Skip to main content
Log in

Adaptive graph orthogonal discriminant embedding: an improved graph embedding method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Graph embedding is a popular graph based dimensionality reduction framework, and it consists of two successive steps, i.e., graph construction and embedding. The traditional graph construction methods such as \(k\)-nearest-neighbor (k-NN) and \(\varepsilon\)-ball suffer from the difficulty in parameter selection and are also sensitive to noises. On the other hand, the property of embedding projection is not fully explored by many methods. In this paper, we explicitly investigate these two steps and propose three adaptive graph orthogonal discriminant embedding techniques (termed as AGODE-gs, AGODE-dl and AGODE-tr) for dimensionality reduction, and their differences lie in the way of orthogonalization. In our proposed methods, both the intra-class adjacency graph and the inter-class repulsion graph are constructed by a \(\ell_{2}\)-norm regularized least square, and an orthogonal constraint between the projection vectors is then imposed. The time and space complexity of the proposed methods are also analyzed in detail. We further show that the proposed methods are computationally more efficient than those \(\ell_{1}\)-norm based graph construction methods. Extensive experiments on four face databases (ORL, Yale, CUM-PIE and Extended YaleB) verify the effectiveness and efficiency of the proposed methods with encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

  2. http://users.ece.gatech.edu/~justin/l1magic/.

References

  1. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal 19(7):711–720

    Article  Google Scholar 

  3. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  4. He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: IEEE international conference on computer vision. IEEE, pp 1208–1213

  5. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  6. He X, Niyogi P (2003) Locality preserving projections. In: Proceedings of the 16th international conference on neural information processing systems. MIT Press, pp 153–160

  7. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal 29(1):40–51

    Article  Google Scholar 

  8. Nie F, Zeng Z, Tsang IW, Xu D, Zhang C (2011) Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw 22(11):1796–1808

    Article  Google Scholar 

  9. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  10. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856

    Google Scholar 

  11. He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: Proceedings of the 18th international conference on neural information processing systems. MIT Press, pp 507–514

  12. Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th international conference on machine learning. ACM, pp 1151–1157

  13. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 846–853

  14. Zhu Z, Similä T, Corona F (2013) Supervised distance preserving projections. Neural Process Lett 38(3):445–463. https://doi.org/10.1007/s11063-013-9285-x

    Article  Google Scholar 

  15. Corona F, Zhu Z, de Souza Júnior AH, Mulas M, Muru E, Sassu L, Barreto G, Baratti R (2015) Supervised distance preserving projections: applications in the quantitative analysis of diesel fuels and light cycle oils from NIR spectra. J Process Control 30(Supplement C):10–21. https://doi.org/10.1016/j.jprocont.2014.11.005

    Article  Google Scholar 

  16. Jebara T, Wang J, Chang S-F (2009) Graph construction and b-matching for semi-supervised learning. In: Proceedings of the 26th annual international conference on machine learning. ACM, pp 441–448

  17. Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1–3):301–314

    Article  Google Scholar 

  18. Raducanu B, Dornaika F (2012) A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recogn 45(6):2432–2444

    Article  Google Scholar 

  19. Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections. Pattern Recogn 43(6):1993–2002

    Article  Google Scholar 

  20. Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with l1-graph for image analysis. IEEE Trans Image Process 19(4):858–866

    Article  MathSciNet  Google Scholar 

  21. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341

    Article  Google Scholar 

  22. Yan S, Wang H (2009) Semi-supervised learning by sparse representation. In: SDM. SIAM, pp 792–801

  23. Raducanu B, Dornaika F (2014) Embedding new observations via sparse-coding for non-linear manifold learning. Pattern Recogn 47(1):480–492

    Article  Google Scholar 

  24. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal 31(2):210–227

    Article  Google Scholar 

  25. Nie F, Xiang S, Liu Y, Hou C, Zhang C (2012) Orthogonal vs. uncorrelated least squares discriminant analysis for feature extraction. Pattern Recogn Lett 33(5):485–491. https://doi.org/10.1016/j.patrec.2011.11.028

    Article  Google Scholar 

  26. Gui J, Sun Z, Jia W, Hu R, Lei Y, Ji S (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recogn 45(8):2884–2893

    Article  Google Scholar 

  27. Lu G-F, Jin Z, Zou J (2012) Face recognition using discriminant sparsity neighborhood preserving embedding. Knowl Based Syst 31:119–127. https://doi.org/10.1016/j.knosys.2012.02.014

    Article  Google Scholar 

  28. Gu Z, Yang J (2013) Sparse margin–based discriminant analysis for feature extraction. Neural Comput Appl 23(6):1523–1529. https://doi.org/10.1007/s00521-012-1124-x

    Article  Google Scholar 

  29. Lou S, Zhao X, Chuang Y, Yu H, Zhang S (2016) Graph regularized sparsity discriminant analysis for face recognition. Neurocomputing 173:290–297

    Article  Google Scholar 

  30. Zang F, Zhang J (2011) Discriminative learning by sparse representation for classification. Neurocomputing 74:2176–2183

    Article  Google Scholar 

  31. Gao Q, Huang Y, Zhang H, Hong X, Li K, Wang Y (2015) Discriminative sparsity preserving projections for image recognition. Pattern Recogn 48(8):2543–2553. https://doi.org/10.1016/j.patcog.2015.02.015

    Article  Google Scholar 

  32. Zhang L, Yang M, Feng X, Ma Y, Zhang D (2012) Collaborative representation based classification for face recognition. arXiv preprint arXiv:12042358

  33. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: IEEE international conference on computer vision (ICCV). IEEE, pp 471–478

  34. Shi Q, Eriksson A, Van Den Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In: IEEE conference on computer vision and pattern recognition. IEEE, pp 553–560

  35. Hua J, Wang H, Ren M, Huang H (2016) Collaborative representation analysis methods for feature extraction. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2299-3

    Article  Google Scholar 

  36. Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27

    Article  Google Scholar 

  37. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal 29(12):2143–2156

    Article  Google Scholar 

  38. Lei Y-K, Zou J-W, Dong T, You Z-H, Yuan Y, Hu Y (2014) Orthogonal locally discriminant spline embedding for plant leaf recognition. Comput Vis Image Underst 119:116–126

    Article  Google Scholar 

  39. Cai D, He X, Han J, Zhang H-J (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614

    Article  Google Scholar 

  40. Zheng Y, Fang B, Tang YY, Zhang T, Liu R (2013) Learning orthogonal projections for Isomap. Neurocomputing 103:149–154

    Article  Google Scholar 

  41. Gao Q, Ma J, Zhang H, Gao X, Liu Y (2013) Stable orthogonal local discriminant embedding for linear dimensionality reduction. IEEE Trans Image Process 22(7):2521–2531

    Article  Google Scholar 

  42. Yu X, Wang X (2008) Uncorrelated discriminant locality preserving projections. IEEE Signal Proc Lett 15:361–364

    Article  Google Scholar 

  43. Jin Z, Yang J-Y, Hu Z-S, Lou Z (2001) Face recognition based on the uncorrelated discriminant transformation. Pattern Recogn 34(7):1405–1416

    Article  Google Scholar 

  44. Lu C-Y, Huang D-S (2013) Optimized projections for sparse representation based classification. Neurocomputing 113:213–219

    Article  Google Scholar 

  45. Ye J (2005) Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J Mach Learn Res 6:483–502

    MathSciNet  MATH  Google Scholar 

  46. Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI conference on artificial intelligence (AAAI), Austin, Texas, USA, Jan 25–29, 2015

  47. Yuan M-D, Feng D-Z, Liu W-J, Xiao C-B (2016) Collaborative representation discriminant embedding for image classification. J Vis Commun Image Represent 41:212–224

    Article  Google Scholar 

  48. Golub G, Cv Loan (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, London

    Google Scholar 

  49. Duchene J, Leclercq S (1988) An optimal transformation for discriminant and principal component analysis. IEEE Trans Pattern Anal 10(6):978–983

    Article  Google Scholar 

  50. Jia Y, Nie F, Zhang C (2009) Trace ratio problem revisited. IEEE Trans Neural Netw 20(4):729–735. https://doi.org/10.1109/TNN.2009.2015760

    Article  Google Scholar 

  51. Zhao M, Zhang Z, Chow TWS (2012) Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction. Pattern Recogn 45(4):1482–1499. https://doi.org/10.1016/j.patcog.2011.10.008

    Article  MATH  Google Scholar 

  52. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE workshop on applications of computer vision. IEEE, pp 138–142

  53. The Yale face database (1997) http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  54. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal 25(12):1615–1618

    Article  Google Scholar 

  55. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal 23(6):643–660. https://doi.org/10.1109/34.927464

    Article  Google Scholar 

  56. Han PY, Jin ATB, Abas FS (2009) Neighbourhood preserving discriminant embedding in face recognition. J Vis Commun Image Represent 20(8):532–542

    Article  Google Scholar 

  57. Yang W, Sun C, Zheng W (2016) A regularized least square based discriminative projections for feature extraction. Neurocomputing 175:198–205

    Article  Google Scholar 

  58. Chen X, Yang J, Mao Q, Han F (2013) Regularized least squares fisher linear discriminant with applications to image recognition. Neurocomputing 122(Supplement C):521–534. https://doi.org/10.1016/j.neucom.2013.05.006

    Article  Google Scholar 

  59. Chen X, Yang J, Zhang D, Liang J (2013) Complete large margin linear discriminant analysis using mathematical programming approach. Pattern Recogn 46(6):1579–1594. https://doi.org/10.1016/j.patcog.2012.11.019

    Article  MATH  Google Scholar 

  60. Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: European conference on computer vision. Springer, pp 448–461

  61. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal 35(1):171–184. https://doi.org/10.1109/TPAMI.2012.88

    Article  Google Scholar 

  62. Lu G-F, Zou J, Wang Y (2016) L1-norm and maximum margin criterion based discriminant locality preserving projections via trace Lasso. Pattern Recogn 55:207–214. https://doi.org/10.1016/j.patcog.2016.01.029

    Article  MATH  Google Scholar 

  63. He R, Hu BG, Zheng WS, Kong XW (2011) Robust principal component analysis based on maximum correntropy criterion. IEEE Trans Image Process 20(6):1485–1494. https://doi.org/10.1109/TIP.2010.2103949

    Article  MathSciNet  MATH  Google Scholar 

  64. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/b:visi.0000029664.99615.94

    Article  Google Scholar 

  65. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Ttans Pattern Anal 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61271293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Dong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, MD., Feng, DZ., Shi, Y. et al. Adaptive graph orthogonal discriminant embedding: an improved graph embedding method. Neural Comput & Applic 31, 5461–5476 (2019). https://doi.org/10.1007/s00521-018-3374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3374-8

Keywords

Navigation