Skip to main content
Log in

On non-Fourier flux in nonlinear stretching flow of hyperbolic tangent material

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present study explores the features of hyperbolic tangent material due to a nonlinear stretched sheet with variable sheet thickness. Non-Fourier flux theory is implemented for the development of energy expression. Such consideration accounts for the contribution by thermal relaxation. The resulting nonlinear differential system has been determined for the convergent series expressions of velocity and temperature. The solutions are demonstrated and analyzed through plots. Presented results indicate that velocity decays via larger material power law index and Weissenberg number. Temperature is the decreasing function of Prandtl number and thermal relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

u , v :

Velocity components

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Fluid density

q :

Heat flux

λ 1 :

Relaxation time of heat flux

k(T):

Variable thermal conductivity

k :

Thermal conductivity of ambient fluid

x , y :

Space coordinates

U w(x):

Stretching velocity

c p :

Specific heat

a , b :

Dimensional constants

T w :

Wall temperature

T :

Ambient temperature

τ w :

Surface shear stress

T :

Temperature of fluid

V :

Velocity field

S :

Extra stress tensor

T :

Cauchy stress tensor

ψ :

Stream function

α :

Wall thickness parameter

Γ:

Material constant

λ :

Material power law index

n :

Power law index

Pr:

Prandtl number

γ :

Thermal relaxation parameter

We :

Weissenberg number

δ :

Small parameter regarding the surface is sufficiently thin

ε :

Temperature dependent thermal conductivity parameter

C f :

Skin friction coefficient

Rex :

Local Reynolds number

f :

Dimensionless velocity

θ :

Dimensionless temperature

η :

Dimensionless space variable

A 1 :

First Rivlin-Ericksen tensor

μ 0 :

Zero shear rate viscosity

μ :

Infinite shear rate viscosity

References

  1. Cattaneo C (1948) Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3:83–101

    Google Scholar 

  2. Christov CI (2009) On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  MATH  Google Scholar 

  3. Straughan B (2010) Thermal convection with the Cattaneo-Christov model. Int J Heat Mass Transf 53:95–98

    Article  MATH  Google Scholar 

  4. Tibullo V, Zampoli V (2011) A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mech Res Commun 38:77–99

    Article  MATH  Google Scholar 

  5. Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Appl Math Lett 38:87–93

    Article  MathSciNet  MATH  Google Scholar 

  6. Hayat T, Khan MI, Farooq M, Alsaedi A, Khan MI (2017) Thermally stratified stretching flow with Cattaneo-Christov heat flux. Int J Heat Mass Transf 106:289–294

    Article  Google Scholar 

  7. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory. J Mol Liq 223:566–571

    Article  Google Scholar 

  8. Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2016) Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. Eur Phys J Plus 131:355

    Article  Google Scholar 

  9. Kreiss HO, Nagy GB, OEO O, Reula A (1997) Global existence and exponential decay for hyperbolic dissipative relativistic fluid theories. J Math Phys 38:5272–5279

    Article  MathSciNet  MATH  Google Scholar 

  10. Jyothi B, Rao PK (2013) Influence of magnetic field on hyperbolic tangent fluid through a porous medium in a planar channel with peristalsis. Int J Mathematical archive 4:171–182

    Google Scholar 

  11. Kothandapani M Prakash J (2014) Influence of heat source, thermal radiation and inclined magnetic field on peristaltic flow of hyperbolic tangent nanofluid in a tapered asymmetric channel. IEEE Trans Nanobioscience DOI: 10.1109/TNB.2363673.

  12. Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J Phys 87:1121–1124

    Article  Google Scholar 

  13. Hayat T, Qayyum S, Alsaedi A, Waqas M (2016) Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction. Eur Phys J Plus 131:422

    Article  Google Scholar 

  14. Salahuddin T, Malik MY, Hussain A, Bilal S, Awais M (2015) Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity. AIP Adv 5:127103

    Article  Google Scholar 

  15. Khan MI Hayat T Waqas M Alsaedi A (2017) Outcome for chemically reactive aspect in flow of tangent hyperbolic material. J Mol Liq DOI: 10.1016/j.molliq.2017.01.016.

  16. Hayat T, Waqas M, Alsaedi A, Bashir G, Alzahrani F (2017) Magnetohydrodynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. J Mol Liq 229:178–184

    Article  Google Scholar 

  17. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AICHE J 7:26–28

    Article  Google Scholar 

  18. Crane LJ (1970) Flow past a stretching plane. J Appl Math Phys 21:645–647

    Google Scholar 

  19. Turkyilmazoglu M (2016) Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Physics Fluids 28:043102

    Article  Google Scholar 

  20. Ramzan M, Bilal M, Chung JD, Farooq U (2016) Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface—an optimal solution. Results Physics 6:1072–1079

    Article  Google Scholar 

  21. Turkyilmazoglu M (2016) Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. Int J Non-Linear Mech 83:59–64

    Article  Google Scholar 

  22. Hayat T, Khan MI, Waqas M, Alsaedi A (2017) Mathematical modeling of non-Newtonian fluid with chemical aspects: a new formulation and results by numerical technique. Colloids Surfaces A: Physicochem Eng Aspects 518:263–272

    Article  Google Scholar 

  23. Hayat T, Anwar MS, Farooq M, Alsaedi A (2015) Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer. PLoS One 10:e0118815

    Article  Google Scholar 

  24. Pal D, Chatterjee S Soret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium, Appl Math Comput 219: 7556–7574.

  25. Vajravelu K, Prasad KV, Ng C (2013) Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties. Nonlinear Anal Real World Appl 14:455–464

    Article  MathSciNet  Google Scholar 

  26. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) Mixed convection flow of viscoelastic nanofluid by a cylinder with variable thermal conductivity and heat source/sink. Int J Numer Methods Heat Fluid Flow 26:214–234

    Article  MathSciNet  MATH  Google Scholar 

  27. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T (2016) Impact of Cattaneo--Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf 99:702–710

    Article  Google Scholar 

  28. Umavathi JC, Sheremet MA, Mohiuddin S (2016) Combined effect of variable viscosity and thermal conductivity on mixed convection flow of a viscous fluid in a vertical channel in the presence of first order chemical reaction. Eur J Mech B/Fluids 58:98–108

    Article  MathSciNet  MATH  Google Scholar 

  29. Salawu SO, Dada MS (2016) Radiative heat transfer of variable viscosity and thermal conductivity effects on inclined magnetic field with dissipation in a non-Darcy medium. J Nigerian Math Soc 35:93–106

    Article  MathSciNet  MATH  Google Scholar 

  30. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648

    Article  Google Scholar 

  31. Animasaun IL (2015) Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and image order of chemical reaction. J Nigerian Math Soc 34:11–31

    Article  MathSciNet  MATH  Google Scholar 

  32. Animasaun IL, Sandeep N (2016) Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Techn 301:858–867

    Article  Google Scholar 

  33. Turkyilmazoglu M (2010) An optimal analytic approximate solution for the limit cycle of Duffing-van der Pol equation. J Appl Mech Trans ASME 78:021005

    Article  Google Scholar 

  34. Turkyilmazoglu M (2012) Solution of Thomas-Fermi equation with a convergent approach. Commun Nonlin Sci Numer Simul 17:4097–4103

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng L, Zhang C, Zhang X, Zhang J (2013) Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. J Frankl Inst 350:990–1007

    Article  MathSciNet  MATH  Google Scholar 

  36. Turkyilmazoglu M (2016) An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat 30:1633–1650

    Article  MathSciNet  MATH  Google Scholar 

  37. Hayat T, Khan MI, Waqas M, Alsaedi A (2017) Newtonian heating effect in nanofluid flow by a permeable cylinder. Res Physics 7:256–262

    Google Scholar 

  38. Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129

    Article  Google Scholar 

  39. Sui J, Zheng L, Zhang X, Chen G (2015) Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. Int. J Heat Mass Transf 85:1023–1033

    Article  Google Scholar 

  40. Khan WA, Khan M, Alshomrani AS (2016) Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: applications of non-Fourier’s heat and non-Fick's mass flux models. J Mol Liq 223:1039–1047

    Article  Google Scholar 

  41. Hayat T, Ullah I, Muhammad T, Alsaedi A (2016) Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface. J Mol Liq 220:1004–1012

    Article  Google Scholar 

  42. Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  43. Hayat T, Hussain Z, Alsaedi A, Mustafa M (2017) Nanofluid flow through a porous space with convective conditions and heterogeneous--homogeneous reactions. J Taiwan Inst Chem Eng 70:119–126

    Article  Google Scholar 

  44. Turkyilmazoglu M (2016) Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method. Medit J Math 13:4019–4037

    Article  MathSciNet  MATH  Google Scholar 

  45. Makinde OD, Aziz A (2011) Boundary layer flow of nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Waqas.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Bashir, G., Hayat, T. et al. On non-Fourier flux in nonlinear stretching flow of hyperbolic tangent material. Neural Comput & Applic 31 (Suppl 1), 597–605 (2019). https://doi.org/10.1007/s00521-017-3016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3016-6

Keywords

Navigation