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Abstract 
Artificial metaplasticity is the machine learning algorithm inspired in the biological metaplasticity of neural synapses. 
Metaplasticity stands for plasticity of plasticity, and as long as plasticity is related to memory, metaplasticity is related to 
learning. Implemented in supervised learning assuming input patterns distribution or a related function, it has proved to be 
very efficient in performance and in training convergence for multidisciplinary applications. Now, for the first time, this 
kind of artificial metaplasticity is implemented in an unsupervised neural network, achieving also excellent results that are 
presented in this paper. To compare results, a modified self-organization map is applied to the classification of MIT-BIH 
cardiac arrhythmias database. 
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1 Introduction 

Biological synaptic plasticity is the ability of the synapse 
between two neurons to modulate its efficiency, and its key 
relevance in biological brains and intelligence is well 
known. Biological metaplasticity concept was introduced 
by Abraham [1] as a form of persistent synaptic plasticity 
induced by synaptic or cellular activity. Metaplasticity is 
thus a higher-order form of synaptic plasticity. Metaplas­
ticity means a higher level of plasticity, the plasticity of the 
plasticity itself related to changes in synaptic efficiency 

that can cause an enhancement or a reduction in synaptic 
strength [2, 3]. 

A proposal of artificial metaplasticity (AMP) was gen­
erally introduced by Andina et al. [4] and detailed for 
supervised artificial neural networks (ANN). After relevant 
results that can be found in the literature, now, for the first 
time, this kind of artificial metaplasticity is implemented in 
an unsupervised neural network, achieving also excellent 
results that are presented in this paper. To compare results, 
a modified self-organization map is applied to the classi­
fication of MIT-BIH cardiac arrhythmias database. 

This paper is organized as follows: in Sect. 2, artificial 
metaplasticity in supervised neural networks is briefly 
described and references are given to enter in details. Then, 
in Sect. 2.1 artificial metaplasticity implemented in self-
organization map (Kohonen's network) and applied to 
arrhythmias classification is detailed. In Sect. 3, data 
preparation and network structure selection are described. 
Results of experiments are presented in Sect. 4, followed 
by a discussion in Sect. 5, and finally ending with appro­
priate conclusions in Sect. 6. 



2 Artificial metaplasticity in neural networks 

In the learning phase, ANN weights are adjusted to obtain a 
specific performance or task. These weights are adjusted 
iteration by iteration. In this network learning process AMP 
is implemented by modifying the way the weights change 
by introducing a variable function in this process. Ropero-
Pelaez [5], Andina [4] and Marcano-Cedeño [6] have 
introduced and modeled the biological property of meta­
plasticity in the field of ANNs, obtaining excellent results 
in multidisciplinary applications. They apply an approach 
that connects metaplasticity and Shannon's information 
theory, which establishes that less frequent patterns carry 
more information than frequent patterns [7]. In this AMP 
model, greater modifications in the synaptic weights are 
produced with less frequent patterns and fewer modifica­
tions with more frequent ones. Biological metaplasticity 
favors synaptic strengthening for low-level synaptic 
activity, while the opposite occurs for the high-level 
activity. 

The artificial metaplasticity on multilayer perceptron 
supervised gradient-descent learning algorithm (AMMLP) 
tries to improve backpropagation algorithm (BPA) by 
including a variable learning rate in the training phase 
affecting the weights in each iteration step, that is the 
metaplasticity, instead of the uniform plasticity that applies 
in the classical BPA [8]. If s, j , i e N are the MLP layer, 
node and input counter, respectively, W(t) weight matrix 

03](f) € R, f] is the learning ratio, and then we can express 
the weight reinforcement in each iteration t as: 
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Note that/J is a function to improve the learning process 
that implements the metaplasticity concept. One possibility 
tested by several authors [4, 6, 9] is to implement an 
AMMLP based on an estimation of the distribution of the 
input patterns being then the function f£: 

A 
(2) £M = 

(2n) • e E N , 

where N is the number of neurons in the MLP input layer, 
and parameters A and B € R+ are algorithm optimization 
values empirically determined which depend on the 
specific application of the AMMLP algorithm. Notice that 
to apply the proposed f£ function patterns are normalized. 

As the outputs of an MLP are approximations of the a 
posteriori probability of the different classes [10], another 
option of implementing AMMLP was presented by the 
authors of this contribution [11] based on the estimation of 

a posteriori probability density function considering f£ as 
follows: 

yL^P{Hi/x)=fx{x) (3) 

where yL is the output of the neuron that estimates the a 
posteriori probability of the class. It can be seen that Eq. 3 
takes advantage of the inherent probabilities estimation of 
the MLP for each input class. 

It has to be noticed that in the first steps of the training 
the outputs of the MLP do not provide yet any valid esti­
mation of the probabilities, so the training may not con­
verge. In practice, there are rarely instability problems of 
this kind, but if they occur, it is then better in these first 
steps of training, either to apply ordinary BPA training or 
to use another valid weighting function till BPA starts to 
minimize the error objective. 

2.1 Artificial metaplasticity in SOMs 

SOMs, self-organizing maps, are ANNs proposed by 
Kohonen [12, 13] where competitive learning is carried 
out, hence only one neuron is activated in each iteration, 
the so-called winner takes all neuron, and they are char­
acterized by the formation of a topographic map of the 
input patterns. In a SOM, the neurons are normally dis­
placed in a two-dimensional lattice and a weight matrix is 
randomly set. 

The learning process follows the following rule. 

(4) wj(t +1) = w,-(0 + fKOMO (x - WJW) 

where w, is the vector of weights of neuron j and x is the 
input pattern of the correspondent iteration and /z,y is a 
neighborhood function that determines which neurons, 
besides, the 'winner takes all neuron', update its weights. 

It should be noted that the learning rate r\ is not a con­
stant but time dependent i/(f), and it decreases as the 
training phase evolves. As the training phase advance, the 
weights of each neuron tend to define a centroid of the 
input patterns that activates that neuron. 

The modification that is proposed to introduce artificial 
metaplasticity in these kinds of neural networks is to 
modify the learning process in the same way it has been 
done in the MLP case assuming/^ to be Gaussian form. So, 
what we introduce in the learning ratio is the factor 1//J 
being the new updating weights rule: 

w,-(i + 1) = w,-(0 +-t](t)hu(t)(x - w,-(0) 
Jx 

with, 
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We define the ANN which implement this learning 
process as AMSOM (artificial metaplasticity self-organiz­
ing map). As in the AMMLP case patterns are normalized 
to (— 1, 1) interval. 

3 Materials and methods 

3.1 Data preparation 

The MIT-BIH Arrhythmia Database was the first generally 
available set of ECGs (electrocardiograms) test material for 
evaluation of arrhythmia detectors [14]. Database contains 
48 half-hour excerpts of two-channel, 24-hour, studied by 
the BIH Arrhythmia Laboratory. 1000 annotated ECG 
beats which contain 4 different waveforms related to car­
diac arrhythmias target, Normal beat (AO; premature ven­
tricular contraction (PVC); right bundle branch block 
(RBBB) and left bundle branch block (LBBB) have been 
used in this research. In Table 1, the eleven feature 
descriptors for characterizing the cardiac arrhythmias are 
presented. Components of ECG signal could be seen in 
Fig. 1. 

The data set is formed by 1000 patterns divided equally 
in four classes with 250 patterns each (N, PVC, RBBB and 
LBBB). We denominate, respectively, these classes as H\, 
H2, i/3, and i/4. In order to apply metaplasticity using the 
function f£, previously presented database patterns are 
normalized to (— 1, 1) interval. To obtain results statisti­
cally independent of the distribution of the patterns, a 
tenfold cross-validation evaluation method has been con­
sidered. By using this method, the possible dependence of 
the results with the distribution of the samples in the 
training or performance evaluation sets is eliminated. All 
the samples are used to train the networks and to evaluate 

Fig. 1 ECG signal components 

their performance in different executions of the experiment 
for the same initial neural networks. Average values are 
calculated to establish the final performance results. 

3.2 Network structure selection 

For the case of the supervised AMMLP ANN, an 11/9/4 
network structure is selected, that is, 11 input neurons, one 
for each relevant feature selected, 9 neurons in the hidden 
layer, and 4 output neurons to represent the four possible 
classes. 

Regarding the AMMLP training phase, the following 
parameters are considered: 

• Learning rate r\ = \. 
• Activation function is sigmoidal with value in the 

interval (0, 1). 
• Initialize all weights in weight matrix W randomly 

between ( - 0.5, 0.5) 
• if epochs = 200 stop training 
• if mean squared error, MSE = 0.01 stop training 
• for Gaussian AMMLP case A = 39 and B = 0.5 are 

empirically selected. 

For the case of the SOM and AMSOM networks dif­
ferent structures are compared: 

Table 1 Feature descriptors 

Attributes Meaning 

Duration P 

PR interval 

QRS complex 

Duration T 

ST segment 

QT interval 

RR previous: RRp 

RR next: RRn 

RDI (delay of the deflexion) 

Beat duration 

RRp/RRn. 

The width of the P wave 

The distance between the beginning of the P wave and the beginning of QRS 

The distance between the beginning of the Q wave and the end of the S wave 

The width of the T wave 

The distance between the end of the S wave or R and the beginning of the T wave 

The distance between the beginning of QRS and the end of the T wave 

The distance between the R peak of the present beat and the R peak of the previous beat 

RRn: the distance between the R peak of the present beat and the R peak of the following beat 

From the beginning of QRS to the top of the latest wave of positivity R peak 

The distance between the beginning of the P wave and the end of the T wave 

The ratio RRp/RRn 



• Network size: 6 x 4 and 9 x 8 . 
• epochs: 200 and 500. 
• Learning rate: initially r\ =0.2 at the end of the training 

phase r\ =0.001. 
• Initialize all weights in weight matrix W randomly 

between (— 1, 1). 
• Neighborhood function: rectangular function. 
• Winner neuron determination: Euclidean distance 

between input pattern and weights vector of each 
neuron 

• metaplasticity parameters: A = 5750 and B = 0.5 are 
empirically selected. 

4 Results 

In this section, we present the results obtained in this 
research. All the network structures were trained and tested 
with the same data and validated using tenfold cross-vali­
dation. The eleven attributes detailed in Table 1 were used 
as the networks inputs. The SOM, AMSOM and AMMLP 
proposed as classifiers for cardiac arrhythmias were 
implemented in MATLAB by using functions from the 
Neural Networks Toolbox cLsfeedforwardnet, with traingdx 
training function, for the AMMLP cases, and selforgmap 
for the SOM cases. Due to the impossibility to introduce 
the modifications related to the metaplasticity algorithm in 
the learning part of the process in these standard MATLAB 
functions, we had to build our own codes instead of using 
the ones included in the Toolbox. It is important to remark 
that patterns representing the four classes are alternately 
presented to the network in the training phase. If not, 
results are clearly worst. 

4.1 Performance indicators 

To evaluate the performance of the classifiers, three per­
formance indicators defined as follows are used: Sensitivity 
(SE) = OjJE.) x 100, Specificity(SP) = ( f ^ ) x 100 
and Accuracy(AC) = (Tp+^+™+FN) x 100, where TP, 
TN, FP, and FN stand for true positive, true negative, false 
positive and false negative, respectively. 

4.2 Performance evaluation 

For test results to be more valuable, a tenfold cross-vali­
dation is used in all of our experiments by separating the 
selected 1000 samples randomly into 10 subsets with 100 
records each and then taking each subset as test data in 
turns. This cross-validation method is used among the 
researchers because it minimizes the bias associated with 
the random sampling of the training. The classification 

algorithm is trained and tested k times. In each case, one of 
the folds is taken as test data and the remaining folds are 
added to form training data. Thus, k different test results 
exist for each training-test configuration. The average of 
these results provides the test accuracy of the algorithm. 

In Table 2, results are presented, and SOM, AMSOM, 
AMMLPl and AMMLP2 stand, respectively, for standard 
self-organizing map, artificial metaplasticity SOM, MLP 
implementing Gaussian function to modify the weights of 
the network and MLP implementing the output of the 
network to modify the weights. AMMLPl and AMMLP2 
results were presented in [9, 11]. The models are evaluated 
based on the accuracy measures discussed above (classifi­
cation accuracy, sensitivity and specificity). The results 
were achieved using tenfold cross-validation for each 
model and are based on the average results obtained from 
the test data set for each fold. 

The evolution of parameters specificity, sensitivity, and 
accuracy for the best networks of this study can be seen in 
Fig. 2. For AMMLPl, AMMLP2 and SOM 6 x 4 we 
present the evolution till 300 epochs because best results 
are obtained after 200 epochs. However, for the AMSOM 
9 x 6 evolution for 500 epochs is shown because this last 
network improves its performance between 200 and 500 
epochs. It can be seen that SOM 6 x 4 is the fastest ANN in 
reaching higher values of specificity and maintains the best 
performance for this parameter (99.70). AMMLP2 behaves 
similar to SOM 6 x 4 in terms of specificity where 
AMMLP obtains the worst performance. Finally, AMSOM 
9 x 6 begins lower in terms of specifity, but as the number 
of epochs increases it almost reaches the value of SOM 
6 x 4 (99.6). Regarding the sensitivity, AMSOM 9 x 6 and 
AMMLPl present the best performance, while AMMLP 
shows slightly worse performances and finally SOM 6 x 4 
performs clearly worse in terms of specificity than the other 
neural networks. In terms of accuracy, AMMLPl, 
AMMLP2, and AMSOM 9 x 6 get better values than tra­
ditional SOM 6 x 4 network. 

Table 2 SOM and AMSOM results 

Classifier 

SOM 

AMSOM 

SOM 

AMSOM 

SOM 

AMSOM 

SOM 

AMSOM 

AMMLPl 

AMMLP2 

Network 

6 x 4 

6 x 4 

9 x 6 

9 x 6 

6 x 4 

6 x 4 

9 x 6 

9 x 6 

11/9/4 

11/9/4 

Epochs 

200 

200 

200 

200 

500 

500 

500 

500 

200 

200 

SP 

99.70 

92.00 

97.00 

98.40 

99.70 

92.20 

99.60 

99.60 

97.79 

99.60 

SE 

96.26 

93.86 

97.15 

98.13 

96.67 

93.25 

96.87 

98.84 

98.30 

98.10 

AC 

97.20 

93.30 

97.10 

98.20 

97.50 

92.90 

97.20 

99.04 

98.25 

98.70 
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Fig. 2 Performance evolution: a specificity, b sensibility and c accuracy 

For comparison purposes, Table 3 gives the classifica­
tion accuracies of our proposed methods and other methods 
applied to the same database. As it can be seen from the 
results, AMMLP2 and AMSOM methods are among the 
best in classification accuracy. We are going to briefly 
summarize the different approaches carried out by the 
researchers related in Table 3. Minami et al. [15] applied 
the Fourier Transform to the QRS complex obtaining the 
different frequency components to train an MLP Neural 
network with BPA for classification purpose. This idea was 
evolved by Ghorbanian et al. [19] who used continuous 
wavelet transform instead of fourier transform. The com­
puted wavelet coefficients were used to train the MLP with 
BPA. Owis et al. [16] applied principal component analysis 

(PCA) and Independent Component Analysis (ICA) to 
extract the number of components that best characterizes 
the ECG beat signals. This idea was evolved by Yu et al. 
[17] by using Fast-ICA algorithm to process the QRS 
signals and then training a Probabilistic Neural Network 
formed by a radial bases function layer and a competitive 
layer with the obtained patterns. Alonso et al. [20], Elhaj 
et al. [21] and Shanshan et al. [23] applied Support Vector 
Machines instead of Neural Networks for ECG classifica­
tion after a process of feature selection. Alonso et al. use 13 
parameters training patterns that can be divided into three 
types: time-morfological parameters, frequency parameters 
and complex parameters. Eljah et al. generates 28 com­
ponents training patterns using Discrete Wavelet 



Table 3 Classification accuracies obtained with our method and other 
classifiers from the literature 

References 

Minami et al. [15] 

Owis et al. [16] 

Yu et al. [17] 

Benchaib et al. [18] 

Ghorbanian et al. [19] 

Benchaib et al. [9] 

Alonso et al. [20] 

Torres et al. [11] 

Elhaj et al. [21] 

Kyranyaz et al. [22] 

Shanshan et al. [23] 

In this study 

In this study 

Method 

Fourier-NN 

Blind source separation 

ICA-NN 

MLP BPA 

CWT-NN 

AMMLP1 

SVM 

AMMLP2 

SVM-RBF 

lD-CNNs 

FE-SVM 

SOM 

AMSOM 

Accuracy 

98.00 

96.79 

98.71 

95.12 

99.17 

98.25 

99.10 

98.70 

98.91 

99.00 

98.41 

97.50 

99.04 

Transform (DWT) + PCA, ICA, and Higher Order 
Statistics (HOS) to train a SVM with Gaussian kernel 
(SVM-RBF). Shamsan et al. obtain 30 parameters for each 
training pattern using a projection matrix with the ECG 
signal. Recently Kiranyaz [22] have applied the new 
Convolutional Neural Networks (CNNs) to this problem 
obtaining remarkable results. The proposed neural structure 
combines CNN layers with final MLP layers. 

4.3 learning evolution 

In this section we present some error evolution graphics of 
the different ANNs proposed. AMMLP networks Error 
evolution is evaluated at the end of every epoch of training. 

In each epoch 900 patterns are presented to the network. In 
Fig. 3, error evolution is presented for AMMLP1 and 
AMMLP2. 

In the SOM case it has to be notice that we cannot 
specifically talk about an error because there is no output 
expected for the neuron so with the objective of observing 
the correct evolution of the training phase we have used the 
average in an epoch of the distance between the input 
pattern and the weights of the winning neuron in each 
iteration. This learning evolution is showed in Fig. 4, for 
SOM 6 x 4 , AMSOM 6 x 4 , and AMSOM 9 x 6 . 

5 Discussion 

As seen in Table 2 results obtained by the SOM are better 
than the ones obtained by the AMSOM in the case of the 
6 x 4 networks no matter the number of epochs. When we 
increase the network dimensions to 9 x 6, the AMSOM 
results improve being better than SOM results which 
remain similarly. It has to be noticed that the AMSOM 
results also improve in the 9 x 6 network when increasing 
the epoch to 500, greater number of epochs does not 
improve the results. When increasing the size of the net­
work to 12 x 8 results do not improve. Notice that in this 
case in the evaluation phase some input patterns activate 
neurons of the network that has not been activated in the 
training process so there is no possibility to classify them. 
Regarding the evolution of specificity, sensitivity and 
accuracy parameters evolve quickly till 50 epochs and the 
evolution is much softer stopping in 200 epochs for the 
majority of the studied networks except for the AMSOM 
9 x 6 . 

MCLI:; ¡-[-¡-of Í-Áiilulson Mean Error Evolui 

Number of epochs 

(a) 
Number of epochs 

(b) 

Fig. 3 Error evolution: a AMMLP1 and b AMMLP2 
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Fig. 4 learning evolution: a SOM 6 x 4, b AMSOM 6 x 4 and c AMSOM 9 x 6 

Regarding the learning evolution view as the average of 
the distance from the input pattern to the weights of the 
winning neurons, this distance begins lower in the case of 
SOMs than in AMSOMs and evolves differently in both 
cases. For the SOM networks, the evolution is quicker 
because in the case of AMSOM in some iterations weight 
vector can be move away from the input pattern recuper­
ating this proximity in the following iterations. Although 
the learning evolution is slower in AMSOM case, classi­
fication rates are better. It also can be seen that at the 
beginning of the training phase different neurons are acti­
vated for each input pattern, but as the training evolves 
winner neuron becomes stable. Particulary in the AMSOM 
case, we can observe more variability in the winner neuron 
than in the SOM case. For the supervised networks case we 
can observe that the training error decrease quicker in 

AMMLP1 than in AMMLP2 but AMMLP2 reaches the 
final value first. We can also observe that for AMMLP1 
case there are a lot of peaks in the error evolution but for 
AMMLP2 case the error evolution is softer. 

6 Conclusions 

In this contribution, AMP, artificial metaplasticity, in SOM 
neural networks has been proposed as a new method to 
improve training and performance in unsupervised neural 
networks obtaining satisfactory results. It is remarkable to 
note that the idea of artificial metaplasticity in unsuper­
vised neural networks is totally new and opens a new 
potential for the unsupervised ANNs results. Proposed 
implementation of AMP has been applied to the problem of 



arrythmia classification. It has been shown that although in 
reduced size SOM networks results were better than those 
of AMSOM, when increasing the size of the network the 
AMSOM results become better. The AMSOM results are 
among the best of the state-of-the-art published algorithms 
applied to this problem similarly to the case of the 
AMMLPs algorithms applied to MLP networks. Regarding 
the learning evolution, AMPs classificators progress with 
more variability, although performance results are better. 
The results indicate that the use of AMP algorithms in 
unsupervised (SOM) and supervised (MLP) networks is an 
alternative option for cardiac arrhythmias detection and 
could be used as a computer-aided detection system for 
second opinion by physicians, when making their diag­
nostic decisions. 
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