Skip to main content

Advertisement

Log in

Intelligent computing approach to analyze the dynamics of wire coating with Oldroyd 8-constant fluid

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the study, intelligent computing technique is developed for solving the nonlinear system for wire coating analysis with the bath of Oldroyd 8-constant fluid having pressure gradient using feedforward artificial neural networks (ANNs), evolutionary computing, active-set algorithm (ASA) and their hybrid. Original partial differential equations of wire coating process are converted to nonlinear ordinary differential equation (NL-ODEs) in dimensionless form using similarity transformation. Strength of ANNs is exploited to develop mathematical model of the transformed equations by defining an unsupervised error. Training of design variables of the network is carried out globally using evolutionary computing techniques based on genetic algorithms (GAs) hybrid with ASA for rapid local convergence. Design scheme is applied to analyze the dynamics of the problem for number of variants based on dilatant constant, the pseudoplastic constant, the pressure gradient, shear stress under the effect of viscosity parameter and varying the coating thickness of the polymer. Results of the proposed method are compared with standard numerical solver for NL-ODEs based of Adams method to establish its correctness. Reliability of the method is further validated through the results of statistics based on different performance measures for accuracy and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feil, JN, Hrivnak JE (1986) The goodyear tire and rubber company. Wire coating process. US Patent 4,588,546

  2. Mitsoulis E (1986) Fluid flow and heat transfer in wire coating: a review. Adv Polym Technol 6(4):467–487

    Article  Google Scholar 

  3. Shah RA, Islam S, Siddiqui AM, Haroon T (2012) Wire coating analysis with Oldroyd 8-constant fluid by optimal homotopy asymptotic method. Comput Math Appl 63(3):695–707

    Article  MathSciNet  MATH  Google Scholar 

  4. Sajid M, Siddiqui AM, Hayat T (2007) Wire coating analysis using MHD Oldroyd 8-constant fluid. Int J Eng Sci 45(2):381–392

    Article  Google Scholar 

  5. Sajid M, Hayat T (2008) Wire coating analysis by withdrawal from a bath of Sisko fluid. Appl Math Comput 199(1):13–22

    MathSciNet  MATH  Google Scholar 

  6. Shah RA, Islam S, Siddiqui AM (2013) Exact solution of a differential equation arising in the wire coating analysis of an unsteady second grade fluid. Math Comput Model 57(5):1284–1288

    Article  MathSciNet  Google Scholar 

  7. Siddiqui AM, Haroon T, Khan H (2009) Wire coating extrusion in a pressure-type die in flow of a third grade fluid via homotopy perturbation method. Int J Nonlinear Sci Numer Simul 10(2):247–258

    Article  Google Scholar 

  8. Nayak MK, Dash GC, Singh LP (2014) Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity. Int J Heat Mass Transf 79:1087–1095

    Article  Google Scholar 

  9. Shah RA, Islam S, Siddiqui AM, Haroon T (2011) Optimal homotopy asymptotic method solution of unsteady second grade fluid in wire coating analysis. J Korea Soc Ind Appl Math 15(3):201–222

    MathSciNet  MATH  Google Scholar 

  10. Shah RA, Islam S, Siddiqui AM, Haroon T (2012) Heat transfer by laminar flow of an elastico-viscous fluid in posttreatment analysis of wire coating with linearly varying temperature along the coated wire. Heat Mass Transf 48(6):903–914

    Article  Google Scholar 

  11. Mall S, Chakraverty S (2016) Application of Legendre Neural Network for solving ordinary differential equations. Appl Soft Comput 43:347–356

    Article  Google Scholar 

  12. Mall S, Chakraverty S (2015) Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method. Neurocomputing 149:975–982

    Article  Google Scholar 

  13. Mall S, Chakraverty S (2014) Chebyshev Neural Network based model for solving Lane-Emden type equations. Appl Math Comput 247:100–114

    MathSciNet  MATH  Google Scholar 

  14. Jafarian A, Measoomy S, Abbasbandy S (2015) Artificial neural networks based modeling for solving Volterra integral equations system. Appl Soft Comput 27:391–398

    Article  Google Scholar 

  15. Chakraverty S, Mall S (2014) Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25(3–4):585–594

    Article  Google Scholar 

  16. Ahmad I, Raja MAZ, Bilal M, Ashraf F (2016) Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model. SpringerPlus 5(1):1866

    Article  Google Scholar 

  17. Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016) Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 38:561–586

    Article  Google Scholar 

  18. Raja MAZ, Shah FH, Khan AA, Khan NA (2016) Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson-Segalman fluid on vertical cylinder for drainage problems. J Taiwan Inst Chem Eng 60:59–75

    Article  Google Scholar 

  19. Raja MAZ, Shah FH, Tariq M, Ahmad I (2016) Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput Appl. doi:10.1007/s00521-016-2530-2

    Article  Google Scholar 

  20. Masood Z, Majeed K, Samar R, Raja MAZ (2017) Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems. Neurocomputing 221:1–14

    Article  Google Scholar 

  21. Raja MAZ, Samar R, Alaidarous ES, Shivanian E (2016) Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Appl Math Model 40(11):5964–5977

    Article  MathSciNet  Google Scholar 

  22. Raja MAZ, Niazi SA, Butt SA (2017) An intelligent computing technique to analyze the vibrational dynamics of rotating electrical machine. Neurocomputing 219:280–299

    Article  Google Scholar 

  23. Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem. Appl Math Mech 36(12):1611–1638

    Article  MathSciNet  Google Scholar 

  24. Ahmad I, Raja MAZ, Bilal M, Ashraf F (2016) Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput Appl. doi:10.1007/s00521-016-2400-y

    Article  Google Scholar 

  25. Ahmad I, Ahmad F, Raja MAZ, Ilyas H, Anwar N, Azad Z (2016) Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Comput Appl. doi:10.1007/s00521-016-2547-6

    Article  Google Scholar 

  26. Raja MAZ, Shah AA, Mehmood A, Chaudhary NI, Aslam MS (2016) Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput Appl. doi:10.1007/s00521-016-2677-x

  27. Khan JA, Raja MAZ, Rashidi MM, Syam MI, Wazwaz AM (2015) Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory. Connect Sci 27(4):377–396

    Article  Google Scholar 

  28. Raja MAZ, Shah FH, Alaidarous ES, Syam MI (2017) Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl Soft Comput 52:605–629

  29. Raja MAZ, Zameer A, Khan AU, Wazwaz AM (2016) A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus 5(1):1400

    Article  Google Scholar 

  30. Javed MA, Ali N, Hayat T (2015) Wire-coating by withdrawal from a bath of Phan–Thien–Tanner fluid. Can J Chem Eng 93(11):2070–2076

    Article  Google Scholar 

  31. Ali Nasir, Javed Muhammad Asif (2016) Effects of temperature-dependent properties on wire-coating from a bath of FENE-P fluid. Int J Heat Mass Transf 103:401–410

    Article  Google Scholar 

  32. Ali N, Javed MA, Bég OA, Hayat T (2016) Mathematical model for isothermal wire-coating from a bath of Giesekus viscoelastic fluid. Chem Eng Commun 203:1336–1348

    Article  Google Scholar 

  33. Abdulhameed M, Mohamad M, Saleh H, Roslan R (2015) Analytical solutions for unsteady flow of a fourth-grade fluid arising in the metallic wire coating process inside a cylindrical roll die. Comput Math Model 26(3):370–384

    Article  MathSciNet  MATH  Google Scholar 

  34. Hayat T, Farooq M, Alsaedi A, Al-Solamy F (2015) Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv 5(8):087159

    Article  Google Scholar 

  35. Bhukta D, Mishra SR, Hoque MM (2016) Numerical simulation of heat transfer effect on Oldroyd 8-constant fluid with wire coating analysis. Eng Sci Technol Int J 19:1910–1918

    Article  Google Scholar 

  36. Mustafa M, Khan JA, Hayat T, Alsaedi A (2015) Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions. AIP Adv 5(2):027106

    Article  Google Scholar 

  37. Naous R, AlShedivat M, Neftci E, Cauwenberghs G, Salama KN (2016) Memristor-based neural networks: synaptic versus neuronal stochasticity. AIP Adv 6(11):111304

    Article  Google Scholar 

  38. Wu Y, Lv H (2016) Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis. AIP Adv 6(8):085121

    Article  Google Scholar 

  39. Emelyanov AV, Lapkin DA, Demin VA, Erokhin VV, Battistoni S, Baldi G, Dimonte A, Korovin AN, Iannotta S, Kashkarov PK, Kovalchuk MV (2016) First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Adv 6(11):111301

    Article  Google Scholar 

  40. Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105

    Article  MathSciNet  MATH  Google Scholar 

  41. Ghosh P, Mitchell M, Tanyi JA, Hung AY (2016) Incorporating priors for medical image segmentation using a genetic algorithm. Neurocomputing 195:181–194

    Article  Google Scholar 

  42. Ghosh P, Mitchell M, Gold J (2010) LSGA: combining level-sets and genetic algorithms for segmentation. Evol Intel 3(1):1–11

    Article  Google Scholar 

  43. Abu Arqub O, Abo-Hammour Z, Momani S (2014) Application of continuous genetic algorithm for nonlinear system of second-order boundary value problems. Appl Math 8(1):235–248

    MATH  Google Scholar 

  44. Abo-Hammour Z, Abu Arqub O, Momani S, Shawagfeh N (2014) Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discret Dyn Nat Soc. doi:10.1155/2014/401696

  45. Effati S, Mansoori A, Eshaghnezhad M (2015) An efficient projection neural network for solving bilinear programming problems. Neurocomputing 168:1188–1197

    Article  Google Scholar 

  46. Güçyetmez M, Çam E (2016) A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems. Electr Eng 98(2):145–157

    Article  Google Scholar 

  47. Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth Newton method. SIAM J Optim 13(3):865–888

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao MH, Ding XF, Shi ZH, Yao QZ, Yuan YQ, Mo RY (2016) An efficient active set method for optimization extreme learning machines. Neurocomputing 174:187–193

    Article  Google Scholar 

  49. Wille ML, Zapf M, Ruiter NV, Gemmeke H, Langton CM (2015) Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum. Phys Med Biol 60(12):N251

    Article  Google Scholar 

  50. Chamakuri N, Kunisch K (2017) Primal–dual active set strategy for large scale optimization of cardiac defibrillation. Appl Math Comput 292:178–193

    MathSciNet  MATH  Google Scholar 

  51. Abu Arqub O, Maayah B (2016) Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural Comput Appl. doi:10.1007/s00521-016-2484-4

    Article  Google Scholar 

  52. Momani S, Abu Arqub O, Hayat T, Al-Sulami H (2014) A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Volterra type. Appl Math Comput 240:229–239

    MathSciNet  MATH  Google Scholar 

  53. Abu Arqub O, El-Ajou A, Momani S (2015) Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J Comput Phys 293:385–399

    Article  MathSciNet  MATH  Google Scholar 

  54. Al-Smadi M, Freihat A, Khalil H, Momani S, Khan RA (2017) Numerical multistep approach for solving fractional partial differential equations. Int J Comput Methods 14(2):1–15. doi:10.1142/S0219876217500293

    Article  MathSciNet  MATH  Google Scholar 

  55. Al-Smadi M, Freihat A, Abu Hammad M, Abu Arqub O, Momani S (2016) Analytical approximations of partial differential equations of fractional order with multistep approach. J Comput Theor Nanosci 13:1–9

    Article  MATH  Google Scholar 

  56. Abuteen E, Freihat A, Al-Smadi M, Khalil H, Khan RA (2016) Approximate series solution of nonlinear, fractional Klein–Gordon equations using fractional reduced differential transform method. J Math Stat 12:23–33. doi:10.3844/jmssp.2016.23.33

    Article  Google Scholar 

  57. Al-Smadi M, Abu Arqub O, Shawagfeh N, Momani S (2016) Numerical investigations for systems of second order periodic boundary value problems using reproducing kernel method. Appl Math Comput 291:137–148

    MathSciNet  MATH  Google Scholar 

  58. Moaddy K, Freihat A, Al-Smadi M, Abuteen E, Hashim I (2016) Numerical investigation for handling fractional-order Rabinovich–Fabrikant model using the multistep approach. Soft Comput. doi:10.1007/s00500-016-2378-5

    Article  MATH  Google Scholar 

  59. Alia F, Sheikha NA, Saqiba M, Khanb A (2017) Hidden phenomena of an MHD unsteady flow in porous medium with heat transfer. Nonlinear Sci Lett 8(1):101–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Anwaar Manzar.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there are no potential conflicts of interest.

Human and animal rights statements

All the authors of the manuscript declared that there is no research involving human participants and/or animal.

Informed consent

All the authors of the manuscript declared that there is no material that required informed consent.

Appendices

Appendix 1

In this appendix, the solution of nonlinear Riccati differential equation (NRDE) with known exact solution is provided for general understanding of the method.

The quadratic NRDE with associated condition is given as:

$$\begin{aligned} w^{\prime } (r) & = - w^{2} + 1,\quad 0 \le r \le 1, \\ w(0) & = 0, \\ \end{aligned}$$

with exact solution as:

$$w(r) = \frac{{{\text{e}}^{2r} - 1}}{{{\text{e}}^{2r} + 1}}.$$

The fitness function as defined in Eq. (11) for 10 input grid points, i.e., r = 0.1, 0.2, …, 1 NRDE is written as:

$$\varepsilon = \frac{1}{10}\,\sum\limits_{m = \,1}^{10} {\left( {w_{m}^{\prime } + w_{m}^{2} - 1} \right)^{2} + w_{0}^{2} }.$$

Optimization of the fitness function \(\varepsilon\) is performed using the settings of the parameter as given in Table 1 for GA and ASA using the built-in routines of optimization toolbox. By following the similar procedure as given in pseudocode in step-wise form, we obtained the following final weight tabulated in Table 8.

Table 8 One set of weight values for nonlinear Riccati differential equation

Using the weights of Table 8 in Eq. (8), one may derive the expression for the solutions for NRDE as given in “Appendix 3”. The solution obtained by the weights of Table 8 is compared with the exact results, and it is found matching of results of the order 6–7 decimal places of the accuracy. The procedure of the proposed provided in the appendix can simply extending for solving the highly nonlinear and stiff models arising in different applications of practical interest.

Appendix 2

The solution parameters \(k_{XX}\) and \(\varLambda_{xx}\) of optimal homotopy asymptotic method are defined as:

$$\begin{aligned} \varLambda_{11} & = 1 - 0.25\varOmega , \\ \varLambda_{12} & = 0.25\varOmega , \\ \varLambda_{13} & = - \frac{0.25}{\ln \delta }\left( {4 - \varOmega + \varOmega \delta^{2} } \right), \\ \varLambda_{14} & = C_{1} \left( {\varLambda_{12} \varLambda_{13}^{4} \alpha \beta - 0.5\varLambda_{13}^{3} \alpha + 0.5\varLambda_{13}^{3} \beta - 0.25\varLambda_{13}^{4} \varOmega \beta^{2} } \right), \\ \varLambda_{15} & = - \varLambda_{12} - \varLambda_{12} C_{1} + \cdots - 0.25\varLambda_{13}^{4} \varOmega \beta^{2} C_{1} , \\ \varLambda_{16} & = \varLambda_{12} + \varLambda_{12} C_{1} - \cdots - 6\varLambda_{12}^{2} \varLambda_{13}^{3} \varOmega \beta^{2} C_{1} , \\ \varLambda_{17} & = C_{1} \left( {2\varLambda_{12}^{3} \alpha - 0.5\varLambda_{12}^{3} \varOmega \beta + 6\varLambda_{12}^{4} \varLambda_{13} \alpha \beta - 2\varLambda_{12}^{4} \varLambda_{13} \varOmega \beta^{2} } \right), \\ \varLambda_{18} & = 9C_{1} \left( {16\varLambda_{12}^{5} \alpha \beta - 4\varLambda_{13}^{3} \varOmega \beta^{2} } \right), \\ \varLambda_{19} & = \frac{1}{\ln \delta }\left( {\varLambda_{12} - 0.25\varOmega + \cdots - \varLambda_{13}^{2} \varOmega \beta C_{1} } \right), \\ k_{10} & = \frac{1}{9}\varLambda_{13}^{4} \varLambda_{14} \alpha \beta C_{1} , \\ k_{11} & = C_{1} \left( {1.5\varLambda_{13}^{2} \varLambda_{14} \alpha - \varLambda_{13}^{2} \varLambda_{14} \beta + \varLambda_{13}^{4} \varLambda_{14} \varOmega \beta^{2} } \right), \\ k_{12} & = \varLambda_{14} + \varLambda_{14} C_{1} + \cdots + \varLambda_{13}^{3} \varLambda_{19} \varOmega \beta^{2} C_{1} , \\ k_{13} & = - \varLambda_{14} - \varLambda_{16} - \cdots - 2\varLambda_{13}^{3} \varLambda_{14} \varLambda_{17} \varOmega \beta^{2} C_{1} , \\ k_{14} & = \varLambda_{16} + \varLambda_{16} C_{1} + \cdots - 12\varLambda_{12}^{2} \varLambda_{13} \varLambda_{19} \varOmega \beta^{2} C_{1} , \\ k_{15} & = \varLambda_{17} + \varLambda_{17} C_{1} + \cdots - 2\varLambda_{12}^{3} \varLambda_{19} \varOmega \beta^{2} C_{1} , \\ k_{16} & = \varLambda_{18} + \varLambda_{18} C_{1} + \cdots - 4\varLambda_{12}^{2} \varLambda_{19} \varOmega \beta^{2} C_{1} , \\ k_{17} & = 9\varLambda_{12}^{2} \varLambda_{18} \alpha C_{1} - 1.5\varLambda_{12}^{2} \varLambda_{18} \beta C_{1} - \cdots - 4.5\varLambda_{12}^{2} \varLambda_{13} \varLambda_{18} \varOmega \beta^{2} C_{1} , \\ k_{18} & = 0.04C_{1} \left( { - 48\varOmega \beta + 336\varLambda_{12} } \right)\varLambda_{12}^{3} \varLambda_{18} \beta , \\ k_{19} & = \varLambda_{14} + \varLambda_{16} + \cdots + \varPsi_{11} + \varPsi_{12} + \varPsi_{13} + \varPsi_{14} , \\ \end{aligned}$$

where the parameter \(\alpha\), \(\beta\), \(\varPsi_{11}\), \(\varPsi_{12}\), \(\varPsi_{13}\), and \(\varPsi_{14}\) are provided in [3].

Appendix 3

Proposed approximate solutions are given here with 14 decimal places of the accuracy to avoid the problem of rounding of error.

Equations (38)–(41) represent the solution for case 1–4 of problem 1, respectively, as:

$$\hat{w}_{c - 1} \left( r \right) = \left( {\begin{array}{*{20}l} {\frac{0.647145641366172}{{1 + {\text{e}}^{{ - \left( {4.15748066641636r - 1.36847255989593} \right)}} }} - \frac{1.70694044391665}{{1 + {\text{e}}^{{ - \left( {0.102271757151059r + 0.366206348573016} \right)}} }}} \hfill \\ { - \frac{ - 1.95154392315358}{{1 + {\text{e}}^{{ - \left( {3.68595208480142r + 2.61870854325221} \right)}} }} + \frac{ - 2.23442195623440}{{1 + {\text{e}}^{{ - \left( {0.612334318551994r + 1.10608374073241} \right)}} }}} \hfill \\ { + \frac{ - 3.28047853696769}{{1 + {\text{e}}^{{ - \left( {0.136839681547638r + 0.308243294115322} \right)}} }} + \frac{ - 0.427893887946368}{{1 + {\text{e}}^{{ - \left( {4.30583797951597r - 1.66507129404126} \right)}} }}} \hfill \\ { + \frac{7.60672386815794}{{1 + {\text{e}}^{{ - \left( { - 0.840568898011056r + 4.95538635020765} \right)}} }} + \frac{ - 2.47465994723031}{{1 + {\text{e}}^{{ - \left( { - 1.19935732975813r - 0.424920571264802} \right)}} }}} \hfill \\ { + \frac{ - 1.49775100399665}{{1 + {\text{e}}^{{ - \left( {1.20716216474360r + 0.953166961735882} \right)}} }} + \frac{ - 1.17681357539180}{{1 + {\text{e}}^{{ - \left( {0.865768739684841r - 2.77178679297078} \right)}} }}} \hfill \\ \end{array} } \right)$$
(38)
$$\hat{w}_{c - 2} \left( r \right) = \left( \begin{aligned} \frac{0.187671397412595}{{1 + {\text{e}}^{{ - \left( {1.38541084731558r - 0.499167632148370} \right)}} }} - \frac{1.37565011128720}{{1 + {\text{e}}^{{ - \left( { - 0.0440544170467705r - 0.0184410606500222} \right)}} }} \hfill \\ - \frac{2.07703009215308}{{1 + {\text{e}}^{{ - \left( { - 0.592860434748386r + 3.21739705884779} \right)}} }} + \frac{1.51902564519803}{{1 + {\text{e}}^{{ - \left( {0.767565345613089r - 3.57709006393788} \right)}} }} \hfill \\ + \frac{ - 3.54895636251377}{{1 + {\text{e}}^{{ - \left( {0.533248661450748r - 3.23805588196301} \right)}} }} + \frac{ - 3.34671109114714}{{1 + {\text{e}}^{{ - \left( {0.639746625876463r - 2.83889161270586} \right)}} }} \hfill \\ + \frac{ - 1.74286998320735}{{1 + {\text{e}}^{{ - \left( { - 0.0556024317587073r - 0.0556024317587073} \right)}} }} + \frac{0.268767800072797}{{1 + {\text{e}}^{{ - \left( { - 4.70835173496243r - 0.979600693022802} \right)}} }} \hfill \\ + \frac{ - 0.682981155099476}{{1 + {\text{e}}^{{ - \left( {0.463408846853167r - 0.0684508827320506} \right)}} }} + \frac{ - 0.215017652709061}{{1 + {\text{e}}^{{ - \left( { - 1.09231229234423r + 4.12948301656718} \right)}} }} \hfill \\ \end{aligned} \right)$$
(39)
$$\hat{w}_{c - 3} \left( r \right) = \left( \begin{aligned} \frac{3.35422878884439}{{1 + {\text{e}}^{{ - \left( {0.486426254957742r + 3.18127708523477} \right)}} }} - \frac{ - 1.41973294822556}{{1 + {\text{e}}^{{ - \left( {1.93936830738782r + 2.01387720423554} \right)}} }} \hfill \\ - \frac{ - 2.98186626956667}{{1 + {\text{e}}^{{ - \left( {0.401957369178460r - 1.10237669603314} \right)}} }} + \frac{0.111884728287358}{{1 + {\text{e}}^{{ - \left( {0.563119419739604r + 0.260450940092143} \right)}} }} \hfill \\ + \frac{ - 1.01991511957443}{{1 + {\text{e}}^{{ - \left( {4.93444256800362r + 2.50854726644657} \right)}} }} + \frac{ - 4.40947997441380}{{1 + {\text{e}}^{{ - \left( {0.523928615824856r - 3.85654227383059} \right)}} }} \hfill \\ + \frac{1.36271675341221}{{1 + {\text{e}}^{{ - \left( { - 3.69254745684856r - 2.96190657584362} \right)}} }} + \frac{1.64175441526743}{{1 + {\text{e}}^{{ - \left( { - 0.386694611126202r + 1.95157757777880} \right)}} }} \hfill \\ + \frac{ - 0.130265051773553}{{1 + {\text{e}}^{{ - \left( { - 0.976728118952166r - 0.476044976021596} \right)}} }} + \frac{ - 0.153502354867538}{{1 + {\text{e}}^{{ - \left( {0.0333138889585737r + 1.67192434738641} \right)}} }} \hfill \\ \end{aligned} \right)$$
(40)
$$\hat{w}_{c - 4} \left( r \right) = \left( \begin{aligned} \frac{ - 0.905963487546473}{{1 + {\text{e}}^{{ - \left( {0.355065729913624r - 0.143489021401752} \right)}} }} - \frac{1.81247178806508}{{1 + {\text{e}}^{{ - \left( { - 0.670166597292294r + 2.33091993952271} \right)}} }} \hfill \\ - \frac{ - 2.59358707979362}{{1 + {\text{e}}^{{ - \left( {0.0661183176842188r - 0.426057547152923} \right)}} }} + \frac{1.77408245135325}{{1 + {\text{e}}^{{ - \left( { - 2.64889167930521r - 1.34190087841978} \right)}} }} \hfill \\ + \frac{0.158910620934395}{{1 + {\text{e}}^{{ - \left( {3.05579204611093r - 0.334743766049303} \right)}} }} + \frac{1.02687467800744}{{1 + {\text{e}}^{{ - \left( {0.711034333738193r - 2.89161984846872} \right)}} }} \hfill \\ + \frac{2.81292985547109}{{1 + {\text{e}}^{{ - \left( { - 0.696398523918427r + 4.06480470058236} \right)}} }} + \frac{ - 1.34725173332563}{{1 + {\text{e}}^{{ - \left( {0.123004324988019r + 0.719234761644911} \right)}} }} \hfill \\ + \frac{ - 1.80738491761624}{{1 + {\text{e}}^{{ - \left( {0.316595392528044r + 1.89778577535915} \right)}} }} + \frac{1.16981968035838}{{1 + {\text{e}}^{{ - \left( { - 0.176721291279196 + 0.261855681205052} \right)}} }} \hfill \\ \end{aligned} \right)$$
(41)

Equations (42)–(45) represent the solution for case 1–4 of problem 2, respectively, as:

$$\hat{w}_{c - 1} \left( r \right) = \left( \begin{aligned} \frac{ - 0.916765800501836}{{1 + {\text{e}}^{{ - \left( { - 0.963389580421896r - 1.37496049201293} \right)}} }} - \frac{ - 1.74330324948378}{{1 + {\text{e}}^{{ - \left( {3.99533098686048r + 3.38547567884518} \right)}} }} \hfill \\ - \frac{0.0182432564497315}{{1 + {\text{e}}^{{ - \left( { - 1.71379007441375r + 1.11416991590706} \right)}} }} + \frac{ - 2.06364432745519}{{1 + {\text{e}}^{{ - \left( { - 0.512954573104975r - 0.478612064486545} \right)}} }} \hfill \\ + \frac{2.72126528392210}{{1 + {\text{e}}^{{ - \left( { - 0.475966844761314r + 0.945097493753776} \right)}} }} + \frac{5.67124347726436}{{1 + {\text{e}}^{{ - \left( {0.866179425508759r + 7.57482901579570} \right)}} }} \hfill \\ + \frac{ - 8.94021752832487}{{1 + {\text{e}}^{{ - \left( {0.456601074795190r - 3.17606891228861} \right)}} }} + \frac{ - 1.54900901646979}{{1 + {\text{e}}^{{ - \left( {1.83924885536412r + 2.88921217062805} \right)}} }} \hfill \\ + \frac{ - 1.91474877853051}{{1 + {\text{e}}^{{ - \left( {7.65648624600581r + 8.59457108244669} \right)}} }} + \frac{0.420784097480516}{{1 + {\text{e}}^{{ - \left( { - 0.492830674545496r - 1.94618800909803} \right)}} }} \hfill \\ \end{aligned} \right)$$
(42)
$$\hat{w}_{c - 2} \left( r \right) = \left( \begin{aligned} \frac{0.992335956462138}{{1 + {\text{e}}^{{ - \left( {3.09054868933327r + 1.78403914961692} \right)}} }} - \frac{ - 0.417156967915766}{{1 + {\text{e}}^{{ - \left( { - 1.49919210359934r + 0.171812352445208} \right)}} }} \hfill \\ - \frac{2.37786623757731}{{1 + {\text{e}}^{{ - \left( { - 0.0511044892057031r - 0.744130540402797} \right)}} }} + \frac{ - 4.06846893640396}{{1 + {\text{e}}^{{ - \left( {0.566407833578774r - 2.11083666514436} \right)}} }} \hfill \\ + \frac{5.14410648391462}{{1 + {\text{e}}^{{ - \left( { - 0.886704871589830r + 5.16797559962547} \right)}} }} + \frac{ - 1.95468519729372}{{1 + {\text{e}}^{{ - \left( { - 0.610059874393097r + 0.675721597667982} \right)}} }} \hfill \\ + \frac{0.333990081774987}{{1 + {\text{e}}^{{ - \left( {1.39546151792236r + 2.60847378505353} \right)}} }} + \frac{ - 3.54288865902479}{{1 + {\text{e}}^{{ - \left( {0.0909692082756472r + 0.954931075270838} \right)}} }} \hfill \\ + \frac{ - 3.02495681952819}{{1 + {\text{e}}^{{ - \left( {0.163726180031139r + 0.510256703397404} \right)}} }} + \frac{1.50356797420596}{{1 + {\text{e}}^{{ - \left( { - 0.0737958243873805r - 1.26838690316516} \right)}} }} \hfill \\ \end{aligned} \right)$$
(43)
$$\hat{\varvec{w}}_{{\varvec{c} - 3}} \left( \varvec{r} \right) = \varvec{ }\left( \begin{aligned} \frac{ - 3.19407568942891}{{1 + \varvec{e}^{{ - \left( { - 0.322730912803841{\text{r}} + 6.30346502725742} \right)}} }} - \frac{0.0278226503353777}{{1 + \varvec{e}^{{ - \left( { - 3.14691955594440{\text{r}} + 7.50690234764292} \right)}} }} \hfill \\ - \frac{1.63890667673029}{{1 + \varvec{e}^{{ - \left( { - 1.20905530334225{\text{r}} + 2.73234929358647} \right)}} }} + \frac{ - 2.17837605054832}{{1 + \varvec{e}^{{ - \left( {0.496681110974480{\text{r}} + 4.13825463386980} \right)}} }} \hfill \\ + \frac{3.94061712738066}{{1 + \varvec{e}^{{ - \left( { - 1.99761550601316{\text{r}} + 8.02577551919528} \right)}} }} + \frac{0.283054734207603}{{1 + \varvec{e}^{{ - \left( { - 3.06376534319879{\text{r}} + 9.36530514069546} \right)}} }} \hfill \\ + \frac{0.359746463672984}{{1 + \varvec{e}^{{ - \left( { - 1.18134158202104{\text{r}} - 2.77744639516325} \right)}} }} + \frac{3.59429255199355}{{1 + \varvec{e}^{{ - \left( {0.332589525912578{\text{r}} + 0.387030907616429} \right)}} }} \hfill \\ + \frac{2.31655365155107}{{1 + \varvec{e}^{{ - \left( {3.20863465375263{\text{r}} + 1.44728132303346} \right)}} }} + \frac{ - 4.08588295178087}{{1 + \varvec{e}^{{ - \left( { - 0.0101234174102530{\text{r}} + 3.47527224199378} \right)}} }} \hfill \\ \end{aligned} \right)$$
(44)
$$\hat{w}_{c - 4} \left( r \right) = \left( \begin{aligned} \frac{ - 0.0352701468557131}{{1 + {\text{e}}^{{ - \left( { - 7.68577088358541r + 19.5124036823225} \right)}} }} - \frac{ - 0.0364724585730827}{{1 + {\text{e}}^{{ - \left( { - 6.02063109322370r + 14.1803253613733} \right)}} }} \hfill \\ - \frac{0.541990023233788}{{1 + {\text{e}}^{{ - \left( {2.50399748327207r - 3.68933482542127} \right)}} }} + \frac{ - 7.55577430741644}{{1 + {\text{e}}^{{ - \left( {1.39221031097525r - 6.24780343329729} \right)}} }} \hfill \\ + \frac{10.4075387141080}{{1 + {\text{e}}^{{ - \left( { - 0.129453779454824r + 1.94661801985007} \right)}} }} + \frac{ - 9.21035751796697}{{1 + {\text{e}}^{{ - \left( {1.37562922254829r - 2.98045121759701} \right)}} }} \hfill \\ + \frac{ - 11.6013710605871}{{1 + {\text{e}}^{{ - \left( { - 6.33851402305966r - 1.31910947982297} \right)}} }} + \frac{ - 4.97377745014209}{{1 + {\text{e}}^{{ - \left( { - 1.93528471563286r + 4.33625674501382} \right)}} }} \hfill \\ + \frac{0.266324879207348}{{1 + {\text{e}}^{{ - \left( { - 0.410453571222274r - 2.42972581555362} \right)}} }} + \frac{ - 4.87898842511696}{{1 + {\text{e}}^{{ - \left( { - 1.01003196340724r + 0.523421404726410} \right)}} }} \hfill \\ \end{aligned} \right)$$
(45)

Equations. (29)–(32) represent the solution for case 1–4 of problem 3, respectively, as:

$$\hat{w}_{c - 1} \left( r \right) = \left( \begin{aligned} \frac{ - 0.557884722614297}{{1 + {\text{e}}^{{ - \left( {5.39177576350898r - 3.96001310692469} \right)}} }} - \frac{4.05407149524991}{{1 + {\text{e}}^{{ - \left( {0.898802130591326r - 1.71640395713524} \right)}} }} \hfill \\ - \frac{1.52647617394133}{{1 + {\text{e}}^{{ - \left( { - 1.50186562756171r + 2.07164913302750} \right)}} }} + \frac{1.10249805269285}{{1 + {\text{e}}^{{ - \left( {1.34031499788130r + 1.14162199862648} \right)}} }} \hfill \\ + \frac{3.00820715531389}{{1 + {\text{e}}^{{ - \left( { - 1.04690259078557r + 2.50234663176738} \right)}} }} + \frac{ - 2.03243551229239}{{1 + {\text{e}}^{{ - \left( {5.10502778349739r - 1.40557692630696} \right)}} }} \hfill \\ + \frac{0.901675570666091}{{1 + {\text{e}}^{{ - \left( { - 2.70106160520870r + 2.35794479686030} \right)}} }} + \frac{ - 3.33833425208156}{{1 + {\text{e}}^{{ - \left( {9.14888397370770r - 2.27473017651894} \right)}} }} \hfill \\ + \frac{8.06474620020193}{{1 + {\text{e}}^{{ - \left( { - 4.12658649057811r - 3.86231585275885} \right)}} }} + \frac{0.719051336852431}{{1 + {\text{e}}^{{ - \left( {5.86123809863325r + 1.05850015002654} \right)}} }} \hfill \\ \end{aligned} \right)$$
(46)
$$\hat{w}_{c - 2} \left( r \right) = \left( \begin{aligned} \frac{ - 3.99917733396647}{{1 + {\text{e}}^{{ - \left( {0.891332697184988r - 5.90451761582513} \right)}} }} - \frac{ - 3.63048568061670}{{1 + {\text{e}}^{{ - \left( {7.90340838756394r + 0.968241198302790} \right)}} }} \hfill \\ - \frac{ - 2.31974126742829}{{1 + {\text{e}}^{{ - \left( {0.616708012312368r - 2.73282250710302} \right)}} }} + \frac{2.62417803088949}{{1 + {\text{e}}^{{ - \left( { - 1.52058501459065r - 1.49138470011232} \right)}} }} \hfill \\ + \frac{1.43101988902660}{{1 + {\text{e}}^{{ - \left( { - 0.340632687941473r - 0.276390450125065} \right)}} }} + \frac{2.09537715399110}{{1 + {\text{e}}^{{ - \left( { - 0.386365719160677r - 0.341253162796568} \right)}} }} \hfill \\ + \frac{2.69349856107792}{{1 + {\text{e}}^{{ - \left( {0.168790032941893r + 0.911527814377524} \right)}} }} + \frac{2.29282819004317}{{1 + {\text{e}}^{{ - \left( { - 3.79881982215620r - 1.41599087016578} \right)}} }} \hfill \\ + \frac{1.54672003167370}{{1 + {\text{e}}^{{ - \left( {0.813664616645804r + 1.25208989253170} \right)}} }} + \frac{1.06272327855314}{{1 + {\text{e}}^{{ - \left( { - 0.475417792457132r - 0.969174610316326} \right)}} }} \hfill \\ \end{aligned} \right)$$
(47)
$$\hat{w}_{c - 3} \left( r \right) = \left( \begin{aligned} \frac{0.876851623473768}{{1 + {\text{e}}^{{ - \left( {2.49349648377317r - 1.04413757040828} \right)}} }} - \frac{2.98841106964488}{{1 + {\text{e}}^{{ - \left( {2.76757517014916r - 7.56729418144732} \right)}} }} \hfill \\ - \frac{ - 3.08704875988994}{{1 + {\text{e}}^{{ - \left( {2.74246487988205r - 7.54823803463353} \right)}} }} + \frac{1.95002243864153}{{1 + {\text{e}}^{{ - \left( { - 1.17343162417066r + 5.19485772133905} \right)}} }} \hfill \\ + \frac{ - 2.91727788537681}{{1 + {\text{e}}^{{ - \left( { - 0.146638709571110r + 1.06692803800891} \right)}} }} + \frac{ - 0.213985534940599}{{1 + {\text{e}}^{{ - \left( { - 0.123559731081878r - 1.19126954449528} \right)}} }} \hfill \\ + \frac{4.60685282549067}{{1 + {\text{e}}^{{ - \left( {6.33918703814984r - 0.620132812860196} \right)}} }} + \frac{ - 4.16309707518349}{{1 + {\text{e}}^{{ - \left( { - 0.301272972108148r + 3.05524036710699} \right)}} }} \hfill \\ + \frac{ - 9.73735558321735}{{1 + {\text{e}}^{{ - \left( {1.12731778159919r - 5.14273412780001} \right)}} }} + \frac{1.57621773601807}{{1 + {\text{e}}^{{ - \left( { - 3.65581063096570r - 3.84842030920905} \right)}} }} \hfill \\ \end{aligned} \right)$$
(48)
$$\hat{w}_{c - 4} \left( r \right) = \left( \begin{aligned} \frac{ - 7.15726364209788}{{1 + {\text{e}}^{{ - \left( {0.885195118826721r - 4.78209598133979} \right)}} }} - \frac{ - 6.17255622348657}{{1 + {\text{e}}^{{ - \left( {1.49564692571066r - 5.54337224493422} \right)}} }} \hfill \\ - \frac{ - 0.413072960150419}{{1 + {\text{e}}^{{ - \left( { - 10.2266486130385r + 8.09232728970431} \right)}} }} + \frac{1.82564122081174}{{1 + {\text{e}}^{{ - \left( {0.0633336044282149r - 1.14400399368649} \right)}} }} \hfill \\ + \frac{1.03508823950399}{{1 + {\text{e}}^{{ - \left( {3.62602092550570r - 1.28772588614558} \right)}} }} + \frac{ - 3.72551673972169}{{1 + {\text{e}}^{{ - \left( {0.516181919854073r - 2.86969311405169} \right)}} }} \hfill \\ + \frac{0.303941969629559}{{1 + {\text{e}}^{{ - \left( {4.00536572420897r - 9.85028475535404} \right)}} }} + \frac{ - 0.360905913713567}{{1 + {\text{e}}^{{ - \left( {3.58805786961814r - 9.16851747736320} \right)}} }} \hfill \\ + \frac{2.48005813826967}{{1 + {\text{e}}^{{ - \left( {1.10236542530956r - 2.66486193626854} \right)}} }} + \frac{ - 0.780692363450426}{{1 + {\text{e}}^{{ - \left( { - 3.09968654105565r + 2.16718640176508} \right)}} }} \hfill \\ \end{aligned} \right)$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, A., Manzar, M.A., Khan, N.A. et al. Intelligent computing approach to analyze the dynamics of wire coating with Oldroyd 8-constant fluid. Neural Comput & Applic 31, 751–775 (2019). https://doi.org/10.1007/s00521-017-3107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3107-4

Keywords

Navigation