Skip to main content
Log in

Design of MC-CDMA receiver using radial basis function network to mitigate multiple access interference and nonlinear distortion

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multicarrier code division multiple access (MC-CDMA) is a novel wireless communication technology with high spectral efficiency and system performance. However, all multiple access techniques including MC-CDMA were most likely to have multiple access interference (MAI). So, this paper mainly aims at designing a suitable receiver for MC-CDMA system to mitigate such MAI. The classical receivers like maximal-ratio combining and minimum mean square error fail to cancel MAI when the MC-CDMA is subjected to nonlinear distortions, which may occur due to saturated power amplifiers or arbitrary channel conditions. Being highly nonlinear structures, the neural network (NN) receivers such as multilayer perceptron and radial basis function networks could be better alternative for such a case. The possibility NN receiver for a MC-CDMA system under different nonlinear conditions has been studied with respect to both performance and complexity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Viterbi AJ (1995) CDMA: principles of spread spectrum communication. Addison-Wesley, Boston

    MATH  Google Scholar 

  2. Miller L, Lee J (1998) CDMA systems engineering handbook. Artech House, London

    Google Scholar 

  3. Weinstein SB, Ebert PM (1971) Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Trans Commun 19(5):628–634

    Article  Google Scholar 

  4. Prasad R (2004) OFDM for wireless communications systems. Artech House, London

    Google Scholar 

  5. Prasad R, Hara S (1997) Overview of multicarrier CDMA. IEEE Commun Mag 35(12):126–133

    Article  Google Scholar 

  6. McCormick AC, Al-Susa EA (2002) Multicarrier CDMA for future generation mobile communication. Electron Commun Eng J 14(2):52–60

    Article  Google Scholar 

  7. Fettweis G, Bahai AS, Anvari K (1994) On multi-carrier code division multiple access (MC-CDMA) modem design. Proc IEEE Veh Technol Conf. doi:10.1109/VETEC.1994.345380

    Google Scholar 

  8. Hanzo L, Keller T (2006) OFDM and MC-CDMA: a primer. Wiley, West Sussex

    Book  Google Scholar 

  9. Nathan Y, Jean-Paul MGL, Gerhard F (1994) Multi-carrier CDMA in Indoor Wireless Radio Networks. IEICE Trans Commun 77(7):900–904

    Google Scholar 

  10. Proakis JG (1995) Digital communications. Mc-Graw Hill, New York

    MATH  Google Scholar 

  11. Steele R, Hanzo L (1999) Mobile radio communications. Wiley, New York

    Book  Google Scholar 

  12. Verdu S (1998) Multiuser detection. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Seyman MN, Taşpınar N (2013) Symbol detection using the differential evolution algorithm in MIMO-OFDM systems. Turk J Electr Eng Comput Sci 21:373–380

    Google Scholar 

  14. Silva A, Teodoro S, Dinis R, Gameiro A (2014) Iterative frequency-domain detection for IA-precoded MC-CDMA system. IEEE Trans Commun 62(4):1240–1248

    Article  Google Scholar 

  15. Yan Y, Ma M (2015) Novel frequency-domain oversampling receiver for CP MC-CDMA systems. IEEE Commun Lett 19(4):661–664

    Article  MathSciNet  Google Scholar 

  16. Sung WL, Chang YK, Ueng FB, Shen YS (2015) A new SAGE-based receiver for MC-CDMA communication systems. Wirel Pers Commun 85(3):1617–1634

    Article  Google Scholar 

  17. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257

    Article  MathSciNet  Google Scholar 

  18. Seyman MN, Taspinar N (2013) Radial basis function neural networks for channel estimation in MIMO-OFDM systems. Arab J Sci Eng 38(8):2173–2178

    Article  Google Scholar 

  19. Seyman MN, Taşpınar N (2013) Channel estimation based on neural network in space time block coded MIMO–OFDM system. Digit Signal Proc 23:275–280

    Article  MathSciNet  Google Scholar 

  20. Bagadi KP, Das S (2013) Efficient complex radial basis function model for multiuser detection in a space division multiple access/multiple-input multiple-output-orthogonal frequency division multiplexing system. IET Commun 7(13):1394–1404

    Article  Google Scholar 

  21. Bagadi KP, Das S (2013) Neural network-based multiuser detection for SDMA–OFDM system over IEEE 802.11 n indoor wireless local area network channel models. Int J Electron 100(10):1332–1347

    Article  Google Scholar 

  22. Bagadi KP, Das S (2013) Neural network-based adaptive multiuser detection schemes in SDMA–OFDM system for wireless application. Neural Comput Appl 23(3):1071–1082

    Article  Google Scholar 

  23. Bagadi KP, Das S (2014) Multiuser detection in SDMA–OFDM wireless communication system using complex multilayer perceptron neural network. Wirel Pers Commun 77(1):21–39

    Article  Google Scholar 

  24. Bagadi KP, Das S (2014) Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system. Int J Commun Syst 27(12):3837–3854

    Article  Google Scholar 

  25. Bagadi KP, Annepu V, Das S (2016) Recent trends in multiuser detection techniques for SDMA–OFDM communication system. Phys Commun 20:93–108

    Article  Google Scholar 

  26. Taspnar N, Cicek M (2013) Neural network based receiver for multiuser detection in MC-CDMA systems. Wirel Pers Commun 68(2):463–472

    Article  Google Scholar 

  27. Widrow B, Lehr MA (1990) 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc IEEE 78(9):1415–1442

    Article  Google Scholar 

  28. Ko KB, Choi S, Kang C, Daesik H (2001) RBF multiuser detector with channel estimation capability in a synchronous MC-CDMA system. IEEE Trans Neural Netw 12(6):1536–1539

    Article  Google Scholar 

  29. Schumacher L, Pedersen KI, Mogensen PE (2002) From antenna spacings to theoretical capacities-guidelines for simulating MIMO systems. In: The 13th IEEE international symposium on personal, indoor and mobile radio communications, pp 587–592

  30. Patra JC, Meher PK, Goutam C (2009) Nonlinear channel equalization for wireless communication systems using Legendre neural networks. Signal Process 89:2251–2262

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kala Praveen Bagadi.

Ethics declarations

Conflict of interest

We declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. So we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

C.V., R.K., Bagadi, K.P. Design of MC-CDMA receiver using radial basis function network to mitigate multiple access interference and nonlinear distortion. Neural Comput & Applic 31 (Suppl 2), 1263–1273 (2019). https://doi.org/10.1007/s00521-017-3127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3127-0

Keywords

Navigation