Skip to main content
Log in

On stratified variable thermal conductivity stretched flow of Walter-B material subject to non-Fourier flux theory

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The objective here is to examine the characteristics of non-Fourier flux theory in flow induced by a nonlinear stretched surface. Constitutive expression for an incompressible Walter-B liquid is taken into account. Consideration of thermal stratification and variable thermal conductivity characterizes the heat transfer process. The concept of boundary layer is adopted for the formulation purpose. Modern methodology for the computational process is implemented. Surface drag force is computed and discussed. Salient features of significant variables on the physical quantities are reported graphically. It is explored that velocity is enhanced for a larger ratio of rate constants. The increasing values of thermal relaxation factor correspond to less temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ozisik MN (1993) Heat conduction (third ed.). John Wiley & Sons, New York

    Google Scholar 

  2. Garrido PL, Hurtado PI, Nadrowski B (2001) Simple one-dimensional model of heat conduction which obeys Fourier’s law. Phys Rev Lett 86:5486–5489

    Article  Google Scholar 

  3. Kabir MM (2011) Analytic solutions for generalized forms of the nonlinear heat conduction equation. Nonlinear Anal RWA 12:2681–2691

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo SL, Wang BL (2015) Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction. Int J Heat Mass Transf 91:235–245

    Article  Google Scholar 

  5. Christov CI, Jordan PM (2005) Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett 94:154301

    Article  Google Scholar 

  6. Qi HT, Guo XW (2014) Transient fractional heat conduction with generalized Cattaneo model. Int J Heat Mass Transf 76:535–539

    Article  Google Scholar 

  7. Ying XH, Tao QH, Yun JX (2013) Fractional Cattaneo heat equation in a semi-infinite medium. Chin Phys B 22:014401

    Article  Google Scholar 

  8. Zhao X, Sun ZZ (2015) Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J Sci Comput 62:747–771

    Article  MathSciNet  MATH  Google Scholar 

  9. Qi HT, Jiang XY (2011) Solutions of the space-time fractional Cattaneo diffusion equation. Phys A 390:1876–1883

    Article  MathSciNet  MATH  Google Scholar 

  10. Cattaneo C (1948) Sulla conduzione del calore, Atti semin. Mat. Fis. Univ. Modena Reggio Emilia 3:83–101

    Google Scholar 

  11. Liu L, Zheng L, Zhang X (2016) Fractional anomalous diffusion with Cattaneo--Christov flux effects in a comb-like structure. Appl Math Model 40:6663–6675

    Article  MathSciNet  Google Scholar 

  12. Christov CI (2009) On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  MATH  Google Scholar 

  13. Nadeem S, Muhammad N (2016) Impact of stratification and Cattaneo-Christov heat flux in the flow saturated with porous medium. J Mol Liq 224:423–430

    Article  Google Scholar 

  14. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648

    Article  Google Scholar 

  15. Khan WA, Khan M, Alshomrani AS (2016) Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: applications of non-Fourier’s heat and non-Fick’s mass flux models. J Mol Liq 223:1039–1047

    Article  Google Scholar 

  16. Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2016) Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. Eur Phys J Plus 131:355

    Article  Google Scholar 

  17. Liu L, Zheng L, Liu F, Zhang X (2016) Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov. Comm Non Sci Numer Simul 38:45–58

    Article  MathSciNet  Google Scholar 

  18. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T (2016) Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf 99:702–710

    Article  Google Scholar 

  19. Tanveer A, Hina S, Hayat T, Mustafa M, Ahmad B (2016) Effects of the Cattaneo-Christov heat flux model on peristalsis. Eng Applications Comput Fluid Mech 10:375–385

    Article  Google Scholar 

  20. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory. J Mol Liq 223:566–571

    Article  Google Scholar 

  21. Sui J, Zheng L, Zhang X (2016) Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int J Thermal Sci 104:461–468

    Article  Google Scholar 

  22. Khan WA, Khan M, Alshomrani AS, Ahmad L (2016) Numerical investigation of generalized Fourier’s and Fick’s laws for Sisko fluid flow. J Mol Liq 224:1016–1021

    Article  Google Scholar 

  23. Ali ME, Sandeep N (2017) Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study. Results Phys 7:21–30

    Article  Google Scholar 

  24. Hayat T, Khan MI, Waqas M, Alsaedi A (2017) On Cattaneo--Christov heat flux in the flow of variable thermal conductivity Eyring--Powell fluid. Results Phys DOI. doi:10.1016/j.rinp.2016.12.034

    Google Scholar 

  25. Kumar KA, Reddy JVR, Sugunamma V, Sandeep N (2016) Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink. Alex Eng J DOI. doi:10.1016/j.aej.2016.11.013

    Google Scholar 

  26. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  27. Shufrin I, Eisenberger M (2005) Stability of variable thickness shear deformable plates-first order and high order analyses. Thin-Walled Struct 43:189–207

    Article  MATH  Google Scholar 

  28. Subhashini SV, Sumathi R, Pop I (2013) Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness. Int Commun Heat Mass Transfer 48:61–66

    Article  Google Scholar 

  29. Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127

    Article  Google Scholar 

  30. Hayat T, Bashir G, Waqas M, Alsaedi A (2016) MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J Mol Liq 223:836–844

    Article  Google Scholar 

  31. Hayat T, Khan MI, Waqas M, Alsaedi A (2017) Mathematical modeling of non-Newtonian fluid with chemical aspects: a new formulation and results by numerical technique. Colloids Surfaces A: Physicochemical Eng Aspects DOI. doi:10.1016/j.colsurfa.2017.01.007

    Google Scholar 

  32. Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2017) On doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory. Results Phys 7:99–106

    Article  Google Scholar 

  33. Opanasenko AN, Sorokin AP, Zaryugin DG, Rachkov MV (2012) Coolant stratification in nuclear power facilities. Atomic Energy 111:172–178

    Article  Google Scholar 

  34. Parthasarathy U, Sundararajan T, Balaji C, Velusamy K, Chellapandi P, Chetal SC (2012) Decay heat removal in pool type fast reactor using passive systems. Nuc Eng Des 250:480–499

    Article  Google Scholar 

  35. Lu T, Han WW, Zhai H (2015) Numerical simulation of temperature fluctuation reduction by a vortex breaker in an elbow pipe with thermal stratification. Annals Nuc Energy 75:462–467

    Article  Google Scholar 

  36. Kumar S, Vijayan PK, Kannan U, Sharma M, Pilkhwal DS (2017) Experimental and computational simulation of thermal stratification in large pools with immersed condenser. Appl Thermal Eng 113:345–361

    Article  Google Scholar 

  37. Hayat T, Khan MI, Farooq M, Alsaedi A, Khan MI (2017) Thermally stratified stretching flow with Cattaneo-Christov heat flux. Int J Heat Mass Transf 106:289–294

    Article  Google Scholar 

  38. Chiam CT (1966) Heat transfer with variable conductivity in stagnation-point flow towards a stretching sheet. Int Commun Heat Mass Transfer 23:239–248

    Article  Google Scholar 

  39. Akbar NS, Raza M, Ellahi R (2016) Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H2O+Cu nanofluid. J Appl Fluid Mech 9:1721–1730

    Article  Google Scholar 

  40. Akbar NS, Raza M, Ellahi R (2015) Peristaltic flow with thermal conductivity of H2O+Cu nanofluid and entropy generation. Results Phys 5:115–124

    Article  Google Scholar 

  41. Akbar NS, Raza M, Ellahi R (2016) Anti-bacterial applications for new thermal conductivity model in arteries with CNT suspended nanofluid. Int J Mech Medicine Biology 16:1650063

    Article  Google Scholar 

  42. Hayat T, Khan MI, Waqas M, Yasmeen T, Alsaedi A (2016) Viscous dissipation effect in flow of magnetonanofluid with variable properties. J Mol Liq 222:47–54

    Article  Google Scholar 

  43. Liao SJ (2012) Homotopic analysis method in nonlinear differential equations. Springer, Heidelberg

    Book  Google Scholar 

  44. Ellahi R, Hassan M, Zeeshan A (2016) Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pacific J Chemical Eng 11:179–186

    Article  Google Scholar 

  45. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J Mol Liq 215:704–710

    Article  Google Scholar 

  46. Turkyilmazoglu M (2016) An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat 30:1633–1650

    Article  MathSciNet  MATH  Google Scholar 

  47. Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129

    Article  Google Scholar 

  48. Shehzad SA, Hayat T, Alsaedi A, Chen B (2016) A useful model for solar radiation. Energy, Ecology Environment 1:30–38

    Article  Google Scholar 

  49. Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  50. Hayat T, Qayyum S, Waqas M, Alsaedi A (2016) Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J Mol Liq 224:801–810

    Article  Google Scholar 

  51. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Waqas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Zubair, M., Waqas, M. et al. On stratified variable thermal conductivity stretched flow of Walter-B material subject to non-Fourier flux theory. Neural Comput & Applic 31, 199–205 (2019). https://doi.org/10.1007/s00521-017-3013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3013-9

Keywords

Navigation