Skip to main content
Log in

A combined NN and dynamic gain-based approach to further stabilize nonlinear time-delay systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on the state-feedback control problem for a class of high-order nonlinear systems with unknown time delay and control coefficients. Based on a novel dynamic gain-based backstepping technique and radial basis function neural network (RBF NN) approximation approach, the restrictions on high-order and nonlinearities are removed or further relaxed. Under these weaker conditions, a smooth state-feedback controller is skillfully constructed with only one adaptive parameter. In addition, the knowledge of time delay, NN nodes and weights is not necessary to be known a priori. It is proven that the designed controller can render the closed-loop system be semi-globally uniformly ultimately bounded. Finally, both practical and numerical examples are shown to demonstrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, New York

    MATH  Google Scholar 

  2. Jiang ZP http://ctrl.poly.edu/faculty/Prof-Jiang.html

  3. Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, London

    Book  MATH  Google Scholar 

  4. Ge SS, Hong F, Lee TH (2005) Robust adaptive control of nonlinear systems with unknown time delays. Automatica 41(7):1181–1190

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang X, Baron L, Liu Q, Boukas EK (2011) Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans Autom Control 56(3):692–697

    Article  MathSciNet  MATH  Google Scholar 

  6. Jo HW, Choi HL, Lim JT (2014) Observer based output feedback regulation of a class of feedforward nonlinear systems with uncertain input and state delays using adaptive gain. Syst Control Lett 71:44–53

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang Z, Xu S (2015) Observer design for uncertain nonlinear systems with unmodeled dynamics. Automatica 51:80–84

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang Z, Zhai J, Ai W, Fei S (2015) Global practical tracking for a class of uncertain nonlinear systems via sampled-data control. Appl Math Comput 260:257–268

    MathSciNet  MATH  Google Scholar 

  9. Shen Q, Shi P (2015) Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form. Automatica 53(3):120–124

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu Z, Cui M, Shi P (2012) Backstepping control in vector form for stochastic Hamiltonian systems. SIAM J Control Optim 50(2):925–942

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguang SK (2000) Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans Autom Control 45(4):756–762

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin W, Qian C (2000) Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst Control Lett 39(4):339–351

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin W http://nonlinear.caseedu/~linwei/

  14. Lin W, Qian C (2000) Adaptive regulation of high-order lower-triangular systems: adding a power integrator technique. Syst Control Lett 39(5):353–364

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun ZY, Xue LY, Zhang K (2015) A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica 58:60–66

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang J, Liu YG (2011) A new approach to adaptive control design without over-parametrization for a class of uncertain nonlinear systems. Sci China Inf Sci 54(7):1419–1429

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang XH, Xie XJ (2014) Global state feedback stabilisation of nonlinear systems with high-order and low-order nonlinearities. Int J Control 87(3):642–652

    Article  MathSciNet  MATH  Google Scholar 

  18. Qian C (2005) A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: Proceedings of the American control conference, Portland USA, pp 4708–4715

  19. Xie XJ, Duan N, Yu X (2011) State-feedback control of high-order stochastic nonlinear systems with SiISS inverse dynamics. IEEE Trans Autom Control 56(8):1921–1926

    Article  MathSciNet  MATH  Google Scholar 

  20. Xie XJ, Duan N, Zhao CR (2014) A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Trans Autom Control 56(5):1303–1309

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie XJ, Duan N (2010) Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Trans Autom Control 55(5):1197–1202

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian C, Lin W (2006) Recursive observer design, homogeneous approximation and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans Autom Control 51(9):1457–1471

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou S, Feng G, Nguang SK (2002) Comments on ‘Robust stabilization of a class of time-delay nonlinear systems’. IEEE Trans Autom Control 47(9):1586–1586

    Article  MATH  Google Scholar 

  24. Li G, Zang C, Liu X (2003) Comments on ‘Robust stabilization of a class of time-delay nonlinear systems’. IEEE Trans Autom Control 48(5):908–908

    Article  MATH  Google Scholar 

  25. Lv LN, Sun ZY, Xie XJ (2015) Adaptive control for high-order time-delay uncertain nonlinear system and application to chemical reactor system. Int J Adapt Control Signal Process 29:224–241

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao F, Wu Y (2015) Further results on global state feedback stabilization of high-order nonlinear systems with time-varying delays. ISA Trans 55:41–48

    Article  Google Scholar 

  27. Sun ZY, Zhang XH, Xie XJ (2013) Continuous global stabilisation of high-order time-delay nonlinear systems. Int J Control 86(6):994–1007

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun ZY, Liu ZG, Zhang XH (2015) New results on global stabilization for time-delay nonlinear systems with low-order and high-order growth conditions. Int J Robust Nonlinear Control 25(6):878–899

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang X, Lin Y (2014) Global stabilization of high-order nonlinear time-delay systems by state feedback. Syst Control Lett 65:89–95

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang X, Lin Y (2015) Adaptive control of nonlinear time-delay systems with application to a two-stage chemical reactor. IEEE Trans Autom Control 60(4):1074–1079

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang X, Lin W, Lin Y (2017) Nonsmooth feedback control of time-delay nonlinear systems: a dynamic gain based approach. IEEE Trans Autom Control 62(1):438–444

    Article  MathSciNet  MATH  Google Scholar 

  32. Manivannan R, Mahendrakumar G, Samidurai R, Cao J, Alsaedi A (2017) Exponential stability and extended dissipativity criteria for generalized neural networks with interval time-varying delay signals. J Franklin Inst 354(11):4353–4376

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhong J, Lu J, Liu Y, Cao J (2014) Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst 25(12):2288–2294

    Article  Google Scholar 

  34. Shi P, Zhang Y, Chadli M, Agarwal R (2016) Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909

    Article  MathSciNet  Google Scholar 

  35. Ge SS, Hong F, Lee TH (2004) Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans Syst Man Cybern B Cybern 34(1):499–516

    Article  Google Scholar 

  36. Yoo SJ, Park JB, Choi YH (2009) Adaptive neural control for a class of strict-feedback nonlinear systems with state time delays. IEEE Trans Neural Netw 20(7):1209–1215

    Article  Google Scholar 

  37. Ho DWC, Li J, Niu Y (2005) Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Trans Neural Netw 16(3):625–635

    Article  Google Scholar 

  38. Shi P, Li F, Wu L, Lim CC (2016) Neural network-based passive filtering for delayed neural-type semi-Markovian jump systems. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2573853

    Google Scholar 

  39. Lu CH, Tai CC, Chen TC, Wang WC (2015) Fuzzy neural network speed estimation method for induction motor speed sensorless control. Int J Innov Comput Inf Control 11(2):433–446

    Google Scholar 

  40. Gao S, Ning B, Dong H (2015) Adaptive neural control with intercepted adaptation for time-delay saturated nonlinear systems. Neural Comput Appl 26(8):1849–1857

    Article  Google Scholar 

  41. Zhao X, Shi P, Zheng X, Zhang J (2016) Intelligent tracking control for a class of uncertain high-order nonlinear systems. IEEE Trans Neural Netw Learn Syst 27(9):1976–1982

    Article  MathSciNet  Google Scholar 

  42. Hua C, Yu C, Guan X (2014) Neural network observer-based networked control for a class of nonlinear systems. Neurocomputing 133:103–110

    Article  Google Scholar 

  43. Zhou Q, Shi P, Xu S, Li H (2013) Observer-based adaptive neural network control for nonlinear stochastic systems with time-delay. IEEE Trans Neural Netw Learn Syst 24(1):71–80

    Article  Google Scholar 

  44. Yu Z, Li S, Du H (2014) Adaptive neural output feedback control for stochastic nonlinear time-delay systems with unknown control directions. Neural Comput Appl 25(7):1979–1992

    Article  Google Scholar 

  45. Yu Z, Li S (2014) Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions. Neurocomputing 129:540–547

    Article  Google Scholar 

  46. Chen W, Jiao L, Li J, Li R (2010) Adaptive NN backstepping output feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern B Cybern 40(3):939–950

    Article  Google Scholar 

  47. Duan N, Min HF (2016) Decentralized adaptive NN state-feedback control for large-scale stochastic high-order nonlinear systems. Neurocomputing 173(3):1412–1421

    Article  Google Scholar 

  48. Min HF, Duan N, Zhang ZJ (2015) Adaptive output-feedback control for stochastic robot system based on neural network. In: Proceedings of the 34th Chinese control conference. IEEE, Hangzhou, Zhejiang, pp 1839–1844

  49. Min H, Duan N (2015) Adaptive NN state-feedback control for stochastic high-order nonlinear systems with time-varying control direction and delays. Math Probl Eng 2015(723425):1–11

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang H, Chen B, Lin C (2012) Adaptive neural control for strict-feedback stochastic nonlinear systems with time-delay. Neurocomputing 77:267–274

    Article  Google Scholar 

  51. Qian C, Lin W (2002) Practical output tracking of nonlinear systems with uncontrollable unstable linearization. IEEE Trans Autom Control 47(1):21–36

    Article  MathSciNet  MATH  Google Scholar 

  52. Hua C, Guan X, Shi P (2005) Robust backstepping control for a class of time delay systems. IEEE Trans Autom Control 50(6):894–899

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61573172, 61403173, 61503166), 333 High-Level Talents Training Program in Jiangsu Province (No. BRA2015352) and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (No. 15KJB510011) and Jiangsu Province Innovation Program of Graduate Students of China (No. KYCX17_0364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Proof of Proposition 1

We prove it by induction. Assume that at step (\(i-1\)), there exist a series of virtual control laws

$$\begin{aligned} z_1 & = {} \,x_1,\nonumber \\ z_2 & = {} \,x_2-\alpha _2,\ \alpha _2=-z_1\beta _1^{\frac{1}{p_1}}(z_1,\hat{\theta }),\nonumber \\&\vdots&\nonumber \\ z_i & = {}\, x_i-\alpha _i,\ \alpha _i=-z_{i-1}(L_1\cdots L_{i-2})^{\frac{1}{p_{i-1}}} \beta _{i-1}^{\frac{1}{p_{i-1}}}(\bar{z}_{i-1},\bar{L}_{i-3},\hat{\theta }), \end{aligned}$$
(51)

such that \(U_{i-1}\) satisfies

$$\begin{aligned} \dot{U}_{i-1}& \le {} \,{-}\sum _{j=1}^{i-1}(\beta _j-Y_j)z_j^{p+3} +\Phi _{i,0}z_{i}^{p+3}+\sum _{j=1}^{i-1}|z_j|^{p-p_j+3}\tilde{\theta }+\Delta _{i-1}\nonumber \\&+\sum _{j=1}^{i-2}\sum _{k=j+1}^{i-1}\frac{1}{L_{j}}\varrho _{kj}z_{j}^{p+3} -\sum _{j=1}^{i-1}\frac{\sigma _j}{(p-p_j+4)L_j}z_j^{p+3}. \end{aligned}$$
(52)

Now, we prove (52) still holds for (30). Firstly, from (4) and (7), one has

$$\begin{aligned} \dot{z}_i=x_{i+1}^{p_i}+\bar{f}_i+\bar{g}_{id}, \end{aligned}$$
(53)

where \(\bar{f}_i=f_i-\sum _{j=1}^{i-1}\frac{\partial \alpha _i}{\partial x_j} (x_{j+1}^{p_j}+f_j)\,-\sum _{j=1}^{i-2}\frac{\partial \alpha _i}{\partial L_j}\dot{L}_j\) and \(\bar{g}_{id}=g_{id}-\sum _{j=1}^{i-1}\frac{\partial \alpha _i}{\partial x_j}g_{jd}\). Choosing Lyapunov function (30) and using (31), (52)–(53), one can get

$$\begin{aligned} \dot{V}_i&\le {} \,{-}\sum _{j=1}^{i-1}(\beta _j-Y_j)z_j^{p+3}-(\beta _i-1-\Phi _{i,0})z_{i}^{p+3} +{2|z_i|^{p-p_i+3}|x_{i+1}^{p_i}-\alpha _{i+1}^{p_i}|}\nonumber \\&+\,{2|z_i|^{p-p_i+3}|\bar{f}_i|} +\frac{2}{L_1\cdots L_{i-1}}{|z_i|^{p-p_i+3}|\bar{g}_{id}|} +\,\sum _{j=1}^{i-1}|z_j|^{p-p_j+3}\tilde{\theta }+\Delta _{i-1}\nonumber \\&+\,\sum _{j=1}^{i-2}\sum _{k=j+1}^{i-1}\frac{1}{L_{j}}\varrho _{kj}z_{j}^{p+3} -\sum _{j=1}^{i}\frac{\sigma _j}{(p-p_j+4)L_j}z_j^{p+3}. \end{aligned}$$
(54)

In the sequel, we focus on estimating the third–fifth terms on the right-hand side of (54). From (2), one gets \(\bar{f}_i(X_i)=W_i^{*^T}S_i(X_i)+\delta _i(X_i)\), \(|\delta _i(X_i)|\le \varepsilon _i\), where \(\varepsilon _i>0\) is a design constant, \(X_i=(\bar{z}_i,\bar{L}_{i-1},\hat{\theta })^T \in S_{X_i}=\{X_i|X_i\in S_x\}\). Then, using \((a+b)^n=\sum _{i=0}^nC_n^ia^{n-i}b^i\), (5)–(7), Lemmas 1 and 2 and \(\Vert W_{i}^{*^T}\Vert ^2\Vert S_{i}\Vert ^2\le \Vert W_{i}^{*^T}\Vert ^2N_{i}\le \theta\), there exist positive constants \(\xi _i\), \(\bar{\gamma }_i=\sum _{j=0}^{\frac{p_i-1}{2}}\gamma _{ij}\), \(\gamma _{ij}\), \(\tilde{\gamma }_i\), and smooth functions \(\lambda _i(\hat{\theta })\), \(\Phi _{i}(\hat{\theta })\), \(\Phi _{i+1,0}(\bar{z}_i,\bar{L}_{i-1},\hat{\theta })\), \(\varrho _{ij}(\bar{z}_{jd})\), \(\varrho _{ii}(\bar{z}_{id},\bar{L}_{i-2,d})\) with \(j=1,\ldots ,i-1\) such that

$$\begin{aligned} {2|z_i|^{p-p_i+3}|\bar{f}_i|}&\le {} \,\xi _i+\Phi _i(\hat{\theta })z_i^{p+3} +z_i^{p-p_i+3}\tilde{\theta }, \end{aligned}$$
(55)
$$\begin{aligned} {2|z_i|^{p-p_i+3}|x_{i+1}^{p_i}-\alpha _{i+1}^{p_i}|}&\le {} \, \bar{\gamma }_iz_i^{p+3}+\Phi _{i+1,0}(\bar{z}_i,\bar{L}_{i-1},\hat{\theta })z_{i+1}^{p+3}, \end{aligned}$$
(56)
$$\begin{aligned} \frac{2}{L_1\cdots L_{i-1}}{|z_i|^{p-p_i+3}|\bar{g}_{id}|}& \le {} \, \tilde{\gamma }_iz_i^{p+3}+\frac{1}{L_{1d}\cdots L_{i-1,d}} \sum _{j=1}^{i}\bar{\varrho }_{ij}(\bar{x}_{jd})x_{jd}^{p+3}\nonumber \\& \le {} \, \tilde{\gamma }_iz_i^{p+3}+\sum _{j=1}^{i-1}\frac{1}{L_{jd}} \varrho _{ij}(\bar{z}_{jd},\bar{L}_{j-1,d})z_{jd}^{p+3} +\varrho _{ii}(\bar{z}_{id},\bar{L}_{i-2,d})z_{id}^{p+3}. \end{aligned}$$
(57)

Finally, by choosing \(U_i\) as (30) and substituting (55)–(57) into (54), one can yield (32). The proof is completed. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, N., Min, H., Shu, Z. et al. A combined NN and dynamic gain-based approach to further stabilize nonlinear time-delay systems. Neural Comput & Applic 31, 2183–2193 (2019). https://doi.org/10.1007/s00521-017-3180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3180-8

Keywords

Navigation