Skip to main content
Log in

Semi-supervised multiple kernel intact discriminant space learning for image recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In practice, huge amount of samples is readily available, while labeled samples are often very limited and too expensive to be easily obtained. Multi-view features usually reveal different types of traits of labeled and unlabeled samples. Semi-supervised multi-view learning is a learning paradigm designed to meet the requirement of learning from complementary information of multiple views of labeled and unlabeled samples. In this paper, we propose a semi-supervised multiple kernel intact discriminant space learning (SMKIDSL) method to discover latent intact feature representations for those samples. SMKIDSL employs correlation discriminant analysis and label regression to fully use class label information for enhancing the discriminant power of latent intact feature representations. In SMKIDSL, multi-view collaboration learning mechanism is utilized to efficiently integrate complementary information of multiple views, which enables optimal view being dominant in learning process. Besides, kernel technique is used to tackle nonlinear issue of original multi-view features for exploiting more discriminant information. Comprehensive experiments are conducted on Caltech 101, LFW, MNIST and RGB-D datasets. And the experimental results demonstrate the effectiveness and efficiency of our proposed method. The robustness of our method is also confirmed by those results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7):2031–2038

    Article  Google Scholar 

  2. Zhang H, Cao X, Ho JK, Chow TW (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13(2):520–531

    Article  Google Scholar 

  3. Oyedotun OK, Khashman A (2017) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28:3941–3951

    Article  Google Scholar 

  4. Hardoon D, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16:2639–2664

    Article  MATH  Google Scholar 

  5. Sun T, Chen S, Yang J, Shi P (2008) A novel method of combined feature extraction for recognition. In: IEEE international conference on data mining, pp 1043–1048

  6. Xu C, Tao D, Xu C (2015) Multi-view intact space learning. IEEE Trans Pattern Anal Mach Intell 37(12):2531–2544

    Article  Google Scholar 

  7. Rupnik J, Shawe-Taylor J (2010) Multi-view canonical correlation analysis. In: Conference on data mining and data warehouses, pp 1–4

  8. Kan M, Shan S, Zhang H, Lao S, Chen X (2016) Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194

    Article  Google Scholar 

  9. Zhao M, Chow TW, Wu Z, Zhang Z, Li B (2015) Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction. Inf Sci 324(10):286–309

    Article  MATH  Google Scholar 

  10. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: International conference on computational learning theory, pp 92–100

  11. Hou C, Zhang C, Wu Y, Nie F (2010) Multiple view semi-supervised dimensionality reduction. Pattern Recognit 43(3):720–730

    Article  MATH  Google Scholar 

  12. Wang S, Jiang S, Huang Q, Tian Q (2010) S3MKL: scalable semi-supervised multiple kernel learning for image data mining. In: ACM international conference on multimedia, pp 163–172

  13. Nie F, Cai G, Li X (2017) Multi-view clustering and semi-supervised classification with adaptive neighbours. In: AAAI conference on artificial intelligence, pp 2408–2414

  14. Shen X, Sun Q (2014) A novel semi-supervised canonical correlation analysis and extensions for multi-view dimensionality reduction. J Vis Commun Image Represent 25(8):1894–1904

    Article  Google Scholar 

  15. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE conference on computer vision and pattern recognition, pp 2169–2178

  16. Kimura A, Sugiyama M, Nakano T, Kameoka H, Sakano H, Maeda E, Ishiguro K (2013) SemiCCA: efficient semi-supervised learning of canonical correlations. Inf Media Technol 8(2):311–318

    Google Scholar 

  17. Jiang Y, Liu J, Li Z, Lu H (2014) Semi-supervised unified latent factor learning with multi-view data. Mach Vis Appl 25(7):1635–1645

    Article  Google Scholar 

  18. Wang J, Wang X, Tian F, Liu CH, Yu H, Liu Y (2016) Adaptive multi-view semi-supervised nonnegative matrix factorization. In: International conference on neural information processing, pp 435–444

  19. Xie X, Li B, Chai X (2016) A manifold framework of multiple-kernel learning for hyperspectral image classification. Neural Comput Appl 27(3):1–11

    Google Scholar 

  20. Jing XY, Wu F, Dong X, Shan S, Chen S (2017) Semi-supervised multi-view correlation feature learning with application to webpage classification. In: AAAI conference on artificial intelligence, pp 1374–1381

  21. Ma Y, Lao S, Takikawa E, Kawade M (2007) Discriminant analysis in correlation similarity measure space. In: International conference on machine learning, pp 577–584

  22. Zhao M, Zhang Z, Chow TW, Li B (2014) A general soft label based linear discriminant analysis for semi-supervised dimension reduction. Neural Netw 55:83–97

    Article  MATH  Google Scholar 

  23. Zhao M, Zhang Z, Chow TW (2012) Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction. Pattern Recognit 45(4):1482–1499

    Article  MATH  Google Scholar 

  24. Luo Y, Tao D, Ramamohanarao K, Xu C, Wen Y (2015) Tensor canonical correlation analysis for multi-view dimension reduction. IEEE Trans Knowl Data Eng 27(11):3111–3124

    Article  Google Scholar 

  25. Waaijenborg S, de Witt Verselewel, Hamer PC, Zwinderman AH (2008) Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat Appl Genet Mol Biol 7(1):1–28

    Article  MATH  Google Scholar 

  26. Hardoon DR, Shawe-Taylor J (2011) Sparse canonical correlation analysis. Mach Learn 83(3):331–353

    Article  MathSciNet  MATH  Google Scholar 

  27. Zu C, Zhang D (2016) Canonical sparse cross-view correlation analysis. Neurocomputing 191:263–272

    Article  Google Scholar 

  28. Sun QS, Liu ZD, Heng PA, Xia DS (2005) A theorem on the generalized canonical projective vectors. Pattern Recognit 38(3):449–452

    Article  MATH  Google Scholar 

  29. Kim TK, Kittler J, Cipolla R (2007) Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans Pattern Anal Mach Intell 29(6):1005–1018

    Article  Google Scholar 

  30. Sun T, Chen S, Yang J, Shi P (2008) A supervised combined feature extraction method for recognition. In: IEEE international conference on data mining, pp 1043–1048

  31. Peng Y, Zhang D, Zhang J (2010) A new canonical correlation analysis algorithm with local discrimination. Neural Process Lett 31(1):1–15

    Article  Google Scholar 

  32. Sakar CO, Kursun O (2017) Discriminative feature extraction by a neural implementation of canonical correlation analysis. IEEE Trans Neural Netw Learn Syst 28(1):164–176

    Article  Google Scholar 

  33. Balcan MF, Blum A, Yang K (2005) Co-training and expansion: towards bridging theory and practice. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 89–96

    Google Scholar 

  34. Wang W, Zhou ZH (2007) Analyzing co-training style algorithms. In: European conference on machine learning, pp 454–465

  35. Wang W, Zhou ZH (2013) Co-training with insufficient views. In: Asian conference on machine learning, pp 467–482

  36. Blaschko MB, Lampert CH, Gretton A (2008) Semi-supervised Laplacian regularization of kernel canonical correlation analysis. In: Joint European conference on machine learning and knowledge discovery in databases, pp 133–145

  37. Chen X, Chen S, Xue H, Zhou X (2012) A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data. Pattern Recognit 45(5):2005–2018

    Article  MATH  Google Scholar 

  38. Guan Z, Zhang L, Peng J, Fan J (2015) Multi-view concept learning for data representation. IEEE Trans Knowl Data Eng 27(11):3016–3028

    Article  Google Scholar 

  39. Lanckriet GR, Bie TD, Cristianini N, Jordan MI, Noble WS (2004) A statistical framework for genomic data fusion. Bioinformatics 20(16):2626–2635

    Article  Google Scholar 

  40. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7(7):1531–1565

    MathSciNet  MATH  Google Scholar 

  41. Sonnenburg S, Rätsch G, Schäfer C (2006) A general and efficient multiple kernel learning algorithm. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 1273–1280

    Google Scholar 

  42. Xu Z, Jin R, King I, Lyu M (2009) An extended level method for efficient multiple kernel learning. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 1825–1832

    Google Scholar 

  43. Rakotomamonjy A, Bach F, Canu S, Grandvalet Y (2007) More efficiency in multiple kernel learning. In: International conference on machine learning, pp 775–782

  44. Kloft M, Brefeld U, Sonnenburg S, Zien A (2011) Lp-norm multiple kernel learning. J Mach Learn Res 12(3):953–997

    MathSciNet  MATH  Google Scholar 

  45. Vishwanathan SVN, Sun Z, Ampornpunt N, Varma M (2010) Multiple kernel learning and the SMO algorithm. In: Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 2361–2369

  46. Feng J, Jiao L, Sun T, Liu H, Zhang X (2016) Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(11):6516–6530

    Article  Google Scholar 

  47. Bach FR (2008) Consistency of the group lasso and multiple kernel learning. J Mach Learn Res 9(6):1179–1225

    MathSciNet  MATH  Google Scholar 

  48. Xu Z, Jin R, Yang H, King I, Lyu MR (2010) Simple and efficient multiple kernel learning by group lasso. In: International conference on machine learning, pp 1175–1182

  49. Liu T, Gu Y, Jia X, Benediktsson JA, Chanussot J (2016) Class-specific sparse multiple kernel learning for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(12):7351–7365

    Article  Google Scholar 

  50. Shrivastava A, Patel VM, Chellappa R (2014) Multiple kernel learning for sparse representation-based classification. IEEE Trans Image Process 23(7):3013–3024

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang Q, Gu Y, Tuia D (2016) Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(7):3912–3927

    Article  Google Scholar 

  52. Wu X, Li Q, Xu L, Chen K, Yao L (2017) Multi-feature kernel discriminant dictionary learning for face recognition. Pattern Recognit 66:404–411

    Article  Google Scholar 

  53. Zhu X, Jing XY, Wu F, Wu D, Cheng L, Li S, Hu R (2017) Multi-kernel low-rank dictionary pair learning for multiple features based image classification. In: AAAI conference on artificial intelligence, pp 2970–2976

  54. Zhang Z (1997) Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis Comput 15(1):59–76

    Article  Google Scholar 

  55. Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature selection using nonnegative spectral analysis. In: AAAI conference on artificial intelligence, pp 1026–1032

  56. Ding C, Zhou D, He X, Zha H (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: International conference on machine learning, pp 281–288

  57. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    Article  MathSciNet  MATH  Google Scholar 

  58. Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: IEEE signal processing society workshop, pp 41–48

  59. Roth V, Steinhage V (1999) Nonlinear discriminant analysis using kernel functions. In: Solla SA, Leen TK, Mueller K-R (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 568–574

    Google Scholar 

  60. Lu H, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39

    Article  Google Scholar 

  61. Grant M, Boyd S (2013) CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx

  62. He R, Tan T, Wang L, Zheng WS (2012) L2,1 regularized correntropy for robust feature selection. In: IEEE conference on computer vision and pattern recognition, pp 2504–2511

  63. Li F, Rob F, Pietro P (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70

    Article  Google Scholar 

  64. Huang G, Mattar M, Lee H, Learned-Miller EG (2012) Learning to align from scratch. In: Bartlett PL, Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems. Curran Associates Inc, Red Hook, pp 764–772

    Google Scholar 

  65. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  66. Lai K, Bo L, Ren X, Fox D (2011) A large-scale hierarchical multi-view RGB-D object dataset. In: IEEE international conference on robotics and automation, pp 1817–1824

  67. Jing XY, Hu R, Zhu YP, Wu S, Liang C, Yang JY (2014) Intra-view and inter-view supervised correlation analysis for multi-view feature learning. In: AAAI conference on artificial intelligence, pp 1882–1889

  68. Wu F, Jing XY, Yue D (2017) Multi-view discriminant dictionary learning via learning view-specific and shared structured dictionaries for image classification. Neural Process Lett 45(2):649–666

    Article  Google Scholar 

  69. Beveridge JR, She K, Draper B, Givens GH (2001) Parametric and nonparametric methods for the statistical evaluation of human ID algorithms. In: 3rd workshop on the empirical evaluation of computer vision systems, pp 1–14

Download references

Acknowledgements

This work is partially funded by the National Science Foundation of China (NSFC) with Grant numbers of 61272273 and 61702280. It is also supported by Nanjing University of Posts and Telecommunications under Grant number of XJKY14016, the Scientific Research Staring Foundation for Introduced Talents in NJUPT (NUPTSF, No. NY217009) and Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX17_0777). In addition, it is also funded by Education Department of Jiangxi Province under the Grant numbers GJJ151066 and GJJ151076. The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yuan Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wu, F. & Jing, XY. Semi-supervised multiple kernel intact discriminant space learning for image recognition. Neural Comput & Applic 31, 5309–5326 (2019). https://doi.org/10.1007/s00521-018-3367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3367-7

Keywords

Navigation