Skip to main content
Log in

An LBP encoding scheme jointly using quaternionic representation and angular information

  • Cognitive Computing for Intelligent Application and Service
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Local descriptors play a crucial role in numerous computer vision and pattern recognition applications. This paper proposes a novel local descriptor, called the quaternionic local angular binary pattern (QLABP), for color image classification. QLABP is based on the quaternionic representation (QR) of color images such that it is able to handle all color components holistically as well as consider their relations. Using QR, the quaternionic angular information is further developed to account for more color characteristics. We provide two ways to derive the quaternionic angular information from different perspectives. A pattern encoding operation is finally conducted on the obtained angular information to obtain QLABP. The effectiveness of QLABP has successfully been evaluated by comparing with several state-of-the-art descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that there are two types of CT for a quaternion, namely the left CT and right CT, and their phases are equal. We use the right CT as in Eq. (7) to illustrate the derivation of QLABP in this paper.

References

  1. Backes AR, Casanova D, Bruno OM (2012) Color texture analysis based on fractal descriptors. Pattern Recognit 45(5):1984–1992

    Article  Google Scholar 

  2. Bianconi F, Fernández A, González E et al (2009) Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognit Lett 30(8):765–773

    Article  Google Scholar 

  3. Campana L, Keogh J (2010) A compression-based distance measure for texture. Stat Anal Data Min ASA Data Sci J 3(6):381–398

    Article  MathSciNet  Google Scholar 

  4. Chen J, Shan S, He C et al (2010) WLD: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720

    Article  Google Scholar 

  5. Chhabra P, Garg NK, Kumar M (2018) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3677-9

    Article  Google Scholar 

  6. Ell T (1992) Hypercomplex spectral transforms. PhD dissertation, University of Minnesota, Minneapolis

  7. Ell T, Sangwine S (2007) Hypercomplex Fourier transforms of color images. IEEE Trans Image Process 16(1):22–35

    Article  MathSciNet  MATH  Google Scholar 

  8. Gai S, Wan MH, Wang L, Yang CH (2014) Reduced quaternion matrix for color texture classification. Neural Comput Appl 25(3–4):945–954

    Article  Google Scholar 

  9. Gao L, Guo Z, Zhang H, Xu X, Shen HT (2017) Video captioning with attention-based lstm and semantic consistency. IEEE Trans Multimed 19(9):2045–2055

    Article  Google Scholar 

  10. Geng T, Yang M, You Z, Cai Y, Huang F (2018) Multiscale overlapping blocks binarized statistical image features descriptor with flip-free distance for face verification in the wild. Neural Comput Appl 30(10):3243–3252

    Article  Google Scholar 

  11. Guha T, Ward RK (2014) Image similarity using sparse representation and compression distance. IEEE Trans Multimed 16(4):980–987

    Article  Google Scholar 

  12. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamilton WR, Hamilton WE (1866) Elements of quaternions. Longmans, Green, & Company, London

    MATH  Google Scholar 

  14. Hoang MA, Geusebroek JM, Smeulders AWM (2005) Color texture measurement and segmentation. Signal Process 85(2):265–275

    Article  MATH  Google Scholar 

  15. http://www.nada.kth.se/cvap/databases/kth-tips/. Accessed 1 Oct 2014

  16. Junior J, Cortez C, Backes R (2014) Color texture classification using shortest paths in graphs. IEEE Trans Image Process 23(9):3751–3761

    Article  MathSciNet  MATH  Google Scholar 

  17. Lan R, Zhou Y (2016) Quaternion-Michelson descriptor for color image classification. IEEE Trans Image Process 25(11):5281–5292

    Article  MathSciNet  MATH  Google Scholar 

  18. Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579

    Article  MathSciNet  MATH  Google Scholar 

  19. Lan R, Zhou Y, Tang YY (2017) Quaternionic weber local descriptor of color images. IEEE Trans Circuits Syst Video Technol 27(2):261–274

    Article  Google Scholar 

  20. Lan R, Zhou Y, Tang YY, Chen CLP (2014) Person reidentification using quaternionic local binary pattern. In: IEEE international conference on multimedia and expo (ICME), pp 1–6

  21. Lee SH, Choi JY, Ro YM, Plataniotis KN (2012) Local color vector binary patterns from multichannel face images for face recognition. IEEE Trans Image Process 21(4):2347–2353

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu G, Li Z, Zhang L, Xu Y (2011) Image retrieval based on micro-structure descriptor. Pattern Recognit 44(9):2123–2133

    Article  Google Scholar 

  23. Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L, Li X, Li J, Serikawa S (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurr Comput Pract Exp 29(6):e3927

    Article  Google Scholar 

  24. Lu H, Li Y, Uemura T, Ge Z, Xu X, He L, Serikawa S, Kim H (2017) Fdcnet: filtering deep convolutional network for marine organism classification. Multimed Tools Appl 77(17):21847–21860

    Article  Google Scholar 

  25. Nguyen D, Zong Z, Ogunbona P, Li W (2010) Object detection using non-redundant local binary patterns. In: 17th IEEE international conference on image processing (ICIP), pp 4609–4612

  26. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  27. Paschos G, Petrou M (2003) Histogram ratio features for color texture classification. Pattern Recognit Lett 24(1):309–314

    Article  Google Scholar 

  28. Porebski A, Vandenbroucke N, Macaire L (2008) Haralick feature extraction from LBP images for color texture classification. In: First workshops on image processing theory, tools and applications, pp 1–8

  29. Satpathy A, Jiang X, Eng H (2014) LBP based edge-texture features for object recognition. IEEE Trans Image Process 23(5):1953–1963

    Article  MathSciNet  MATH  Google Scholar 

  30. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  31. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang D, Lu H, Li X (2011) Two dimensional principal components of natural images and its application. Neurocomputing 74(17):2745–2753

    Article  Google Scholar 

  33. Wang D, Lu H, Yang MH (2015) Kernel collaborative face recognition. Pattern Recognit 48(10):3025–3037

    Article  Google Scholar 

  34. Weeks J, Lehoucq R, Uzan JP (2003) Detecting topology in a nearly flat spherical universe. Class Quantum Gravity 20(8):1529

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu X, He L, Lu H, Gao L, Ji Y (2018) Deep adversarial metric learning for cross-modal retrieval. World Wide Web. https://doi.org/10.1007/s11280-018-0541-x

    Article  Google Scholar 

  36. Xu X, He L, Shimada A, Taniguchi R, Lu H (2016) Learning unified binary codes for cross-modal retrieval via latent semantic hashing. Neurocomputing 213:191–203

    Article  Google Scholar 

  37. Xu X, Shen F, Yang Y, Shen HT, Li X (2017) Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans Image Process 26(5):2494–2507

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang M, Qian YQ, Xue LJ, Li H, Deng LY, Wang CX (2018) G2P: a new descriptor for pedestrian detection. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3815-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 61702129, 61772149, U1701267, and 61320106008), China Postdoctoral Science Foundation (No. 2018M633047), Guangxi Science and Technology Project (No. 2018AD19029), the Macau Science and Technology Development Fund under Grant FDCT/189/2017/A3, and by the Research Committee at University of Macau under Grants MYRG2016-00123-FST and MYRG2018-00136-FST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, R., Lu, H., Zhou, Y. et al. An LBP encoding scheme jointly using quaternionic representation and angular information. Neural Comput & Applic 32, 4317–4323 (2020). https://doi.org/10.1007/s00521-018-03968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-03968-y

Keywords

Navigation