Skip to main content
Log in

A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system

  • S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. http://www.cityweekend.com.cn/shanghai/article/mobike-vs-mobike-lite-vs-ofo

  2. http://daxueconsulting.com/mobike-and-ofo-bike-sharing/

  3. Pidd H, Lavelle D (2017) Chinese bike-share scheme launches in rainy Manchester. The Guardian. Retrieved 6 July 2017

  4. Mobike bicycle-hire scheme to be launched in Greater Manchester. BBC. 13 June 2017. Retrieved 6 July 2017

  5. Cox, C (2017) Everything you need to know about the new Mobike service coming to Manchester and Salford. Manchester Evening News

  6. Mobike launches in Sapporo. Shanghai Daily. Shanghai Daily. 23 August 2017. Retrieved 24 August 2017

  7. https://en.wikipedia.org/wiki/Ofo_(bike_sharing)

  8. Bai Y, Sun Z, Zeng B, Deng J, Li C (2017) A multi-pattern deep fusion model for short-term bus passenger flow forecasting. Appl Soft Comput 58:669–680

    Article  Google Scholar 

  9. Ma Z, Xing J, Mesbah M, Ferreira L (2014) Predicting short-term bus passenger demand using a pattern hybrid approach. Transp Res Part C 39(39):148–163

    Article  Google Scholar 

  10. Wei Y, Chen MC (2012) Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp Res Part C 21(1):148–162

    Article  Google Scholar 

  11. Yang H, Leung CW, Wong SC, Bell MG (2010) Equilibria of bilateral taxi–customer searching and meeting on networks. Transp Res Part B 44:1067–1083

    Article  Google Scholar 

  12. Yang H, Yang T (2011) Equilibrium properties of taxi markets with search frictions. Transp Res Part B 45:696–713

    Article  Google Scholar 

  13. Ke JT, Zheng HY, Yang H et al (2017) Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp Res C Emerg Technol 85:591–608

    Article  Google Scholar 

  14. Wu Y, Tan H (2016) Short-term traffic flow forecasting with spatial–temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022

  15. Zhang J, Zheng Y, Qi D (2016) Deep spatio-temporal residual networks for citywide crowd flows prediction. arXiv preprint arXiv:1610.00081

  16. Shaheen S, Zhang H, Martin E, Guzman S (2011) China’s Hangzhou public bicycle: understanding early adoption and behavioral response to bikesharing. Transp Res Rec J Transp Res Board 2247:33–41

    Article  Google Scholar 

  17. Caggiani L, Ottomanelli M (2013) A dynamic simulation based model for optimal fleet repositioning in bike-sharing systems. Proc Soc Behav Sci 87:203–210

    Article  Google Scholar 

  18. Caggiani L, Ottomanelli M (2012) A modular soft computing based method for vehicles repositioning in bike-sharing systems. Proc Soc Behav Sci 54:675–684

    Article  Google Scholar 

  19. Zeng D, Xu J, Gu J, Liu L, Xu G (2008) Short term traffic flow prediction based on online learning SVR. In: Workshop on power electronics and intelligent transportation system, p 616–620

  20. Smith B, Demetsky M (1997) Traffic flow forecasting: comparison of modeling approaches. J Transp Eng 123(4):261–266

    Article  Google Scholar 

  21. Sun Y, Leng B, Guan W (2015) A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing 166:109–121

    Article  Google Scholar 

  22. Sapankevych N, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Intell Syst 4(2):24–38

    Google Scholar 

  23. Yu H, Yang J, Han J, Li X (2005) Making SVMs scalable to large data sets using hierarchical cluster indexing. Data Min Knowl Disc 11(3):295–321

    Article  Google Scholar 

  24. Zhao K, Khryashchev D, Freire J, Silva C, Vo H (2016) Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: IEEE international conference on big data

  25. Lv Y, Duan Y, Kang W, Li Z, Wang F-Y (2015) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 16(2):865–873

    Google Scholar 

  26. Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 15:2191–2201

    Article  Google Scholar 

  27. Graham B (2014) Spatially-sparse convolutional neural networks. Comput Sci 34(6):864–867

    MathSciNet  Google Scholar 

  28. Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp Res Part C Emerg Technol 54:187–197

    Article  Google Scholar 

  29. Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, p 802–810

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., Li, Z., Gan, M. et al. A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Comput & Applic 31, 1665–1677 (2019). https://doi.org/10.1007/s00521-018-3470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3470-9

Keywords

Navigation