSO solution were transferred to the SVM as 

a new training solutions to update the decision functions. 
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Using the single loop approach, authors in [54] proposed a reliable design optimization method 

based on Evolution Strategy (ES) algorithm as the main optimization engine, for large scale 

structural systems. The constraints evaluation were obtained through a trained neural network, 

where the satisfaction of the deterministic constraints was checked with finite element analysis 

(FEA) and the probabilistic constraints assessment were obtained using Monte Carlo simulation. 

In [55] authors have used the binary PSO to seek for an optimal and reliable design of truss 

structure. By considering that the randomness exits only in the load, the yield stress and the cross-

section area, they have obtained an analytical expression of the reliability index. Thus, the RBDO 

problem was converted to a single loop deterministic optimization problem. In [60], authors have 

converted the multi-variable probabilistic constraint to a single-variable constraint using 

exponential polynomial coefficients, where the failure probability integral was evaluated by the 

mean of the adaptive Gauss-Kronrod quadrature. Thus, the RBDO problem was again converted 

to a deterministic optimization problem where the solution was computed using particle swarm 

optimization. 

Like for the single-objective RBDO problems, metaheuristic algorithms have been applied to solve 

Multi-Objective RBDO problems (MO-RBDO). In [56], authors proposed a MO-RBDO method 

using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), where the probabilistic 

constraints were evaluated using Fast-PMA[61]. In [57], authors employed the multi-objective GA 

combined with importance sampling method for the estimation of probabilistic constraints. In [58], 

authors used multi-objective cultural PSO where the reliability assessment was obtained through 

the Hybrid Mean Value (HMV) method proposed by [62]. In [59], authors adopted SLSV method 

proposed by [48] for the estimation of the probability of failure, while the multi-objective PSO 

was applied to solve the MO-RBDO problem. 

3 RBDO with the directional bat algorithm 

3.1 Adopted single loop approach 

To transform the probabilistic constraint into a deterministic one, we adopt the reliable design 

space technique proposed by [9]. Fig. 2 presents the essence of this technique. For simplicity of 

explication, we assume that there are no deterministic design variables and random parameters, 

and the system is considered to be safe if g(x) > 0, and unsafe if g(x) < 0. The main idea of the 

RDS technique is to evaluate the limit state function (g(x)) of the probabilistic constraint at a point, 

say x, which is far away from the design point x with distance equivalent to the reliability index in 

the normal space, and in the direction of the MPP. If g(x) < 0, that means that in the normal space, 

the distance between the MPP and x is less than  which means that P(g(x) < 0) > Pf. Therefore, x 

is considered as an infeasible solution (see Fig. 2a. Infeasible solution). If g(x) > 0, the distance 

between x and the MPP in the normal space is greater than  which means P(g(x) < 0) <Pf. The 

design point x is considered feasible (see Fig. 2b. Feasible solution). In the case of g(x) = 0, x is at 

the MPP, and the distance between x and the MPP is equal to , thus P(g(x) < 0) = Pf, which means 



8 
 

the probabilistic constraint is active (see Fig. 2c. Active constraint). The Fig. 2d presents the 

optimal solution of min(x) with two reliability constraints with a different target reliability index. 

Therefore, we define first the corresponding reliability index of each probabilistic constraint as the 

following: 

1( )i

f iP   .          (6) 

Then, we compute x and p by the following transformation: 

i i i

j xj xj xj    x           (7) 

i i i

j pj pj pj    p           (8) 

where the index i corresponds to the constraint number and j represents the variable. In addition, 

 and  are, respectively, the mean and the standard deviation. The directional cosines () are 

computed as follows: 
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Therefore, the RBDO problem defined in Eq. (1) becomes a deterministic optimization problem 

as follows: 

Minimize ( , )
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(11) 



9 
 

The transformation of x and p presented above (Eqs. (7) and (8)) are only valid if the previous 

parameters are normally distributed. In case of a different random distribution function, we use the 

Rosenblatt transformation [42]. Therefore, the transformation x→ x becomes: 

 1i i i

j j xjCDF   x
          

(12) 

where 
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 
   

    
   

    
 

  

   (13)
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 
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ˆ
j j
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j j
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PDF x




  
 



         

(14) 

where PDF is the Probability Density Function of the variable x, and  is the normal probability 

density function. The same formulas are used in case of random parameter p, we only change x to 

p. It is worth noting that in reality the term ̂  represents the inverse Jacobian of the Rosenblatt 

transformation.  

The RDS technique has the same level of accuracy as the MPP-based method. If the limit state 

function is monotonically decreasing or increasing, the RDS technique can be very accurate. If 

any limit state function has multiple MPP, this technique can cause negligible error near the saddle 

points in the transformation of the probabilistic constraint to a deterministic one. For more 

mathematical details of the RDS technique, please refer to the more specialized literature such as  

[9]. 

3.2 Review on the standard bat algorithm 

First, for convenience of discussion and to avoid confusion, we assume that y is a vector of the 

design variables, both random and deterministic, thus y = [d1, d2, ..., dND, x1, x2, ..., xNX]T.  

The standard bat algorithm was inspired from the echolocation process of micro-bats. By 

observing the behavior and characteristics of the micro-bats, Xin-She Yang [19] proposed the 

standard BA in accordance to three major idealized rules of the echolocation process of the micro-

bats.  

a) All bats use echolocation to sense distance and they also know the difference between food/ 

prey and barriers [19]. 
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b) Bats fly randomly with velocity vi at position yi by varying frequency (from a minimum 

φmin to a maximum frequency φmax) or a varying wavelength i and loudness Ai to search 

for prey. They can automatically adjust the wavelength (or frequency) of their emitted 

pulses and the rate of pulse emission r depending on the proximity of the target [19]. 

c) Loudness varies from a large positive A0 to a minimum constant value Amin [19]. 

For each bat (i), its position (yi) and velocity (vi) in an N-dimensional search space should be 

defined, and yi and vi should be subsequently updated during the iterations. The rules for updating 

the position and velocities of a virtual bat (i) are given as in [19]: 

min max min( )i rand               (15) 

 1 *t t t

i i i iv v y y    
          

(16) 

1 1t t t

i i iy y v  
           

(17) 

where rand[0,1] is a random vector drawn from a uniform distribution. Here y* is the current 

global best location (solution) which is located after comparing all solution among all the n bats. 

A new solution for each bat is generated locally using random walk given by Eq. (18): 

1t

new oldy y A              (18) 

where [1,1] is a random number, while 1t

iA    is the average loudness of all the bats at this 

time step.  

The loudness Ai and the rate of pulses emission ri are updated as the iterations proceed. The 

loudness decreases and the pulse rate increases as the bat gets closer to its prey. The equation for 

updating the loudness and the pulse rate are:   

1t t

i iA A 
           

(19) 

 1 0 1 exp( )t

i ir r t   
          

(20) 

where 0< < 1 and >0 are constants. As t→∞, we have Ai
t→0 and ri

t→ri
0. The initial loudness 

A0 can typically be A0[1, 2], while the initial emission rate r0[0, 1]. 

3.3 The new directional bat algorithm  

The new directional bat algorithm proposed by Chakri et al.  [32], was developed by embedding 

four modifications to the standard bat algorithm. First, we have supposed that a bat emits two 

pulses in two different directions, one in the direction of the bat with best position (the best 

solution), and the other to the direction of randomly selected bat (see Fig. 3). From the echo 

(feedback), the bat can know if the food exists around these two bats or not. Usually, around the 

bat with the best position, the food exists (thus it has the best fitness value), but around the 

randomly selected bat, it depends on its fitness value. If it has a better fitness value as the current 

bat, then the food is considered to exist, otherwise there is not a food source in the neighborhood. 
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If the food was confirmed to exist around the two bats (Fig. 3. case 1), the current bat moves to a 

direction at the surrounding neighborhood of the two bats where the food supposed to be plenty. 

If not (Fig. 3. case 2), it moves toward the best bat. The mathematical description of this behavior, 

which we call the directional echolocation behavior, is as follows: 

1 *

1 2

1 *

1

( ) ( ) ( ( ) ( ))

( )

t t t t t t t

i i i k i k i

t t t

i i i

y y y y y y if f y f y

y y y y Otherwise

 







      


  

     (21) 

where y* is the best solution and t

ky  is the location of randomly selected bat (k ≠ i). Here, f (.) is 

the fitness function, and φ1 and φ2 are the frequencies of the two pulses updated in the following 

form: 

1 min max min

2 min max min

( ) 1

( ) 2

rand

rand

   

   

  


  
        

(22) 

where rand1 and rand2 are two random vectors drawn from a uniform distribution between 0 and 

1. 

The second modification is introduced to the local search part. The bats move from their current 

position to a new position randomly with the following equation: 

1t t t t

i i iy y A w               (23) 

where [1,1] is a random vector and <At> is the average loudness of all bats. In the above 

equation, wi is a parameter applied to reduce the space search as the iterations proceed. It starts 

from a large value (about a quarter of the space length) and it decreases to around 1% of the quarter 

of the space length. The updating equation is as follows: 

 0
max

max1

t i i
i i

w w
w t t w

t




 
   

 
        (24) 

where t is the current iteration and tmax is the maximum number of iterations. Here, wi0 and wi∞ are 

the initial and final values that wi can take over the iteration procedure. In general, we can set wi0 

and wi∞ as follows: 

0 ( ) / 4i i iw U L            (25) 

0 /100i iw w             (26) 

The third modification concerns the update of the pulse rate and loudness. We use the following 

monotonically increasing, decreasing pulse rate and loudness, respectively: 

 0
max

max1

t r r
r t t r

t




 
   

 
         (27) 
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 0
max

max1

t A A
A t t A

t




 
   

 
         (28) 

where the subscripts 0 and ∞ stand for the initial and final values, respectively. 

The tuning of the pulse rate and the loudness is important. The pulse rate controls the auto-switch 

between the random walk (Eq. (21)) and the local search (Eq. 23) (see Algorithm 1). At the 

beginning of the iteration process, the algorithm tends to promote the local search over the random 

walk which allows the algorithm to explore more the search space. This mechanism is obtained by 

attributing a low value to r0. However, this value should not be too low, thus allowing to a small 

fraction of bats to exploit the solution of the bat with the best position. At the iterations continue 

(or approaching the end of the iterations), a large value should be allocated to the pulse rate so that 

the exploitation takeover the exploration and this is obtained by assigning a large value to r∞. 

Similarly, the loudness controls the acceptance of a new generated solution or not. The benefit of 

this parameter is that by rejecting some solutions, it allows to the algorithm to avoid being trapped 

in a local minimum (and thus avoid the premature convergence as well). Therefore, based on some 

parametric studies, we recommend the following settings of the pulse rate and loudness: r0 = 0.1, 

r∞ = 0.7, A0 = 0.9 and A∞ = 0.6.      

In addition to the above directional improvement, another improvement we made to the original 

BA is to allow the bats to update the pulse rate and loudness, and to accept a new solution if their 

movement produces a solution better than the old one instead of the global best solution as it is in 

the original algorithm. Furthermore, the update the global best position is allowed whenever the 

bat's random walk produces a solution with a better fitness value even if it was not accepted to 

update the bat's position.  

The movements of bats generate real numbers. If any design variable is discrete, we simply round 

it to its closest discrete value.  

3.4 constraint handling technique (CHT) 

To solve the converted deterministic optimization by the DRS technique Eq. (11), the -constraint 

method [35] was adopted to handle constraints. The main idea of this method is to define an level 

of comparison as an order of relation on the set of (f(y), (y)) where (y) is the constraint violation 

function which is defined as the following form: 

1 1

( ) min{0, ( )} max{0, ( , )}
m n

j j

j j

s s
y g h y p

 

  y,p (29) 

where y= [d1, d2, ..., dND, x1, x2,..., xNX]T, and s is a positive even number (in this study, s = 2 is 

used). Here, (y) indicates how much the constraints were violated at a point y. The constraint 

violation function (y) has the following property: 

( ) 0 ( )

( ) 0 ( )

y y

y y





 

 



            

(30)
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where  is the reliable design space. For the simplicity of computation and implementation, we 

have proposed to build a separate sub-program to compute the constraint violation using the 

following steps:  

1- Input y , p and ; 

2- Convert y → y and p→ p using Eqs.(7) and (8); 

3- Compute gj(y, p) and hj(y, p); 

4- Compute the constraint violation (y) using Eq. (29) 

5- Output (y). 

 

The level of comparison is defined by a lexicographic order in which (y) precedes f(y), because 

the feasibility of y is more important the minimization of f(x) [35]. Consider two point y1 and y2 

with their corresponding fitness and constraint violations values f1, f2 and respectively. 

Then, for any  ( ≥ 0), the level of comparisons (<and ≤) between (f1,1) and (f2,2) are 

defined as follows: 

1 2 1 2

1 1 2 1 1 2 1 2

1 2

, if ,

( , ) ( , ) , if

, otherwise

f f

f f ff


  

   

 

 

   









       (31) 

1 2 1 2

1 1 2 1 1 2 1 2

1 2

, if ,

( , ) ( , ) , if

, otherwise

f f

f f ff


  

   

 

 

   







        

(32) 

The level is updated until the iteration counter t reaches the control iteration Tc. After the 

iteration counter exceeds Tc, the level is set to zero to obtain a solution with no constraint 

violation. The update of  is as follows: 

 

0

0

( )

1 ( / ) , 0

0,

cp

t c c

c

y

t T t T

t T


 






  






         

(33) 

where y is the top th individual and cp[2,10]. In this study, we have used cp = 5 and Tc = 

0.95tmax. 

 

Consider the following example: suppose that we want to compare solutions y1 and y2, where their 

corresponding fitness value and constraint violation pairs (f1,1) and (f2,2) are (4, 3) and (2, 5), 

respectively. In the first case, we suppose that the value of  at the current iteration is  = 7. We 

have 1,2 <  and f2 < f1, thus (f2,2) <=7 (f1,1). Consequently, we consider y2 is a better solution 

than y1. In this case, due to the fact that the constraint violations are within the allowable value (), 

the CHT promotes the solutions with a better fitness value. As the iteration process proceeds, 

the value of  decreases. In this case we suppose  = 2. Therefore, we have 1,2 >and 1<2, 
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thus (f1,1) <=2 (f2,2). As a result, y1 is considered a better solution than y2. In this case, CHT 

promotes the feasible solutions over the optimal ones. 

The advantage of this technique is that it allows the algorithm to explore a wider region of the 

search space (both feasible and unfeasible spaces), which increases the possibility that the 

algorithm converges to the global feasible optimum. Therefore, pseudo-code of the new RBDO 

method based on the directional bat algorithm and constraint handling technique, together with 

the ability to handle discrete and continuous variables, is presented in Algorithm 1. 

4. Numerical results and discussion 

4.1 Example 1: crashworthiness of vehicle side impact 

This example proposed by [63] has been extensively used to test efficiency and accuracy of RBDO 

methods [8,9,64]. It represents what may happen to a passenger vehicle when it is struck in the 

side by another vehicle at about 30 mph. To formulate the RBDO problem, authors in [63] 

constructed a finite element model to simulate the side impact. After that, by running the finite 

element model for certain combinations of design variables, response surfaces in polynomial form 

were constructed to approximate the objective function (weight) and constraints (deflections and 

velocities at different vehicle and dummy locations). More details of this example can be found in 

[63]. 

The reliability based design optimization problem of the vehicle side impact is as follows: 

1 2 3

4 5 7

Minimize 1.98 4.90 6.67 6.98
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where the mathematical forms of the constraints are presented in the Appendix (Eqs. A1-10). This 

problem has 7 random design variables and 4 random parameters. The details of these parameters 

are listed in Table 1. All the random quantities are normally distributed. 

To examine the efficiency and robustness of the proposed RBDO based the dBA method, three 

other methods have been implemented using the same methodology with different optimization 

algorithms, namely, the standard bat algorithm (BA), particle swarm optimization (PSO) and 

differential evolution (DE). The following settings are used in the four examples: 

• dBA: For best practice, we recommend the following settings r0 = 0.1, r∞ = 0.7, A0 = 0.9, 

A∞ = 0.6, min = 0 and max = 2.    

• BA: The standard bat algorithm was implemented as it is described in [19] with r0 = 0.1, 

A0 = 0.9,==0.9, min=0 and max=2. 

• PSO: A classical particle swarm optimization model has been considered [65,14]. The 

parameters setting are c1= 1.5, c2= 1.2 and the inertia coefficient w is a monotonically 

decreasing function from 0.9 to 0.4. 

• DE: The standard differential evolution as described in [13] with the “DE/rand/1/bin” 

strategy/variant is considered. The parameters setting are CR = rand[0.2, 0.9] and F = 

rand[0.4, 1]. 

To ensure a comparison, the applied setting of parameters in terms of population size and number 

of objective evaluations should be the same. Thus, the common parameter settings are set to be the 

same (population NB = 50, maximum number of iterations tmax = 250). As the dBA, BA, PSO and 

DE are stochastic algorithms. Each one was run 25 times for a meaningful statistical comparison. 

The results of the minimization process of Example 1 with different algorithms for two values of 

the reliability index  are presented in Table 2. The presented results are: the best, the worst and 

the median fitness minimum of 25 trials, in addition to the mean, standard deviation and the mean 

of the constraint violation. As it can be seen, none of the obtained solutions by different algorithms 

has violated the constraints. The results obtained by dBA are better than those obtained by the 

other algorithms in term of accuracy. The low standard deviation value of dBA results suggest that 

the algorithm converge to the same solution with a low error for each trial compared to the other 

algorithms, which means that dBA is more robust.  

Fig.4 represents the evolution of the means of 25 trials of the fitness minimum and constraint 

violation of the four algorithms. From the constraint violation curves, we can observe that their 

values are high at the beginning of the iteration process, this is caused by the level of comparison 

which allows an admissible constraint violation if < . As a result, the algorithms converge 

toward a solution lower than the actual optimum. As the iteration process proceeds, the admissible 

value of constraint violation decreases (due to the decrease in value) which can affect directly 

the fitness minimum forcing the algorithm to converge toward the real optimum with no constraint 

violation. At the end of the iteration process, we observe that none of the algorithms had converged 

to an infeasible solution, while the directional bat algorithm converge to a better solution compared 
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with the other algorithm for both cases ( = 1.28 and 3). In addition,  we can also observe that the 

gap between the four algorithms in the mean of the fitness minimum at the end of the iteration 

process increases as the reliability index increases ( = 3), especially BA and DE. This is due to 

the reduction in the reliable space form 6.59% for  = 1.28 to 0.27% for  = 3 (the percentage of 

the feasible space is obtained with Monte Carlo simulation with 105 sampling). In conclusion, dBA 

is more efficient and reliable, compared with the other algorithms.  

To analyze the effect of the bat population and the number of iterations on the convergence of the 

algorithm, dBA was run 25 times with different settings of NB and tmax. The reliability index was 

fixed to = 3 and the statistical results are presented in Table 3. As it can be seen, the increase in 

the population size and tmax leads to more accurate results with lower standard deviation values. 

For example, for N = 50 and tmax = 1000, the obtained standard deviation of 25 trails is S.D = 

4.3.10-4. That means that there is a high probability that a single run of dBA converges toward the 

optimum with a low error value. In addition, we observe that the best obtained fitness value with 

different settings is fmin = 28.552647. We believe that this is the best known minimum so far of 

Example 1 for  = 3.  

For N = 50, tmax = 1000 and   = 3, Fig. 5 presents the fitness value of each bat of the swarm at t = 

0 (initial position), t = 500 (50% of the iteration process) and t = 1000 (iteration end). As it is 

shown, in the initial stage (t = 0), bats are randomly distributed with different fitness values. As 

the iteration proceeds (t = 500), the gap between the fitness values of all the bats decreases and 

approach the real minimum with lower values (this is due to the level of comparison which 

tolerates an admissible constraint violation at 50% of the iteration process). At the end of the 

iteration process  tends to 0 and no constraint violation is admissible. The majority of the bats 

converge toward the real optimum, and those that did not are in the neighborhood in feasible space. 

To analyze the accuracy of the proposed method, Table 4 and 5 present a comparison with those 

in the literature in terms of the best, median and worst optimal solution of 25 trails with N = 50 

and tmax = 1000 for   = 1.28 and 3. As it can be seen, the three solutions (best, median and worst) 

are highly accurate and the dBA achieves better results than the classical methods. For the case of 

 = 3, the  results obtained by our proposed method are quasi-exact, compared with those of [9] 

obtained with the reliability design space method, which we believe that is the best known solution 

so far of this problem in the literature. 

4.2 Example 2: Mathematical problem 

Consider the following mathematical RBDO problem: 
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(35) 

This non-linear mathematical problem is a well-known example used to validate RBDO algorithms 

when variables are not normally distributed. We set NB = 10 and tmax = 100. In the first test, we 

consider that the variables are normally distributed and  = 3. Fig. 6 represents the behavior of the 

bat's swarm in the search space. It depicts the bats' positions at the initial stage (t = 0), at 50% of 

the iteration process (t = 50) and at the end (t = 100). As the iterations proceed, the bats tend to 

gather around the optimal solution which is far from the deterministic constraints (gi(x) = 0) with 

at least  in the normal space. Table 6 presents a comparison of the best, median and worst solution 

obtained with NB = 10 and tmax = 100 with the classical methods. As it can be seen, with a low 

population and number of iterations, the dBA converges to an admissible usable solution as much 

as the classical methods. 

For a potential maximum accuracy, we set NB = 50 and tmax = 1000. For 25 trials, all solutions 

converge to the same optimum with a standard deviation lower than 10-10. The results of one single 

run with the previous setting are presented in Table 7 for a different reliability indices and random 

distribution functions. Unlike the RIA, KKT and SAP which failed to converge when x1 and x2 

follow the Gumbel distribution, dBA converges to a feasible solution, and the results are quasi-

exact with the literature. 

4.3 Example 3: speed reducer design 

Consider the following speed reducer design problem: 
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This problem was first proposed by [66] in a deterministic form, then it was use in a probabilistic 

form in RBDO assessment. Many studies [67-69] that treated this example considered that all 

design variables are random with a fixed variance, and the constraints are all probabilistic. We 

prefer to use the formulation proposed by [70] because of the following reasons: 1) Two of the 

design variables are deterministic, while the rest are random; 2) The design variables variances are 

varying (change in the optimization loop and depends on the mean value); 3) Mixed types of 

constraints, ten are probabilistic and one deterministic. These three points increase the complexity 

and the nonlinearity of the problem. All the random design variables and parameters are supposed 

to be normally distributed. The characteristics of these parameters are listed in Table 8. The 

mathematical formulas of the constraints are in Appendix (Eqs. A11-21). For more explanative 

details of the problem, please see [66,70]. 

As in the previous examples, we set NB = 50 and tmax = 1000 for the maximum accuracy and we 

run the algorithm 25 times. The considered probability of failure in this example is Pf= 0.05 (≈ 

1.644). The results are presented in Table 9. The last row presents the mean and the standard 

deviation of the fitness function minimum of 25 runs. The low standard deviation value suggests 

that all the runs converged to the same solution. As it can be seen the difference between the worst, 

the median and the best solution is negligible. The comparison with the results of [70]  which are 

obtained by an enhanced SORA method shows that dBA converges to a better solution. 

Table 10 presents the rate of constraint violations, the reliability index and the probability of failure 

of each constraint computed with a different methods, namely, FORM [38,39], two variants of 

SORM (Breitung [40] and Tevedt [41]), and Monte Carlo Simulation (MCS) of the best solution. 

The Monte Carlo simulation results are obtained with 105 samples. As it can be seen from the 

FORM's results that two active constraints are recorded (g1 and g3) where Pf = 0.05. Using the 

SROM approach, only the first constraint is active. Monte Carlo simulation shows that the first 

constraint has less than 1% of violation. This is due to the fact that the single loop method has 

some similarity to the FORM in the linearization of the limit state function. We can say that the 

single loop approximation has the same level of accuracy as FORM. The constraint that has the 
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probability of failure is equal to 0, means that the real Pf is less than 10-10. From the analysis of 

probability of failure of the probabilistic constraints and the violation of the deterministic 

constraint, we believe that the best solution presented in Table 9 is the best known solution so far 

of this example in the form proposed by [70]. 

4.4 Example 4: welded beam  

In this example, we consider the cost optimization of a welded beam [67-69] under probabilistic 

constraints. This example has four design variables as it is show in Fig. 7, and five probabilistic 

constraints which are related to mechanical quantities, such as bending stress, shear stress, 

buckling and displacement. The RBDO problem is formulated as the following:   
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    (37) 

where the mathematical formulas of the probabilistic constraints are in Appendix (Eq. A.21-34), 

and the random parameter characteristics are listed in Table 11. 

In general, this problem has been solved with no consideration of uncertainties in the problem 

parameters [67-69], such as the load, Young modulus, admissible stress, etc. All the parameters 

were considered to be deterministic, and their values correspond to the means shown in Table 11. 

This assumption reduces the complexity of the problem. The optimization results are summarized 

in Table 12. The best, the median and the worst solution of 25 runs of dBA where NB = 50 and 

tmax = 1000, are compared with the optimal points obtained by different methods that exist in the 

literature [67-69]. As it can be seen, the solutions obtained by dBA are almost equal to those of 

the previous references.  

Usually, from a practical point of view, the customization of the beam, especially the thickness 

(x4), is very expensive. In general, the design variables are selected from a discrete set where their 

values are obtained from commercially available products [71,51]. Therefore, to test our proposed 

method in case of discrete design variables, we assume that the design variables of the welded 

beam problem are discrete and defined as follows: 
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For x4, we selected the set of discrete values which represents the thickness of commercially 

available steel plates. While for x1, x2 and x3, the set of the discrete values are selected according 

the upper and lower bounds with a step of 1mm, because, in practice it is easier to measure 

millimeters and it is not required to use sophisticated high precision measurement tools. In 

addition, we assume that the physical parameters (p = [p1,…,p7]) of the problem are random, and 

their distribution functions and standard deviations presented in Table 11, are selected according 

to a probabilistic model code proposed by the Joint Committee of Structural Safety (JCSS) [72]. 

Table 13 presents a comparison between the best, the median and the worst optimal solutions of 

25 trials, obtained with different algorithms (dBA, BA, PS and DE) of the welded beam problem 

with discrete design variables and random parameters. The population was set to 50 and the 

maximum number of iterations was fixed to 1000. The parameters setting of the different 

algorithms are the same as those used in Example 1. The comparison between the best solutions 

shows that dBA converges to a better solution, while the analysis of the mean and the standard 

deviation reveals that dBA is more robust than the other algorithms. To check the feasibility of the 

best solution obtained with dBA, Table 14 presents the estimated probability of failure of the five 

constraints with different approximation methods. As it can be seen, none of the constraints have 

been violated, and only the first constraint (g1) is active. For g4, the value of the reliability index 

is so high that the approximated probability of failure tends to 0; hence, the symbol ∞ is used. 

5 Conclusions 

In this study, a new single loop-reliability based design optimization method using directional bat 

algorithm has been presented. The new directional bat algorithm has been proposed based on the 

standard bat algorithm and the directional echolocation behavior. Four modifications have been 

embedded into the standard bat algorithm to increase its exploration and exploitation capabilities. 

For the validation of the dBA to perform reliability based design optimization, the reliable design 

space method is used to convert the RBDO problem to an equivalent, deterministic constrained 

optimization problem, where the constraints have been handled by the constraint technique.  

The new RBDO method based on dBA has been tested on several engineering problems with 

different properties and complexity. The results are quasi-exact with respect to classical methods. 

It has been shown that the proposed method can handle mixed combinations of complex 

probabilistic and deterministic constraints, both continuous and discrete variables, a set of mixed 

deterministic and random design variables with varying and/or constant standard deviation, and 

different random distributions. Therefore, unlike the classical methods which can only address 

certain kind of RBDO problems, our proposed method based on dBA is more robust and flexible.  
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For further research work, it can be fruitful to combine this method with finite elements codes via 

the response surface method or artificial neural networks so as to reduce the computational costs 

of objective evaluations and thus allows the approach to deal with large-scale optimization 

problems. In addition, it is highly needed to test the proposed method against some higher 

dimensional problems such as truss structures so that truly large-scale problems of practically 

importance can be solved. In addition, more detailed parametric studies may also provide further 

insight into these algorithms and potentially provides ways to develop more effective tools for 

solving more challenging optimization problems. 

Appendix 

Mathematical forms of the constraints of the vehicle side impact problem (Example 1): 

2 4 2 3 3 2

6 4

1.16 0.3717 0.00931 0.484

0.01343

ALF x x x p x p

x p

   


      

(A.1) 

2 1 1 3 346.36 9.9 12.9 0.1107lowD x x p x p   
       

(A.2) 

3 3 1 2 2 1

5 3 7 1 1 2

33.86 2.95 0.1792 5.057 11.0

0.0215 9.98 22.0

middleD x p x x x p

x p x p p p

    

  
     

(A.3) 

3 1 2 5 3 6 2

7 1 2 3

28.98 3.818 4.2 0.0207 6.63
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 
     

(A.4) 
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7 2 2
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1 2 2 1 3 3

4 3 6 3

10.58 0.674 1.95 0.02054

0.0198 0.028
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    

 
     

(A.9) 

3 7 5 6 2 3

2

2 4 4
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0.0556 0.000786
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Constraints of the speed reducer problem (Example 3): 

 2
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Constraints of the welded beam problem (Example 4): 
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Algorithm 1 

RBDO with constraint and directional bat algorithm. 

Define the objective function  

Define target reliability 

Define r0, r∞, A0, A∞, min and max.    

Initialize the bat population Li ≤ yi ≤ Ui (i=1,...,NB)  

Evaluate fitness fi(yi) and constraint violation (yi) 

Select th bat and define 0 

Initialize pulse rates ri loudness Ai and wi 

While (t ≤ tmax) 

 For i = 1,..., NB 

  Generate frequencies Eq. (22) 

  Select a random bat (k≠ i) 

  Update locations/solutions Eq. (21) 

  If(rand > ri) 

   Generate a local solution around the selected solution Eq. (23) 

   Update wi Eq. (24) 

  End If 

  For j = 1,..., N 

   If 
1

,

t

i jy 
is discrete, round it to the closest value, End If 

  EndFor 

  Evaluate the fitness and constraint violation  

  of the new generated solution,  f( 1t

iy  ) and ( 1t

iy  ) 

  If rand < Ai   &  ( f( 1t

iy  ), ( 1t

iy  )) < ( f(
t

iy ), ( t

iy )) 

   Accept the new solutions 

   Increase ri Eq.(27)  

   Reduce Ai Eq. (28)  

  End If 

  if ( f( 1t

iy  ), ( 1t

iy  )) < ( f(
*y ), ( *y )) 

   Update the best solution y* 

  End If 

 End For 

End while 

Output results for post-processing 

rand  [0, 1] 
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Fig. 1. RBDO approaches. 

 

 

 

Fig. 2.The single loop approach based on reliable design space method. 
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Fig. 3. The directional echolocation of bats. 
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Fig. 4. Average fitness values and constraint violation obtained at each iteration for 25 trials 

using dBA, BA, PSO and DE. 
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Fig. 5. Bat fitness values at t = 0, 500, and 1000 in the minimization process of Example 1. 
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Fig. 6. Bat positions at t = 0, 50 and 100 in the minimization process of Example 2. 

 

Fig. 7. The welded beam structure. 
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Table1 

Random design variables and random parameters of Example 1. 

Random design variables xi Li Ui S.D. 

Thickness of B-Pillar inner (mm) x1 0.5 1.5 0.03 

Thickness of B-Pillar reinforcement (mm) x2 0.45 1.35 0.03 

Thickness of floor side inner (mm) x3 0.5 1.5 0.03 

Thickness of cross member #1 and #2 (mm) x4 0.5 1.5 0.03 

Thickness of door beam (mm) x5 0.875 2.625 0.05 

Thickness of door belt line reinforcement (mm) x6 0.4 1.2 0.03 

Thickness of roof rail (mm) x7 0.4 1.2 0.03 

Random parameters pi Mean S.D. 

Material property of B-Pillar inner p1 0.345 0.006 

Material property of floor side inner p2 0.192 0.006 

Barrier height (mm) p3 0.0 10.0 

Barrier hitting position (mm) p4 0.0 10.0 

 

 

Table 2 

Statistical comparison between dBA, BA, PSO and DE for minimization of Example 1. 

 fmin dBA BA PSO DE 

=1.28 

Best 24.59968 24.78268 24.59968 24.61810 

Median 24.59975 24.90586 24.59985 24.67582 

Worst 24.60003 25.51112 24.95415 24.84464 

Mean 24.59977 24.96760 24.61679 24.71182 

S.D. 0.000089 0.154862 0.069798 0.083855 

Mean() 0 0 0 0 

=3 

Best 28.55267 29.01287 28.55281 28.71363 

Median 28.55766 29.79713 28.57274 29.13727 

Worst 28.57933 31.37449 28.85582 31.98255 

Mean 28.55893 29.90215 28.62164 29.24571 

S.D. 0.006315 0.708308 0.089498 0.615516 

Mean() 0 0 0 0 
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Table3 

Optimization results of example 1 with different values bat population and tmax. 

tmax 
 Bat population (NB) 

 25 50 75 100 

250 

Best 28.5526712 28.5529162 28.5527059 28.5527574 

Median 28.5576631 28.5560087 28.5541877 28.5538673 

Worst 28.5793344 28.5792427 28.5634212 28.5584198 

Mean 28.5589327 28.5571123 28.5548233 28.5540514 

S.D. 0.00631511 0.00551702 0.00233401 0.00135970 

500 

Best 28.5526704 28.5526505 28.5526510 28.5526498 

Median 28.5542206 28.5531227 28.5528818 28.5527999 

Worst 28.5736677 28.5562962 28.5553020 28.5555970 

Mean 28.5555682 28.5534176 28.5530909 28.5529676 

S.D. 0.00422049 0.00088993 0.00060732 0.00057967 

750 

Best 28.5526498 28.5526497 28.5526514 28.5526499 

Median 28.5529929 28.5526902 28.5526819 28.5526587 

Worst 28.5756670 28.5537189 28.5530968 28.5527439 

Mean 28.5545778 28.5528753 28.5527251 28.5526725 

S.D. 0.00462175 0.00033820 0.00009822 0.00002593 

1000 

Best 28.5526497 28.5526497 28.5526497 28.5526497 

Median 28.5527924 28.5526702 28.5526571 28.5526530 

Worst 28.5570547 28.5547097 28.5528296 28.5527264 

Mean 28.5531349 28.5528132 28.5526803 28.5526578 

S.D. 0.00091170 0.00043017 0.00004900 0.00001551 
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Table4 

Comparison between the best, median and worst solutions of 25 trials obtained with dBA and 

classical method for  = 1.28 (Example1). 

 Proposed method, RBDO-dBA 
RDS* 

Decoupled+ 

FORM# 

Decoupled+ 

SORM# Best Median Worst 

x1 0.5 0.5 0.5000001 0.5 0.5 0.5 

x2 1.3089077 1.3089077 1.3089077 1.3092 1.3091 1.3089 

x3 0.5 0.5 0.5 0.5 0.5 0.5 

x4 1.3216346 1.3216346 1.3216346 1.3223 1.3229 1.4012 

x5 0.875 0.875 0.875 0.895 0.875 0.875 

x6 1.2 1.2 1.2 1.2 1.2 1.2 

x7 0.4 0.4 0.4 0.4 0.4 0.4 

fmin 24.5996814 24.5996814 24.5996816 24.6043 24.6060 24.9190 

(x) 0 0 0 -- -- -- 
* Results are from [9];  # Results are from [64]. 

 

Table 5 

Comparison between the best, median and worst solutions of 25 trials obtained by dBA and 

classical method for  = 3 (Example 1). 

 
Proposed method, RBDO-dBA 

DLP/PMA§ SLA§ RDS* 
Decoupled+ 

FORM# Best Median Worst 

x1 0.8008490 0.8008517 0.8009404 0.9436 0.81 0.8008 0.8846 

x2 1.35 1.35 1.3499648 1.35 1.35 1.35 1.35 

x3 0.7133922 0.7133927 0.7134107 0.9127 0.7277 0.7134 0.8254 

x4 1.5 1.5 1.5 0.9913 1.5 1.5 1.5 

x5 0.875 0.875 0.875 0.9026 0.875 0.875 0.921 

x6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

x7 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

fmin 28.5526497 28.5526675 28.5529924 28.6528 28.6977 28.5526 29.827 

(x) 0 0 0 -- -- -- -- 
* Results are from [9];  # Results are from [64]; § Results are from [8] 
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Table 6 

Comparison between the best, median and worst solutions of 25 trials obtained by dBA and 

classical methods of Example 2. 

 
Proposed method,RBDO-dBA 

PBDA† DLP/PMA§ SORA# SLA§ RDS* 
Best Median Worst 

x1 3.440555 3.438235 3.411155 3.4407 3.4391 3.4409 3.4391 3.4406 

x2 3.280018 3.285202 3.348766 3.2895 3.2866 3.2909 3.2864 3.2800 

fmin 6.720573 6.723437 6.759921 6.7266 6.7257 6.7318 6.7255 6.7205 
* Results are from [9];  ; § Results are from [8]; † Results are from [73]; # Results are from [6] 

 

 

Table 7 

Optimization results for different reliability index and variable’s PDF of Example 2. 

PDF 
Proposed method,RBDO-dBA 

RIA* PMA* KKT* SLA* SORA* SAP* 
x1 x2 fmin 

x1: Normal 

x2: Normal  

2 3.2953877 2.8959867 6.1913744 6.1923 6.1923 6.1923 6.1920 6.1923 6.1926 

3 3.4405576 3.2799744 6.7205320 6.7257 6.7251 8.9382 6.7756 6.7251 6.7261 

4 3.6115594 3.6417280 7.2532874 7.2683 7.2683 7.2683 7.2680 7.2683 7.2685 

x1: Gumbel 

x2: Gumbel 

2 3.2579776 2.7366447 5.9946222 6.0101 6.0101 nc 6.0047 6.0101 6.0103 

3 3.3136005 2.9440893 6.2576898 nc 6.2904 nc 6.2776 6.2904 nc 

4 3.3695310 3.1043223 6.4738533 nc 6.4340 nc 6.3770 6.4341 nc 

x1: LogNormal 

x2: Normal 3 3.3753203 3.2524384 6.6277587 

DLP/PMA# SLA# 

6.8903 6.67 
* Rseults are from [47]; Results are from [8]; nc: not converged. 

 

Table 8 

Design variables and random parameters of Example 3. 

Variable Ldi Udi Variable Mean S.D. Variable Mean S.D. 

d1 0.7 0.8 p1 27.0 2.7 p9 1.58e+08 1.58e+07 

d2 17 28 p2 397.5 39.8 p10 850 34 

Variable Lxi Uxi C.O.V. p3 1.93 0.0965 p11 5.0 0.25 

x1 2.6 4.2 0.05 p4 1.93 0.0965 p12 12.0 0.6 

x2 7.0 8.3 0.05 p5 1100.0 110.0 p13 1.5 0.75 

x3 7.0 9.3 0.05 p6 745 74.5 p14 1.1 0.11 

x4 2.9 3.95 0.02 p7 1.69e+07 1.69e+06 p15 1.9 0.19 

x5 5.0 6.0 0.02 p8 0.1 0.005    
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Table 9 

Optimization results obtained with dBA of Example 3. 

 
Proposed method, RBDO-dBA 

SORA* 
Best Median Worst 

d1 0.7 0.7 0.7 0.7 

d2 17 17 17 17 

x1 3.860190 3.860190 3.860190 3.8619 

x2 7 7 7 7 

x3 7 7 7 7 

x4 2.932511 2.932511 2.932513 2.9326 

x5 5 5 5 5 

fmin 2856.547 2856.547 2856.547 2857.27 

Mean(fmin) 2856.547 S.D.( fmin) 9.62e-05 
* Results are from [70] 

 

 

 

Table 10 

Constraint value, reliability index and probability of failure of the probabilistic constraints for the 

best solution obtained by dBA of Example 3.  

Constraint  

 

Constraint  

value  

FORM SORM 
Pf-MCS 

 Pf Breitung Pf-Breitung Tvedt Pf-Tvedt 

g1 0.1603 1.644 0.05000 1.644 0.05000 1.644 0.05000 0.05040 

g2 0.2728 3.089 0.00100 3.089 0.00100 3.089 0.00100 0.00092 

g3 0.2478 1.644 0.05000 1.651 0.04938 1.653 0.04920 0.04850 

g4 0.9110 15.56 0.00000 15.57 0.00000 15.75 0.00000 0.00000 

g5 0.2548 2.058 0.01978 2.043 0.02051 2.041 0.02060 0.02605 

g6 0.4091 5.127 1.47e-07 5.116 1.56e-07 5.116 1.56E-07 0.00000 

g7 0.5467 9.957 0.00000 9.957 0.00000 9.957 0.00000 0.00000 

g8 0.7748 15.12 0.00000 15.12 0.00000 15.12 0.00000 0.00000 

g9 0.5501 3.310 0.00047 3.311 0.00046 3.311 0.00046 0.00033 

g10 0.4714 7.145 0.00000 7.146 0.00000 7.146 0.00000 0.00000 

g11 0.8513 -- -- -- -- -- -- -- 
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Table 11 

Characteristics of the random parameters of Example 4. 

Parameters   Distribution C.O.V 

p1 Load 26680.00 Log-Normal 0.10 2668.0 

p2 Beam length 335.56 Normal 0.05 16.778 

p3 Young modulus 206850.00 Log-Normal 0.03 6205.5 

p4 Shear modulus 82740.00 Log-Normal 0.03 2482.2 

p5 Admissible deflection 6.35 Normal 0.05 0.3175 

p6 Admissible shear stress 93.77 Log-Normal 0.07 6.5639 

p7 Admissible normal stress 206.85 Log-Normal 0.07 14.4795 

c1 Cost of the weld material 6.74E-05 Deterministic  -- -- 

c2 Cost of the bar stock 2.94E-06 Deterministic  -- -- 

 

 

 

Table 12 

Optimization results of Example 4 with continuous variables and deterministic parameters. 

Method f x1 x2 x3 x4 Reference 

RIA 2.5909 5.7328 200.749 210.597 6.2391 

[68] 
PMA 2.5886 5.7298 200.467 210.606 6.2384 

Moment 2.5895 5.7299 200.599 210.599 6.2389 

Moment + Kriging 2.5895 5.7299 200.602 210.598 6.2390 

RIA 2.59 5.733 200.7 210.6 6.239 

[67] 
PMA 2.72 5.750 219.8 210.7 6.260 

RIA+Envelope 3.09 7.006 187.9 182.5 8.485 

PMA+ Envelope 3.15 5.183 198.5 234.2 7.313 

RIA 2.591 5.730 200.91 210.60 6.239 

[69] 

PMA 2.592 5.728 200.97 210.71 6.238 

SLSV 2.592 5.728 200.99 210.72 6.238 

SORA 2.592 5.728 200.96 210.73 6.238 

ESORA 2.593 5.731 200.93 210.64 6.242 

dBA-Best 2.591435 5.730402 200.8925 210.5900 6.239425 
Present 

study 
dBA-Mean 2.591805 5.728224 200.7882 210.7790 6.237730 

dBA-Worst 2.591988 5.728566 201.0429 210.5984 6.238961 
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Table 13 

Optimization results of Example 4 with discrete variables and random parameters. 

Algorithm x1 x2 x3 x4 f (x) (x) Mean(f) S.D.(f) 

dBA 

Best 6 233 232 7 3.27626 0 

3.30780 0.02240 Median 6 230 235 7 3.28954 0 

Worst 6 234 238 7 3.35368 0 

BA 

Best 9 250 100 22 5.14718 0.69688 

7.60905 1.35765 Median 11 100 254 22 7.96130 0 

Worst 21 100 252 22 10.0623 0 

PSO 

Best 6 233 232 7 3.27626 0 

3.87716 0.97042 Median 6 225 239 7 3.29934 0 

Worst 17 104 132 22 5.77374 0 

DE 

Best 6 236 231 7 3.28609 0 

3.40391 0.09913 Median 6 211 254 7 3.36508 0 

Worst 6 248 254 7 3.64802 0 

 

 

Table 14 

Constraint value, reliability index and probability of failure of the probabilistic constraints for the 

best solution obtained by dBA of Example 4 with discrete variables and random parameters.  

Constraint  

 

Constraint  

value  

FORM SORM 
Pf-MCS 

 Pf Breitung Pf-Breitung Tvedt Pf-Tvedt 

g1 0.3118 3.0031 0.00134 3.0012 0.00134 3.0002 0.00135 0.00113 

g2 0.3107 3.0754 0.00105 3.0754 0.00105 3.0754 0.00105 0.00099 

g3 0.1429 5.8937 1.89E-09 5.8937 1.89E-09 5.8937 1.89E-09 0 

g4 0.9649 ∞ 0 ∞ 0 ∞ 0 0 

g5 0.6843 5.1341 1.42E-07 5.1313 1.44E-07 5.1305 1.44E-07 0 

 


