Skip to main content

Advertisement

Log in

Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Breast cancer is one of the most common female malignancies, as well as the second leading cause of mortality for women. Early detection and treatment can dramatically decrease the mortality rate. Recently, automated breast volume scanner (ABVS) has become one of the most frequently used diagnose methods for breast tumor screening because of its operator-independent and reproducible advantages. However, it is a challenging job to obtain the tumors’ accurate locations and shapes by reviewing hundreds of ABVS slices. In this paper, a novel computer-aided detection (CADe) system is developed to reduce clinicians’ reading time and improve the efficiency. The CADe system mainly contains three parts: tumor candidate acquisition, false-positive reduction and tumor segmentation. Firstly, a local phase-based approach is built to obtain breast tumor candidates for further recognition. Subsequently, a convolutional neural network (CNN) is applied to reduce false positives (FPs). The introduction of CNN can help to avoid complicated feature extraction as well as elevate the accuracy and efficiency. Finally, superpixel-based segmentation is used to outline the breast tumor. Here, superpixel-based local binary pattern (SLBP) is proposed to assist the segmentation, which improves the performance. The methods were evaluated on a clinical ABVS dataset whose abnormal cases were manually labeled by an experienced radiologist. The experiment results were mainly composed of two parts. At the FP reduction stage, the proposed CNN achieved 100% and 78.12% sensitivity with FPs/case of 2.16 and 0. At the segmentation stage, our SLBP obtained 82.34% true positive, 15.79% false positive and 83.59% Dice similarity. In summary, the proposed CADe system demonstrated promising potential to detect and outline breast tumors in ABVS images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66(1):7–30

    Article  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  Google Scholar 

  3. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM, Marques HS, Boparai K (2008) Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 299:2151–2163

    Article  Google Scholar 

  4. Moon WK, Shen YW, Min SB, Huang CS, Chen JH, Chang RF (2012) Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images. IEEE Trans Med Imaging 32(7):1191–1200

    Article  Google Scholar 

  5. Lo CM, Chen RT, Chang YC, Yang YW, Hung MJ, Huang CS, Chang RF (2014) Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. IEEE Trans Med Imaging 33(7):1503–1511

    Article  Google Scholar 

  6. Tan T, Platel B, Mus R, Tabar L, Mann RM, Karssemeijer N (2013) Computer-aided detection of cancer in automated 3-D breast ultrasound. IEEE Trans Med Imaging 32(9):1698–1706

    Article  Google Scholar 

  7. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In proceedings MICCAI, 2013, pp 411–418

  8. Li Q, Cai W, Wang X, Zhou Y, Feng DD and Chen M (2014) Medical image classification with convolutional neural network. In proceedings ICARCV, 2014, pp 844–848

  9. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In proceedings MICCAI, 2013, pp 246–253

  10. Roth H, Yao J, Lu L, Stieger J, Burns J and Summers RM (2015) Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. Lecture notes in computational vision and biomechanics, vol 20(1), pp 3–12

  11. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, SüSstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11):2274–2282

    Article  Google Scholar 

  12. Chu J, Min H, Liu L, Lu W (2015) A novel computer aided breast mass detection scheme based on morphological enhancement and SLIC superpixel segmentation. Med Phys 42(7):3859–3869

    Article  Google Scholar 

  13. Zhou M, Wu Z, Chen D, Zhou Y (2013) An improved vein image segmentation algorithm based on SLIC and Niblack threshold method. In proceedings SPIE9045, pp 90450D-90450D-10

  14. Roth HR, Farag A, Lu L, Turkbey EB, Summers RM (2015) Deep convolutional networks for pancreas segmentation in CT imaging. In SPIE Proceedings Medical Imaging 2015: Image Processing 9413(9): 476-484

  15. Wang X, Guo Y, Wang Y (2015) Automatic detection of the region of interest in breast ultrasound images based on local phase information. Bio-Med Mater Eng 26(s1):S1265–S1273

    Article  Google Scholar 

  16. Dosil R, Pardo XM, Fernandez-Vidal XR (2006) Data driven synthesis of composite feature detectors for 3D image analysis. Image Vis Comput 24(3):225–238

    Article  Google Scholar 

  17. Shan J, Cheng HD, Wang Y (2012) A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering. Med Phys 39(9):5669–5682

    Article  Google Scholar 

  18. Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275

    Article  Google Scholar 

  19. Roth H, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers R (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181

    Article  Google Scholar 

  20. Vedaldi A, Lenc K (2016) MatConvNet-convolutional neural networks for MATLAB. http://www.vlfeat.org/matconvnet/ Jan

  21. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In proceedings neural information and processing systems

  22. Ojala T, Pietikäinen M, Mäenpää T (2002) Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24(7):971–987

    Article  MATH  Google Scholar 

  23. Kovesi P (2000) Phase congruency: a low-level image invariant. Psychol Res 64:136–148

    Article  Google Scholar 

  24. Udupa JK, LaBlanc VR, Schmidt H, Imielinska C, Saha PK, Grevera GJ, Zhuge Y, Currie LM, Molholt P, Jin Y (2002) A methodology for evaluating image-segmentation algorithms. In proceedings spie medical imaging, pp 266–277

  25. Chakraborty DP (1989) Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Med Phys 16:561–568

    Article  Google Scholar 

  26. Chakraborty DP, Breatnach ES, Yester MV, Soto B, Barnes GT, Fraser RG (1986) Digital and conventional chest imaging: a modified ROC study of observer performance using simulated nodules. Radiology 158(1):35–39

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Basic Research Program of China (2015CB755500) and the National Natural Science Foundation of China (61271071, 61401102, 81627804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Guo or Yuanyuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, Y., Wang, Y. et al. Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns. Neural Comput & Applic 31, 1069–1081 (2019). https://doi.org/10.1007/s00521-017-3138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3138-x

Keywords

Navigation