Skip to main content
Log in

A chance-constrained portfolio selection model with random-rough variables

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Traditional portfolio selection (PS) models are based on the restrictive assumption that the investors have precise information necessary for decision-making. However, the information available in the financial markets is often uncertain. This uncertainty is primarily the result of unquantifiable, incomplete, imprecise, or vague information. The uncertainty associated with the returns in PS problems can be addressed using random-rough (Ra-Ro) variables. We propose a new PS model where the returns are stochastic variables with rough information. More precisely, we formulate a Ra-Ro mathematical programming model where the returns are represented by Ra-Ro variables and the expected future total return maximized against a given fractile probability level. The resulting change-constrained (CC) formulation of the PS optimization problem is a non-linear programming problem. The proposed solution method transforms the CC model in an equivalent deterministic quadratic programming problem using interval parameters based on optimistic and pessimistic trust levels. As an application of the proposed method and to show its flexibility, we consider a probability maximizing version of the PS problem where the goal is to maximize the probability that the total return is higher than a given reference value. Finally, a numerical example is provided to further elucidate how the solution method works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  2. Wang S, Zhu S (2002) On fuzzy portfolio selection problem. Fuzzy Optim Decis Making 1:361–377

    Article  MathSciNet  MATH  Google Scholar 

  3. Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu B (2002) Theory and practice of uncertain programming, 1st edn. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  5. Mehlawat MK, Gupta P (2014) Fuzzy chance-constrained multiobjective portfolio selection model. IEEE Trans Fuzzy Syst 22(3):653–671

    Article  Google Scholar 

  6. Omidi F, Abbasi B, Nazemi A (2017) An efficient dynamic model for solving a portfolio selection with uncertain chance constraint models. J Comput Appl Math 319:43–55

    Article  MathSciNet  MATH  Google Scholar 

  7. Bahrammirzaee A (2010) A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput & Applic 19:1165–1195

    Article  Google Scholar 

  8. Lintner BJ (1965) Valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47:13–37

    Article  Google Scholar 

  9. Mossin J (1966) Equilibrium in capital asset markets. Econometrica 34(4):768–783

    Article  Google Scholar 

  10. Sharpe WF (1964) Capital asset prices: a theory of market equivalent under conditions of risk. J Financ 19(3):425–442

    Google Scholar 

  11. Konno H (1990) Piecewise linear risk functions and portfolio optimization. Journal of Operations Research Society of Japan 33:139–159

    Article  MathSciNet  MATH  Google Scholar 

  12. Konno H, Shirakawa H, Yamazaki H (1993) A mean-absolute deviation-skewness portfolio optimization model. Ann Oper Res 45:205–220

    Article  MathSciNet  MATH  Google Scholar 

  13. Bawa VS, Lindenberg EB (1977) Capital market equilibrium in a mean-lower partial moment framework. J Financ Econ 5:189–200

    Article  Google Scholar 

  14. Elton EJ, Gruber MJ (1955) Modern portfolio theory and investment analysis. Wiley, New York

    Google Scholar 

  15. Rockafellar RT, Uryasev S (2000a) Optimization of conditional value-at-risk. Journal of Risk 2(3):1–21

    Article  Google Scholar 

  16. Rockafellar RT, Uryasev S (2000b) Optimization of conditional value-at-risk. Journal of Risk 2(3):1–21

    Article  Google Scholar 

  17. Best MJ, Hlouskova J (2000) The efficient frontier for bounded assets. Mathematical Methods of Operations Research 52:195–212

    Article  MathSciNet  MATH  Google Scholar 

  18. Merton R (1972) An analytic derivation of the efficient frontier. J Financ Quant Anal 7:1851–1872

    Article  Google Scholar 

  19. Perold AF (1984) Large-scale portfolio optimization. Manag Sci 30:1143–1160

    Article  MathSciNet  MATH  Google Scholar 

  20. Sharp WF (1963) A simplified model for portfolio analysis. Manag Sci 9:277–293

    Article  Google Scholar 

  21. Vörös J (1986) Portfolio analysis - an analytic derivation of the efficient portfolio frontier. Eur J Oper Res 23:294–300

    Article  MathSciNet  MATH  Google Scholar 

  22. Yoshimoto A (1996) The mean-variance approach to portfolio optimization subject to transaction costs. Journal of Operations Research Society of Japan 39:99–117

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang J, Shi P (2011) Using investment satisfaction capability index based particle swarm optimization to construct a stock portfolio. Inf Sci 181(14):2989–2999

    Article  MathSciNet  Google Scholar 

  24. Chen L, He S, Zhang S (2011) Tight bounds for some risk measures, with applications to robust portfolio selection. Oper Res 59(4):847–855

    Article  MathSciNet  MATH  Google Scholar 

  25. Fatah K, Shi P, Ameen J, Wiltshire R (2009) A preference ranking model based on both mean–variance analysis and cumulative distribution function using simulation. International Journal of Operational Research 5(3):311–327

    Article  MathSciNet  MATH  Google Scholar 

  26. Fatah K, Shi P, Ameen J, Wiltshire R (2010) Risk averse preference models for normalised lotteries based on simulation. International Journal of Operational Research 8(2):189–207

    Article  MATH  Google Scholar 

  27. Gregory C, Darby-Dowman K, Mitra G (2011) Robust optimization and portfolio selection: the cost of robustness. Eur J Oper Res 212(2):417–428

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang D, Zhu S, Fabozzi F, Fukushima M (2010) Portfolio selection under distributional uncertainty: a relative robust CvaR approach. Eur J Oper Res 203:185–194

    Article  MATH  Google Scholar 

  29. Li X, Shou B, Qin X (2012) An expected regret minimization portfolio selection model. Eur J Oper Res 218(2):484–492

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu M, Takahashi S, Inoue H, Wang S (2010) Dynamic portfolio optimization with risk control for absolute deviation model. Eur J Oper Res 201:349–364

    Article  MathSciNet  MATH  Google Scholar 

  31. Brockett PL, Charnes A, Cooper WW, Kwon KH, Ruefli TW (1992) Chance constrained programming approach to empirical analysis of mutual fund investment strategies. Decis Sci 23:385–408

    Article  Google Scholar 

  32. Li SX (1995) An insurance and investment portfolio model using chance constrained programming. Omega 23:577–585

    Article  Google Scholar 

  33. Li SX, Huang Z (1996) Determination of the portfolio selection for a property-liability insurance company. Eur J Oper Res 88:257–268

    Article  MATH  Google Scholar 

  34. Williams JO (1997) Maximizing the probability of achieving investment goals. J Portf Manag 24:77–81

    Article  Google Scholar 

  35. Gupta P, Inuiguchi M, Mehlawat MK, Mittal G (2013) Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Inf Sci 229:1–17

    Article  MathSciNet  MATH  Google Scholar 

  36. Hasuike T, Katagiri H, Ishii H (2009) Portfolio selection problems with random fuzzy variable returns. Fuzzy Sets Syst 160(18):2579–2596

    Article  MathSciNet  MATH  Google Scholar 

  37. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

  38. Tanaka H, Guo P (1999) Portfolio selection based on upper and lower exponential possibility distributions. Eur J Oper Res 114(1):115–126

  39. Tanaka H, Guo P, Zimmermann HJ (2000) Possibility distributions of fuzzy decision variables obtained from possibilistic linear programming problems. Fuzzy Sets Syst 113(2):323–332

  40. Parra MA, Terol AB, Urıa MR (2001) A fuzzy goal programming approach to portfolio selection. Eur J Oper Res 133(2):287–297

  41. Carlsson C, Fullér R, Majlender P (2002) A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets Syst 131(1):13–21

  42. Ida M (2003) Portfolio selection problem with interval coefficients. Appl Math Lett 16:709–713

    Article  MathSciNet  MATH  Google Scholar 

  43. Ammar E, Khalifa HA (2003) Fuzzy portfolio optimization: a quadratic programming approach. Chaos, Solutions & Fractals 18:1045–1054

    Article  MathSciNet  MATH  Google Scholar 

  44. Giove S, Funari S, Nardelli C (2006) An interval portfolio selection problem based on regret function. Eur J Oper Res 170:253–264

    Article  MATH  Google Scholar 

  45. Gupta P, Mehlawat MK, Saxena A (2008) Asset portfolio optimization using fuzzy mathematical programming. Inf Sci 178(6):1734–1755

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu ST (2011a) The mean-absolute deviation portfolio selection problem with interval-valued returns. J Comput Appl Math 235:4149–4157

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu ST (2011b) A fuzzy modeling for fuzzy portfolio optimization. Expert Syst Appl 38:13803–13809

    Google Scholar 

  48. Khanjani Shiraz R, Charles V, Jalalzadeh L (2014) Fuzzy rough DEA model: a possibility and expected value approaches. Expert System with Applications 41(2):434–444

    Article  Google Scholar 

  49. Tavana M, Khanjani Shiraz R, Hatami-Marbini A, Agrell P, Paryab K (2012) Fuzzy stochastic data envelopment analysis with application to base realignment and closure (BRAC). Expert Syst Appl 39(15):12247–12259

    Article  Google Scholar 

  50. Tavana M, Khanjani Shiraz R, Hatami-Marbini A, Agrell P, Paryab K (2013) Chance-constrained DEA models with random fuzzy inputs and outputs. Knowl-Based Syst 52(2013):32–52

    Article  Google Scholar 

  51. Tavana M, Khanjani Shiraz R, Hatami-Marbini A (2014) A new chance-constrained DEA model with Birandom input and output data. J Oper Res Soc. doi:10.1057/jors.2013.157

    Article  Google Scholar 

  52. Mohagheghi V, Mousavi SM, Vahdani B, Shahriari MR (2016) R&D project evaluation and project portfolio selection by a new interval type-2 fuzzy optimization approach. Neural Comput & Applic. doi:10.1007/s00521-016-2262-3

    Article  Google Scholar 

  53. Pawlak Z (1982) Rough sets. International Journal of Information and Computer Science 11:341–356

    Article  MATH  Google Scholar 

  54. Liu B (1997) Dependent-chance programming: a class of stochastic programming. Computers and Mathematics with Applications 34(12):89–104

    Article  MathSciNet  MATH  Google Scholar 

  55. Liu B (2004) Uncertainty theory: an introduction to its axiomatic foundations. Springer Verlag, Berlin

    Book  MATH  Google Scholar 

  56. Xu J, Yao L (2009a) A class of expected value multi-objective programming problems with random rough coefficients. Mathematical and Computer Modeling 50(1–2):141–158

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu J, Yao L (2009b) A class of multiobjective linear programming models with random rough coefficients. Mathematical and Computer Modeling 49(1–2):189–206

    Article  MathSciNet  MATH  Google Scholar 

  58. Lam M (2004) Neural network techniques for financial performance prediction, integrating fundamental and technical analysis. Decision Support System 37:567–581

    Article  Google Scholar 

  59. West D, Scott D, Qian J (2005) Neural network ensemble strategies for financial decision applications. Comput Oper Res 32(10):2543–2559

    Article  MATH  Google Scholar 

  60. Fernandez A, Gomez S (2007) Portfolio selection using neural networks. Comput Oper Res 34:1177–1191

    Article  MATH  Google Scholar 

  61. Ko PC, Lin PC (2008) Resource allocation neural network in portfolio selection. Expert Syst Appl 35(1–2):330–337

    Article  Google Scholar 

  62. Freitas FD, De Souza AF, de Almeida AR (2009) Prediction-based portfolio optimization model using neural networks. Neurocomputing 72(10–12):2155–2170

    Article  Google Scholar 

  63. Hsu VM (2013) A hybrid procedure with feature selection for resolving stock/futures price forecasting problems. Neural Comput & Applic 22:651–671

    Article  Google Scholar 

  64. Huang X (2007a) Two new models for portfolio selection with stochastic returns taking fuzzy information. Eur J Oper Res 180(1):396–405

    Article  MathSciNet  MATH  Google Scholar 

  65. Huang X (2007b) A new perspective for optimal portfolio selection with random fuzzy returns. Inf Sci 177(23):5404–5414

    Article  MathSciNet  MATH  Google Scholar 

  66. Li X, Zhang Y, Wong HS, Qin Z (2009) A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns. J Comput Appl Math 233(2):264–278

    Article  MathSciNet  MATH  Google Scholar 

  67. Halmos P (1974) Naive set theory. Springer, New York

    Book  MATH  Google Scholar 

  68. Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Naval Research Logistics Quarterly 9:181–186

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions. The second author, Dr. Khanjani Shiraz, is grateful to the Iran National Science Foundation for the support he received through grant number 93040776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Tavana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavana, M., Khanjani Shiraz, R. & Di Caprio, D. A chance-constrained portfolio selection model with random-rough variables. Neural Comput & Applic 31 (Suppl 2), 931–945 (2019). https://doi.org/10.1007/s00521-017-3014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3014-8

Keywords

Navigation