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Abstract System identification and data driven modeling techniques have seen ubiquitous applications in past

decades. In particular, parametric modelling methodologies such as linear and nonlinear autoregressive with ex-

ogenous inputs models (ARX and NARX) and other similar and related model types have been preferably applied

to handle diverse data driven modeling problems due to their easy-to-compute linear-in-the-parameters structure,

which allows the resultant models to be easily interpreted. In recent years, several variations of the NARX method-

ology have been proposed that improve the performance of the original algorithm. Nevertheless, in most cases,

NARX models are applied to regression problems where all output variables involve continuous or discrete-time

sequences sampled from a continuous process, and little attention has been paid to classification problems where

the output signal is a binary sequence. Therefore, we developed a novel classification algorithm that combines

the NARX methodology with logistic regression and the proposed method is referred to as logistic-NARX model.

Such a combination is advantageous since the NARX methodology helps to deal with the multicollinearity prob-

lem while the logistic regression produces a model that predicts categorical outcomes. Furthermore, the NARX

approach allows for the inclusion of lagged terms and interactions between them in a straight forward manner

resulting in interpretable models where users can identify which input variables play an important role individu-

ally and/or interactively in the classification process, something that is not achievable using other classification

techniques like random forests, support vector machines and k-nearest neighbors. The efficiency of the proposed

method is tested with five case studies.

Keywords Nonlinear system identification · Dynamic systems · Binary classification · NARX models · Logistic

regression

1 Introduction

System identification focuses on finding models from data and use them to understand or analyze the properties

or behaviours of the underlying systems [1].

Linear models have been widely used in many applications [2]. However, its applicability is limited since most

of the real world problems may not be well presented using linear models [3]. Research on nonlinear system

identification has been carried out and advanced since the 1980s [1]. One of the most popular methodologies is the

Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX) methodology, which has proved

to be suitable for a wide class of nonlinear systems [1, 4–8]. The NARMAX approach can detect an appropriate

model structure and select the most important model terms from a dictionary consisting of a great number of

candidate model terms.

In recent years, several variants have been proposed that improve the performance of the original algorithm.

Such variations include the use of more complex and flexible predefined functions [6, 9–13], novel dependency
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metrics [5, 8, 14–21] or different search mechanisms [22–26]. Nevertheless, the different versions of the NARX

methodology have been designed under the assumption that the variables involved are continuous.

Many real-life systems involve a mixed combination of continuous and discrete variables. In this work, we focus

on systems with binary responses that depend on continuous time predictors. Binary responses are commonly

studied in many situations such as the presence or absence of a disease, granting a loan, or detecting the failure

of a process, system or product [27,28]. However, the use of traditional regression techniques to deal with systems

with a dichotomous response variable may not be appropriate given that they are sensitive to outliers and the

distribution of the classes [27].

In this work, we propose a novel approach that combines logistic regression with the NARX methodology. The

main motivation comes from the fact that logistic regression models are more suitable for binary classification

problems given that they provide probabilities of belonging or not to a particular class. One important consid-

eration when constructing a logistic regression model is multicollinearity. In general, it is important to always

check for high inter-correlations among the predictor variables. In the ideal scenario, the predictor variables will

have a strong relationship to the dependent variable but should not be strongly related to each other [29]. This

problem is adequately solved using the NARX approach, since the model terms selected are orthogonal (uncorre-

lated) to each other. Furthermore, the NARX approach allows for the inclusion of lagged terms and interactions

between them in a straight forward manner resulting in interpretable models, something that is not achievable

using other popular classification techniques like random forests [30], support vector machines [31] and k-nearest

neighbors [32].

This work is organised as follows. Section 2 includes a brief summary of nonlinear system identification and

a discussion of the Orthogonal Forward Regression algorithm. In section 3 our new methodology is described.

Section 4 presents three numerical case studies that show the effectiveness of our new method. In section 5 the

logistic-NARX model is applied to two real applications. Section 6 discusses advantages and disadvantages of the

technique. The work is concluded in section 7.

2 Nonlinear System Identification

System identification, as a data based modelling approach, aims to find a model from available data that can

represent as close as possible the system input and output relationship [1,2]. While conventionally linear models

have been applied in many applications, its applicability is limited as the linearity assumption may be violated

for many nonlinear system modelling problems [3]. Nonlinear system identification techniques have been ad-

vanced since the 1980s [1]. In particular, the Nonlinear AutoRegressive Moving Average with eXogenous inputs

(NARMAX) methodology has proved to be a powerful tool for nonlinear system identification [1,12,33,34].

In general, system identification consists of several steps, including data collection and process-

ing, selection of mathematical representation, model structure selection, parameter estimation, and

model validation [2]. Data processing is an important part given that data preparation plays a key

role when training a model. Generally, this consists of dealing with missing values and outliers, data

normalization and transformation, dimensionality reduction, and performing feature engineering.

In [32, 35], these issues are widely discussed. Regarding the selection of mathematical represen-

tation, this work focuses on NARX models. Model structure detection has been tackled using different

methods like clustering [36, 37], the Least Absolute Shrinkage and Selection Operator (LASSO) [38, 39], elastic

nets [40,41], genetic programming [42,43], the Orthogonal Forward Regression (OFR) using the Error Reduction

Ratio (ERR) approach [33], and the bagging methodology [21]. Parameter estimation has been performed using

the traditional least squares method, gradient descent and the Metropolis-Hastings algorithm [44,45]. Finally, for

model validation, a set of statistical correlation tests have been developed in [46] and can be used to test and

verify the validity of the identified nonlinear input-output models. In summary, system identification is a process

that builds a parsimonious model that satisfies a set of accuracy and validity tests [10].

2.1 Orthogonal Forward Regression Algorithm

The NARX model is a nonlinear recursive difference equation with the following general form:

y (k) =f

(

y (k − 1) , . . . , y (k − ny) ,

u (k − 1) , . . . , u (k − nu)
)

+ e (k) (1)

where f (·) represents an unknown nonlinear mapping, y (k), u (k) and e (k) are the output, input and pre-

diction error sequences with k = 1, 2, . . . , N , and the maximum lags for the output and input sequences are ny
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and nu [8]. Most approaches assume that the function f (·) can be approximated by a linear combination of a

predefined set of functions φm

(

ϕ (k)
)

, therefore equation (1) can be expressed in a linear-in-the-parameters form

y (k) =
M
∑

m=1

θmφm

(

ϕ (k)
)

+ e (k) (2)

where θm are the coefficients to be estimated, φm

(

ϕ (k)
)

are the predefined functions that depend on the regressor

vector ϕ (k) =
[

y (k − 1) , . . . , y (k − ny) , u (k − 1) , . . . , u (k − nu)
]T

of past outputs and inputs, and M is the

number of functions in the set.

The most popular algorithm for NARX modelling is the Orthogonal Forward Regression (OFR) algorithm.

As a greedy algorithm [4], it adopts a recursive partitioning procedure [47] to fit a parsimonious NARX model

which can be represented as a generalized dynamic linear regression problem [8, 48]. One of the most commonly

used NARX models is the polynomial NARX representation, where equation (2) can be explicitly written as

(3)

y (k) = θ0 +
n
∑

i1=1

θi1xi1 (k) +
n
∑

i1=1

n
∑

i2=i1

θi1i2xi1 (k) xi2 (k) + · · ·

+
n
∑

i1=1

· · ·

n
∑

iℓ=iℓ−1

θi1i2...iℓxi1 (k) xi2 (k) ...xiℓ (k) + e (k)

where

(4)xm (k) =

{

y (k −m) 1 ≤ m ≤ ny

u (k −m+ ny) ny + 1 ≤ m ≤ n = ny + nu

and ℓ is the nonlinear degree of the model. A NARX model of order ℓ means that the order of each term in the

model is not higher than ℓ. The total number of potential terms in a polynomial NARX model is given by

M =

(

n+ ℓ

ℓ

)

=
(n+ ℓ) !

n! ·ℓ!
(5)

The OFR algorithm implements a stepwise regression to select the most relevant regressors, one at a time; it

uses the error reduction ratio (ERR) as an index to measure the significance of each candidate model term [1].

The OFR algorithm can be used to transform a number of selected model terms to a set of orthogonal vectors, for

which ERR can be evaluated by calculating the non-centralised squared correlation coefficient C (x,y) between

two associated vectors x and y [5]

C (x,y) =

(

x
T
y

)2

(xTx) (yTy)
(6)

In recent years, several variants of the algorithm have been proposed that modify the predefined functions,

the dependency metric or the search mechanism in order to enhance its performance. In particular, an important

issue is that the non-centralised squared correlation only detects linear dependencies. To solve this, new metrics

have been implemented that are able to capture nonlinear dependencies [5, 8]. Some of these new metrics are

entropy, mutual information [5, 8, 14, 15], simulation error [20] and distance correlation [21]. Furthermore, more

complex predefined functions have been used recently like wavelets [9–12], radial basis functions [6,13], and ridge

basis functions [49], together with improved search mechanism like common model structure selection [22–24],

iterative search [25], and incorporation of weak derivatives information [26].

Most of these variants are able to obtain good one-step ahead (OSA) predictions,

ŷ (k) =f

(

y (k − 1) , . . . , y (k − ny) ,

u (k − 1) , . . . , u (k − nu)
)

(7)

However, because the NARX model (1) depends on past outputs, a more reliable way to check the validity

of the model is through the model predicted output (MPO) [50], which uses past predicted outputs to estimate

future ones,

ŷ (k) =f

(

ŷ (k − 1) , . . . , ŷ (k − ny) ,

u (k − 1) , . . . , u (k − nu)
)

(8)
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The MPO can provide details about the stability and predictability range of the model. In [51],

the authors developed a lower bound error for the MPO of polynomial NARMAX models, which

can be used to detect when a model’s simulation is not reliable and needs to be rejected.

In the literature, some authors have adapted the original OFR algorithm to optimize directly the MPO in order

to obtain a better long-term prediction, however these modified versions tend to be computationally expensive

during the feature selection step given that equation (8) needs to be evaluated N times (where N is the

size of the training set) before computing a single value of the dependency metric, i.e. ERR, for the

selection of each single model term [1,20]. Furthermore, these versions are not easily extendable to

large model searches which are often necessary when dealing with real systems or MIMO system

identification [1].

3 Logistic-NARX Modelling Approach

Classification problems ubiquitously exist in all areas of science and engineering, where the aim is to identify a

model that is able to classify observations or measurements into different categories or classes. Many methods and

algorithms are available which include logistic regression [27,28], random forest [30], support vector machines [31]

and k-nearest neighbors [32]. The latter three are very popular but their major drawback is that they remain

as black boxes for which the interpretation of the models may not be straightforward. Although it is possible to

obtain an importance index for the predictors in the model, this does not help in understanding the possible inner

dynamics of a system. On the other hand, logistic regression is an approach that produces a model to predict

categorical outcomes. The predicted values are probabilities and are therefore restricted to values between 0 and

1 [29]. Logistic regression uses the logistic function defined as,

f (x) =
1

1 + exp (−x)
(9)

where x has an unlimited range, i.e. x ∈ R, and f (x) is restricted to range from 0 to 1 [28]. One issue with

logistic regression models is that they require the model terms and the interactions between them to be specified

beforehand. This is problematic since it is important to always check for high inter-correlations among the predictor

variables. In the ideal scenario, the predictor variables will be strongly related to the dependent variable but not

strongly related to each other in order to avoid the multicollinearity problem [29].

The new approach proposed in this paper combines the logistic function with the NARX representation in

order to obtain a probability model

p (k) =
1

1 + exp
[

−
∑M

m=1 θmφm

(

ϕ (k)
)] (10)

For convenience, let us assume that the output sequence y (k) can be either y (k) = 1 or y (k) = 0 for

k = 1, 2, . . . , N , where y (k) = 1 denotes the occurrence of the event of interest. It is important to mention that

in contrast with the original OFR algorithm presented in [52], that requires a threshold for the total of ERR,

the user needs to specify the maximum number of terms nmax that the algorithm will look for [7]. Furthermore,

traditionally the OFR algorithm relies on the ERR index (6) to determine the significance of a model term with

respect to the output sequence. However, this metric is no longer useful given that the output is a binary sequence

and the information from the class denoted as 0 would be lost. To overcome this issue, the biserial correlation

coefficient is used, which measures the strength of the association between a continuous variable and a dichotomous

variable [29]. The biserial correlation coefficient is defined as

r (x,y) =
X1 −X0

σX

√

n1n0

N2
(11)

where X0 is the mean value on the continuous variable X for all the observations that belong to class 0, X1 is the

mean value of variable X for all the observations that belong to class 1, σX is the standard deviation of variable

X, n0 is the number of observations that belong to class 0, n1 is the number of observations that belong to class

1, and N is the total number of data points.

The pseudo-code of the proposed algorithm is described in Algorithm 1, where regressors (model terms) are

selected using an OFR algorithm, which has been widely discussed in the literature [1]. In Algorithm 1, lines from 1

to 4 aim to find candidate model terms that make most significant contributions in explaining the variation of the

system output measured by the biserial correlation coefficient. Once found, lines 5-8 create a simple logistic model

using the maximum likelihood estimation method, and assess its performance using a k-fold cross-validation

accuracy. New candidate terms are orthogonalised with respect to the model terms already chosen using the

modified Gram-Schmidt method, and evaluated using the biserial correlation coefficient. This process is repeated

in lines 10-22 until it reaches a pre-specified maximum number nmax of model terms to be included in the final
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Algorithm 1 Orthogonal Forward Regression for Logistic-NARX models

Input: Dictionary of regressor vectors D = {φ1,φ2, . . . ,φM}, output signal y, maximum number of terms nmax

Output: Logistic NARX model with significant terms selected from D and corresponding parameters θ estimated

1: for all φi in D do

2: Define wi = φi/∥φi∥2

3: Compute r(i) (wi,y)

4: Find j = max
1≤i≤M

{

r(i) (wi,y)
}

5: Define q1 = wj

6: Define p1 = φj

7: Train a logistic regression model using y and p1

8: Compute the k-fold cross validation accuracy and store it
9: Remove φj from D

10: for s = 2 to nmax do

11: for all φi in D do

12: Orthonormalize φi with respect to [q1, . . . ,qs−1] to obtain wi

13: if wT
i wi < 10−10 then

14: Remove φj from D
15: Go to next iteration
16: Compute r(i) (wi,y)

17: Find j = max
1≤i≤M−s−1

{

r(i) (wi,y)
}

18: Define qs = wj

19: Define ps = φj

20: Train a logistic regression model using y and p1, . . . ,ps

21: Compute the k-fold cross validation accuracy and store it
22: Remove φj from D
23: Using the stored k-fold cross validation accuracies, select the most parsimonious model with n ≤ nmax terms with the

best accuracy performance

24: Return matrix of terms selected P =
[

p1 p2 . . . pn

]

and vector of coefficients θ =
[

θ1 θ2 . . . θn
]T

model, where nmax ≤ M . Lines 13-15 are used to calculate the squared norm-2 of each candidate model term,

based on which it decides if a candidate term should be excluded to avoid any potential ill-conditional issue. When

a new model term is included, a logistic regression model is trained and the k-fold cross-validation accuracy is

computed in lines 20-21. When the iteration reaches the specified number nmax, a parsimonious model consisting

of a total of up to nmax model terms is then selected in line 23 based on the best cross-validation accuracy

obtained. Finally, the algorithm returns the parameters θ together with the selected model terms. Given that

the optimal number of model terms is not known in advance, the parameter nmax can be selected

heuristically, by running Algorithm 1 several times, and checking the resulted cross-validation accuracy curve. In

case the best model contains exactly nmax model terms, this means that the appropriate number

of model terms may be beyond this value; therefore it could be increased to find a better model.

The proposed algorithm combines the transparency and efficiency of the NARX models with logistic regression

to deal with classification problems. This combination is advantageous since the NARX methodology helps to

deal with the multicollinearity problem because of the orthogonalisation process that takes places. Furthermore,

the NARX approach allows for the inclusion of lagged terms and interactions between them in a straight forward

manner resulting in interpretable models, something that is not achievable using random forests, support vector

machines and k-nearest neighbors.

The time complexity of the logistic-NARX method is determined by three main parts: the

assessment of feature relevancy to the class label, the computation of the logistic regression model,

and the orthogonalisation operations. Feature relevancy assessment has a linear time complexity

of O (NM), where N is the number of observations and M is the number of candidate features. The

computation of the regression model has a worst-case time complexity of O
(

M3 +NM
)

[53], while

the orthogonalisation procedure has a complexity of O (N (M − 1)) [54]. As a result, the overall time

complexity takes the order of O
(

M3 +NM
)

.

4 Numerical Simulation Case Studies

In this section, three simulation examples are provided to illustrate the effectiveness of the new logistic-NARX

methodology. Data are generated from three nonlinear models driven by lagged input variables, along with some

noise. In all cases, we compare the performance of our algorithm with traditional classification techniques. For

simplicity, we focus on polynomial NARX models described in equation (3), although our algorithm can be applied

to other NARX models using wavelets [10,12] or radial basis functions [6,13].
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Fig. 1 Data points obtained from the input-output system given in equation (12)
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Fig. 2 Cross-validation accuracy plot obtained for (12) using Algorithm 1

4.1 Example 1

Assume we have the following input-output system:

y (k) =

⎧

⎪

⎨

⎪

⎩

1 if u2 (k) + 2v2 (k)

−0.8u2 (k) v (k) + e (k) < 1

0 otherwise

(12)

where the inputs u (k) and v (k) are uniformly distributed between [−1,1], i.e. u (k) , v (k) ∼ U (−1,1), and

e (k) ∼ N
(

0, 0.32
)

. A total of 1000 input-output data points were collected. Plotting such points produces the

figure shown in Fig. 1.

Most classification techniques are able to perform static binary classification with high accuracy. We

apply our new algorithm to this dataset. The data is separated in a training set (700 points) and a testing set

(300 points). Given that this is a static problem, no lags are used, and the nonlinear degree is chosen as ℓ = 3,
which results in a search space with 10 model terms. Therefore, the maximum number of terms is selected as

nmax = 10, and 10 folds are used to compute the cross-validation accuracy. Fig. 2 shows the cross-validation

accuracy plot obtained after applying Algorithm 1 and it suggests that no significant improvement is obtained in

accuracy with models that have more than 4 models terms. Therefore, a model with 4 terms is chosen and these

are shown in Table 1. Such results show that our algorithm was able to identify correctly all model terms involved

in the decision boundary for (12). The parameters obtained are log odds ratios, therefore they do not necessarily

need to resemble the ones in the decision boundary function.

For comparison purposes, a regression-like NARX model based on the approach suggested in [7], a random

forest with 500 trees, a support vector machine with a radial basis kernel, and a k-nearest neighbors model are

trained with the same training set. All models are compared using the testing set and the classification accuracy.
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Table 1 Identified model terms for (12) using Algorithm 1

Model Term Parameter

v2 (k) -12.297
constant 6.459
u2 (k) -6.632

u2 (k) v (k) 4.470

Table 2 Comparison of accuracy performance between different methods for modelling of (12)

Method Classification accuracy

Logistic-NARX 0.8829

Regression NARX 0.8763
Random Forest 0.8729

Support Vector Machine 0.8796
K-Nearest Neighbors 0.8428

-1.0
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0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

u

v

y
0
1

Fig. 3 Data points obtained from the input-output system given in equation (13)

The results are shown in Table 2. It can be seen that our new method has a comparable performance with the

rest of the techniques, making it a feasible alternative for static binary classification problems.

4.2 Example 2

Let us consider a slightly different version of equation (12) as follows:

y (k) =

⎧

⎪

⎨

⎪

⎩

1 if u2 (k − 1) + 2v2 (k − 2)

−0.8u2 (k − 2) v (k − 1) + e (k) < 1

0 otherwise

(13)

Plotting again the 1000 data points results in the figure shown in Fig. 3. As it can be observed, there is not

a clear boundary between the two classes as in Fig. 1. This is a problem as it can be wrongly suggested that the

two classes cannot be separated.

We apply our new algorithm to this dataset. The data is separated in a training set (the first 700 points) and

a testing set (the last 300 points). The maximum lags for the inputs and output are chosen to be nu = ny = 4,
and the nonlinear degree is ℓ = 3, which results in a search space with 165 model terms. The maximum number of

terms is selected as nmax = 10, and 10 folds are used to compute the cross-validation accuracy. Fig. 4 shows the

cross-validation accuracy plot obtained after applying Algorithm 1 and it suggests that the most parsimonious

model with the best accuracy has 4 models terms. These are shown in Table 3. Such results show that our

algorithm was able to identify correctly all model terms involved in the decision boundary for (13). Again, the

parameters obtained are log odds ratios, therefore they do not necessarily need to resemble the ones in the decision

boundary function.

For comparison purposes, a regression-like NARX model based on the approach suggested in [7], a random

forest with 500 trees, a support vector machine with a radial basis kernel, and a k-nearest neighbors model are
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Fig. 4 Cross-validation accuracy plot obtained for (13) using Algorithm 1

Table 3 Identified model terms for (13) using Algorithm 1

Model Term Parameter

v2 (k − 2) -12.508
constant 6.155
u2 (k − 1) -6.086

u2 (k − 2) v (k − 1) 4.582

Table 4 Comparison of accuracy performance between different methods for modelling of (13)

Method Classification accuracy

Logistic-NARX 0.8581

Regression NARX 0.8581

Random Forest (without autoregressive inputs) 0.5034
Support Vector Machine (without autoregressive inputs) 0.5574

K-Nearest Neighbors (without autoregressive inputs) 0.5267
Random Forest (with autoregressive inputs) 0.8514

Support Vector Machine (with autoregressive inputs) 0.777
K-Nearest Neighbors (with autoregressive inputs) 0.6284

trained with the same training set. In general, traditional classification techniques do not consider

lagged variables unless these are explicitly included, therefore two cases are considered: the first case

assumes that no autoregressive terms are available, therefore only u (k) and v (k) are used. In the second one, the

same lagged input and output variables that were considered for the logistic-NARX model are used

with the maximum lags chosen to be nu = ny = 4 (the regression-like NARX model only considers the second

case). All models are compared using the testing set and the OSA accuracy. The results are shown in Table 4.

It can be seen that our new method has the best accuracy performance together with the regression-like NARX

model. This is expected given the NARX-like structure that generates the data. Nevertheless, the regression-like

NARX model produces real-valued outputs, which make them difficult to interpret for classification. On the other

hand, the logistic-NARX model is preferred because its outputs are restricted to range from 0 to 1, and they

can be used as classification probabilities. Furthermore, the random forest, support vector machine and k-nearest

neighbors models are not able to generate reliable results if lagged variables (i.e. values observed in some previous

time instants) are not taken into account when defining the feature vector, however their performance is increased

when the autoregressive input variables are included. Although it may be argued that our method is just slightly

better than the random forest with autoregressive inputs, it must be taken into consideration that the logistic

NARX model is transparent and the role or contribution of individual regressors can be known.

4.3 Example 3

Assume we have the following input-output system:

y (k) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if − u (k − 1)
√

|v (k − 1)|

+0.5u3 (k − 1)

+ sin (v (k − 2)) + e (k) < 0

0 otherwise

(14)
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where the inputs u (k) and v (k) are uniformly distributed between [−1, 1], i.e. u (k) , v (k) ∼ U (−1,1), the error

sequence is given by e (k) = w (k)+0.3w (k − 1)+0.6w (k − 2) and w (k) is normally distributed with zero mean

and variance of 0.01, i.e. w (k) ∼ N (0, 0.01). A total of 1000 input-output data points were collected.

We apply our new algorithm to this dataset. The data is separated in a training set (the first 700 points) and

a testing set (the last 300 points). The maximum lags for the inputs and output are chosen to be nu = ny = 4,
and the nonlinear degree is ℓ = 3, which results in a search space with 165 model terms. The maximum number of

terms is selected as nmax = 10, and 10 folds are used to compute the cross-validation accuracy. Fig. 5 shows the

cross-validation accuracy plot obtained after applying Algorithm 1 and it suggests that the most parsimonious

model with the best accuracy has 8 models terms. These are shown in Table 5.
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Fig. 5 Cross-validation accuracy plot obtained for (14) using Algorithm 1

Table 5 Identified model terms for (14) using Algorithm 1

Model Term Parameter

v (k − 2) -12.755
constant 0.224

u (k − 1) v2 (k − 1) 8.488
v3 (k − 2) -15.323

u (k − 1) v2 (k − 2) 10.066
u (k − 1) 9.047
u3 (k − 1) -8.715

u (k − 1) u2 (k − 4) -3.285

Similarly to the previous case study, a regression-like NARX model based on the approach suggested in [7],

a random forest with 500 trees, a support vector machine with a radial basis kernel, and a k-nearest neighbors

model are trained with the same training set. Again, two cases are considered: the first case assumes that no

autoregressive terms are available, therefore only u (k) and v (k) are used. In the second one, the same lagged

input and output variables that were considered for the logistic-NARX model are used with the

maximum lags chosen to be nu = ny = 4, and the nonlinear degree is ℓ = 3, which results in a search space with

165 model terms. All models are compared using the testing set and the OSA accuracy. The results are shown in

Table 6. It can be seen that our new method has the best accuracy performance, with a very similar result to the

regression-like NARX model and the random forest with autoregressive inputs. Once more, the advantage over

the random forest models is the transparency and interpretability about the role or contribution of individual

regressors. Also, the advantage over the regression-like NARX model is a more interpretable output that is easily

related to a classification probability.

5 Application to Real Data

In this section, two real scenarios are presented where the methodology is applied to the detection of cancerous

cells in a breast cancer dataset [55–57], and the detection of human eye blinking using an electroencephalogram

dataset [57]. Again, we compare the performance of our algorithm with traditional classification techniques. For

simplicity, we focus on polynomial NARX models described in equation (3).
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Table 6 Comparison of accuracy performance between different methods for modelling of (14)

Method Classification accuracy

Logistic-NARX 0.9392

Regression NARX 0.9358
Random Forest (without autoregressive inputs) 0.527

Support Vector Machine (without autoregressive inputs) 0.4932
K-Nearest Neighbors (without autoregressive inputs) 0.47

Random Forest (with autoregressive inputs) 0.9223
Support Vector Machine (with autoregressive inputs) 0.8986

K-Nearest Neighbors (with autoregressive inputs) 0.7973

200200

39

244

0

50

100

150

200

250

Training Testing

Dataset

Cancer

Benign

Malignant

Fig. 6 Frequency of each cancer type for the training and testing sets.

5.1 Breast Cancer Classification

Breast cancer is the most common cancer in women worldwide [56]. Among the different prevention and control

techniques, early detection is still the best method in order to improve breast cancer outcome and survival [58].

For this case study, we use the breast cancer dataset from the University of Wisconsin Hospitals, Madison from

Dr. William H. Wolberg [57]. This dataset contains 699 instances with the following 10 attributes:

– ID number

– Clump thickness (integer value between 1 and 10)

– Uniformity of cell size (integer value between 1 and 10)

– Uniformity of cell shape (integer value between 1 and 10)

– Marginal adhesion (integer value between 1 and 10)

– Single epithelial cell size (integer value between 1 and 10)

– Bare nuclei (integer value between 1 and 10)

– Bland chromatin (integer value between 1 and 10)

– Normal nucleoli (integer value between 1 and 10)

– Mitoses (integer value between 1 and 10)

– Class (2 for benign, 4 for malignant)

The bare nuclei attribute contains 16 missing values. Such instances were removed from the analysis. Also, the ID

number attribute does not provide any meaningful information for the classification task, so it is removed from

the dataset. The class attribute is recoded with ’0’ for a benign case and ’1’ for a malignant. The rest of the

attributes are divided by 10 in order to have feature values ranging from 0.1 to 1.

The data is separated in a training set (400 instances with 200 samples from each class) and a testing set (283

instances). The frequency of the class for each set is shown in Figure 6 where it can be noticed that each cancer

type has the same frequency in the training set, however, this is not the case in the testing set. Nevertheless, this

is not a significant issue as the training phase has access to a good balance of the two classes that need to be

identified, while the imbalanced testing set can be used to check the performance of the trained model.

Given that this is a static problem, no lags are used, and the nonlinear degree is chosen as ℓ = 2 based on [33].

These results in a search space with 55 model terms. Therefore, the maximum number of terms to search is selected

as nmax = 10, and 10 folds are used to compute the cross-validation accuracy. Fig. 2 shows the cross-validation
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Fig. 7 Cross-validation accuracy plot obtained for the Breast Cancer dataset using Algorithm 1

accuracy plot obtained after applying Algorithm 1 and it suggests that no significant improvement is obtained in

accuracy with models that have more than 3 models terms. Therefore, a model with 3 terms is chosen and these

are shown in Table 7.

Table 7 Identified model terms for the Breast Cancer dataset using Algorithm 1

Model Term Parameter

Bare nuclei 6.430
constant -5.774

Uniformity of cell size 11.338

Once more, a regression-like NARX model based on the approach suggested in [7], a random forest with 500

trees, a support vector machine with a radial basis kernel, and a k-nearest neighbors model are trained with the

same training set. All models are compared using the testing set and the classification accuracy. The results are

shown in Table 8. All the methods are able to obtain a good classification accuracy. Although the logistic NARX

has not the best accuracy, the difference with the best ones is negligible. This makes the logistic NARX model a

competitive alternative to other classification techniques.

Table 8 Comparison of accuracy performance between different methods for modelling of the Cancer Breast dataset

Method Classification accuracy

Logistic-NARX 0.9716
Regression NARX 0.9787

Random Forest 0.9787

Support Vector Machine 0.9681
K-Nearest Neighbors 0.9716

5.2 Electroencephalography Eye State Identification

Recently, electroencephalography eye state classification has become a popular research topic with several appli-

cations in areas like stress features identification, epileptic seizure detection, human eye blinking detection, among

others [59]. For this case study, we use the EEG Eye State dataset found at the UCI Machine Learning Repos-

itory [57]. This dataset contains 14,980 EEG measurements from 14 different variables taken with the Emotiv

EEG neuroheadset during 117 seconds. The eye state of the patient was detected with the aid of a camera during

the experiment. If the eye is closed, it is coded as a ’1’, otherwise it is coded as ’0’.

For this analysis, the first 80% of the dataset is used for training, while the rest is used for testing. The

frequency of the eye state for each dataset is shown in Figure 8. Similar to the breast cancer scenario, the two eye

states have roughly the same frequency in the training set, however, this is not the case in the testing set. Once

more, this is not a significant issue as the training phase can be performed with enough information from both

eye states, while the imbalanced testing set can be used to check the performance of the trained model.

Furthermore, two preprocessing steps are performed in the training set. First of all, several outliers are de-

tected within the 14 variables. These were detected using data visualization techniques (i.e. boxplots,

histograms and line plots) and summary statistics on each of the variables. The outliers are replaced
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Fig. 8 Frequency of the eye state for the training and testing sets.

with the mean value of the remaining measurements for each variable. The eye state time series, together with

the 14 cleaned variables, are shown in Figure 9. Second, an attempt to train a model using the original

dataset was done. However, given the high variability and dependency between the variables measured, the

model does not perform well enough. Because of this, a principal component analysis (PCA) is performed in

order to reduce the dimensionality of both the data and model space, and in this study the 5 most important

principal components (PCs) were used to represent the features of the original data. The PC time series are

shown in Figure 10. Each PC is treated to be a new input variable; lagged PC variables were then used to built

a logistic-NARX model. For this analysis, the variables are transformed using scaling, centering and Box-Cox

transformations. Therefore, the PCs summarise the main variability of the dataset and simplify the identification

process. The preprocessing parameters obtained during the training phases are directly used on the testing set in

order to avoid the data snooping problem.

We apply the logistic-NARX modelling approach to this dataset. The output variable is the eye state signal,

and the input variables are the 5 PCs computed in the preprocessing phase. For this scenario, no lagged

variables of the output signal are used in order to ensure that the model captures a pattern with

the exogenous inputs only. The maximum lag for the inputs is chosen to be nu = 50, and the nonlinear

degree is ℓ = 1 based on the results of previous works in [33,59]. The search space is made up of 251 model

terms. The maximum number of terms to look for is chosen as nmax = 30, and 10 folds are used to compute the

cross-validation accuracy. Fig. 11 shows the cross-validation accuracy plot obtained after applying Algorithm 1

and it suggests that the most parsimonious model with the best accuracy has 9 models terms. These are shown

in Table 9.

Table 9 Identified model terms for the EEG Eye State dataset using Algorithm 1

Model Term Parameter

PC2 (k − 43) 0.1545
constant 0.2123

PC3 (k − 50) 0.5776
PC1 (k − 43) -0.1384
PC2 (k − 1) -0.2593
PC2 (k − 38) 0.1766
PC2 (k − 50) 0.3606
PC3 (k − 1) -0.1214
PC2 (k − 32) 0.1536

In order to assess the performance of the resultant logistic NARX model, a regression-like NARX model

based on the approach suggested in [7], a random forest with 500 trees, a support vector machine with a radial

basis kernel, and a k-nearest neighbors model are trained with the same training set. Similar to the previous

examples, two cases are considered. One were the current input values are used, i.e. without lags,

and another were the same lagged variables that were used for the logistic NARX model are employed.

All models are compared using the testing set and the OSA accuracy. The results are shown in Table 10. In

this case, our method has the best accuracy performance and identifies the most significant lagged PCs that
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Fig. 9 Time series of all variables in the EEG Eye State dataset found at the UCI Machine Learning Repository [57].

Table 10 Comparison of accuracy performance between different methods for modelling of the EEG Eye State dataset

Method Classification accuracy

Logistic-NARX 0.7199

Regression NARX 0.6643
Random Forest (without autoregressive inputs) 0.5475

Support Vector Machine (without autoregressive inputs) 0.6029
K-Nearest Neighbors (without autoregressive inputs) 0.5041

Random Forest (with autoregressive inputs) 0.6365
Support Vector Machine (with autoregressive inputs) 0.6473

K-Nearest Neighbors (with autoregressive inputs) 0.5662

contribute to the classification of the eye state. The models that are trained without autoregressive inputs have a

poor classification accuracy. This is improved when autoregressive information is included. However, they do not

achieve a classification accuracy like the one obtained by the logistic NARX model.

6 Discussion

The proposed logistic-NARX algorithm shows a new approach to deal with classification problems.

The new method has a similar performance with other classification techniques when dealing with

static data, but it outperforms other methods when there is a dynamic component, and lagged

versions of input and output variables are required. Our algorithm is able to produce interpretable

models where the contribution of each model term can be analysed. It is superior to random forests,

support vector machines and k-nearest neighbors; these techniques are considered black-box mod-

els, so little information about the inner dynamics of the model can be obtained. Additionally, when

using random forests, it is possible to get the variable importance, which may provide some insight

about which variables are contributing the most to explain the output. However, this only ranks

the variables, and does not explain how the variables are contributing to the modeling process.
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Fig. 11 Cross-validation accuracy plot obtained for the EEG Eye State dataset using Algorithm 1

The logistic-NARX model overcomes this by providing variable importance and interpretability

about how the variables are interacting. Nevertheless, there are some limitations to the proposed

algorithm. First of all, this work focuses on polynomial-like structures, therefore, severe nonlin-

earities may not be modeled properly. To overcome this, other structures can be considered (e.g.

radial basis functions, wavelets), and this will be considered in a future extension of this work.

Another issue, is the selection of the maximum lags for the output and input sequences (ny and

nu). This is an open research problem where several interesting approaches have been proposed to

tackle it [33, 37]. It would become more difficult when the lags become large, as the model search

space has a factorial growth which makes it intractable. Also, the logistic-NARX approach may

be affected by severe correlation between the inputs, which results in poor performance models.

Some alternatives to overcome this include the iterative OFR [25] and the ultra OFR [26]. Finally,
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the performance of the logistic-NARX model can be affected if the data are not balanced (espe-

cially when the output data are imbalanced). The scenario of imbalanced data is typical in many

real applications where the minority class is dominated or buried by the majority class. Several

approaches are available for dealing with imbalanced data problem, readers are referred to [32,60]

for details.

7 Conclusion

In this work we developed a novel algorithm that combines logistic regression with the NARX methodology.

This allows to tackle classification problems where the output signal is a binary sequence and the regressors are

continuous lagged variables. Our approach can deal with the multicollinearity problem while producing models

that predicts binary outcomes. From the five case studies, the performance of the proposed logistic NARX models is

preferable to that of the other compared methods when dealing with binary-label prediction, where it is sometimes

highly desirable to know which input variables play an important role individually and/or interactively in the

classification process. The results obtained are promising, and future research may extend this method to multi-

class problems.
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