Skip to main content
Log in

Stability analysis for a class of impulsive high-order Hopfield neural networks with leakage time-varying delays

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work considers the existence, the uniqueness, and the global exponential stability, the uniform asymptotic stability, the global asymptotic stability and the uniform stability, of a class of impulsive high-order Hopfield neural networks with distributed delays and leakage time-varying delays. The existence of a unique equilibrium point is proved by using contraction mapping principle theorem. By finding suitable Lyapunov–Krasovskii functional, some sufficient conditions are derived ensuring same kinds of stability. Finally, we analyze some numerical examples proving the efficiency of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aouiti C, Aouiti C, M’hamdi MS, Touati A, M’hamdi MS, Touati A (2017) Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays. Neural Process Lett 45(1):121–140

    Article  MATH  Google Scholar 

  2. Aouiti C, M’hamdi MS, Cao J, Alsaedi A (2017) Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays. Neural Process Lett 45(2):615–648

    Article  Google Scholar 

  3. Aouiti C (2016) Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2558-3

    Article  Google Scholar 

  4. Aouiti C (2016) Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cognit Neurodynamics 10(6):573–591

    Article  MathSciNet  Google Scholar 

  5. Aouiti C, Dridi F (2018) Piecewise asymptotically almost automorphic solutions for impulsive non-autonomous high-order Hopfield neural networks with mixed delays. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3378-4

    Article  Google Scholar 

  6. Alimi AM, Aouiti C, Chérif F, Dridi F, M’hamdi MS, (2018) Dynamics and oscillations of generalized high-order Hopfield Neural Networks with mixed delays. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.01.061

  7. Abbas S, Mahto L, Hafayed M, Alimi AM (2014) Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients. Neurocomputing 142:326–334

    Article  Google Scholar 

  8. Nie X, Cao J (2012) Existence and global stability of equilibrium point for delayed competitive neural networks with discontinuous activation functions. Int J Syst Sci 43(3):459–474

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao J, Liang J, Lam J (2004) Exponential stability of high-order bidirectional associative memory neural networks with time delays. Physica D Nonlinear Phenom 199(3):425–436

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu B, Liu X, Liao X (2003) Global asymptotic stability of high-order Hopfield type neural networks with time delays. Comput Math Appl 45(10):1729–1737

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang B, Xu S, Li Y, Chu Y (2007) On global exponential stability of high-order neural networks with time-varying delays. Phys Lett A 366(1):69–78

    Article  Google Scholar 

  12. Xu B, Liu X, Liao X (2006) Global exponential stability of high order Hopfield type neural networks. Appl Math Comput 174(1):98–116

    MathSciNet  MATH  Google Scholar 

  13. Xu B, Wang Q, Liao X (2008) Stability analysis of high-order Hopfield type neural networks with uncertainty. Neurocomputing 71(4):508–512

    Article  Google Scholar 

  14. Wang Y, Cao J (2013) Exponential stability of stochastic higher-order BAM neural networks with reactiondiffusion terms and mixed time-varying delays. Neurocomputing 119:192–200

    Article  Google Scholar 

  15. Lou XY, Cui BT (2007) Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays. J Math Anal Appl 330(1):144–158

    Article  MathSciNet  MATH  Google Scholar 

  16. Zheng CD, Zhang H, Wang Z (2011) Novel exponential stability criteria of high-order neural networks with time-varying delays. IEEE Trans Syst Man Cybern Part B (Cybernetics) 41(2):486–496

    Article  Google Scholar 

  17. Zhang A, Qiu J, She J (2014) Existence and global exponential stability of periodic solution for high-order discrete-time BAM neural networks. Neural Netw 50:98–109

    Article  MATH  Google Scholar 

  18. Huang Z, Yang QG (2010) Exponential stability of impulsive high-order cellular neural networks with time-varying delays. Nonlinear Anal Real World Appl 11(1):592–600

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu X, Teo KL, Xu B (2005) Exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. IEEE Trans Neural Netw 16(6):1329–1339

    Article  Google Scholar 

  20. Liu X, Wang Q (2008) Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays. IEEE Trans Neural Netw 19(1):71–79

    Article  MathSciNet  Google Scholar 

  21. Qiu J (2010) Dynamics of high-order Hopfield neural networks with time delays. Neurocomputing 73(4):820–826

    Article  Google Scholar 

  22. Wang F, Sun D, Wu H (2015) Global exponential stability and periodic solutions of high-order bidirectional associative memory (BAM) neural networks with time delays and impulses. Neurocomputing 155:261–276

    Article  Google Scholar 

  23. Hu M, Cao J, Hu A (2014) Exponential stability of discrete-time recurrent neural networks with time-varying delays in the leakage terms and linear fractional uncertainties. IMA J Math Control Inf 31(3):345–362

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu Q, Cao J, Hayat T, Alsaadi F (2015) Robust stability of Markovian jump stochastic neural networks with time delays in the leakage terms. Neural Process Lett 41(1):1–27

    Article  Google Scholar 

  25. Li X, Rakkiyappan R, Balasubramaniam P (2011) Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J Frankl Inst 348(2):135–155

    Article  MathSciNet  MATH  Google Scholar 

  26. Li X, Fu X, Balasubramaniam P, Rakkiyappan R (2010) Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal Real World Appl 11(5):4092–4108

    Article  MathSciNet  MATH  Google Scholar 

  27. Li X, Cao J (2010) Delay-dependent stability of neural networks of neutral type with time delay in the leakage term. Nonlinearity 23(7):1709

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang H, Shao J (2013) Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms. Appl Math Comput 219(24):11471–11482

    MathSciNet  MATH  Google Scholar 

  29. Long S, Song Q, Wang X, Li D (2012) Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations. J Frankl Inst 349(7):2461–2479

    Article  MathSciNet  MATH  Google Scholar 

  30. Li Y, Li Y (2013) Existence and exponential stability of almost periodic solution for neutral delay BAM neural networks with time-varying delays in leakage terms. J Frankl Inst 350(9):2808–2825

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen X, Song Q (2013) Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales. Neurocomputing 121:254–264

    Article  Google Scholar 

  32. Li L, Yang Y, Lin G (2016) The stabilization of BAM neural networks with time-varying delays in the leakage terms via sampled-data control. Neural Comput Appl 27(2):447–457

    Article  Google Scholar 

  33. Gong W, Liang J, Cao J (2015) Global stability of complex-valued delayed neural networks with leakage delay. Neurocomputing 168:135–144

    Article  Google Scholar 

  34. Pan L, Cao J (2011) Anti-periodic solution for delayed cellular neural networks with impulsive effects. Nonlinear Anal Real World Appl 12(6):3014–3027

    MathSciNet  MATH  Google Scholar 

  35. Bao H, Cao J (2011) Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and Markovian jumping parameters. Commun Nonlinear Sci Numer Simul 16(9):3786–3791

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu Q, Cao J (2010) Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 21(8):1314–1325

    Article  Google Scholar 

  37. Zhu Q, Cao J (2012) Stability of Markovian jump neural networks with impulse control and time varying delays. Nonlinear Anal Real World Appl 13(5):2259–2270

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang Y, Cao J (2014) Exponential synchronization of coupled stochastic and switched neural networks with impulsive effects. In: International symposium on neural networks, pp 69–79. Springer, Berlin

  39. Yao F, Cao J, Qiu L, Cheng P (2015) Input-to-state stability analysis of impulsive stochastic neural networks based on average impulsive interval. In: Control conference (CCC), 2015 34th Chinese, pp 1775–1780. IEEE

  40. Mohamad S (2007) Exponential stability in Hopfield-type neural networks with impulses. Chaos Solitons Fractals 32(2):456–467

    Article  MathSciNet  MATH  Google Scholar 

  41. Li X, Chen Z (2009) Stability properties for Hopfield neural networks with delays and impulsive perturbations. Nonlinear Anal Real World Appl 10(5):3253–3265

    Article  MathSciNet  MATH  Google Scholar 

  42. Mohamad S, Gopalsamy K, Akca H (2008) Exponential stability of artificial neural networks with distributed delays and large impulses. Nonlinear Anal Real World Appl 9(3):872–888

    Article  MathSciNet  MATH  Google Scholar 

  43. Rakkiyappan R, Pradeep C, Vinodkumar A, Rihan FA (2013) Dynamic analysis for high-order Hopfield neural networks with leakage delay and impulsive effects. Neural Comput Appl 22(1):55–73

    Article  Google Scholar 

  44. Bainov DD, Simeonnov PS (1989) System with impulse effect: stability theory. Wiley, New York

    Google Scholar 

  45. Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations, vol 6. World scientific, Singapore

    Book  Google Scholar 

  46. Aouiti C, Coirault P, Miaadi F, Moulay E (2017) Finite time boundedness of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.04.048

    Article  Google Scholar 

  47. Sanchez EN, Perez JP (1999) Input-to-state stability (ISS) analysis for dynamic NN. IEEE Trans Circuits Syst I 46(11):1395–1398

    Article  MATH  Google Scholar 

  48. Berman A, Plemmons RJ (1979) Nonnegative matrices. The mathematical sciences, classics in applied mathematics. Academic Press, Cambridge, p 9

    Google Scholar 

  49. Gu K (2000) An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE conference on decision and control, vol 3, pp 2805–2810. IEEE

  50. Granas A, Dugundji J (2003) Fixed point theory. Springer, Berlin

    Book  MATH  Google Scholar 

  51. Zhang Y, Wang QG (2009) Stationary oscillation for high-order Hopfield neural networks with time delays and impulses. J Comput Appl Math 231(1):473–477

    Article  MathSciNet  MATH  Google Scholar 

  52. Li F (2012) Impulsive control for a general Hopfield neural network with distributed delays. Adv Dyn Syst Appl 7(1):95–108

    MathSciNet  Google Scholar 

  53. Ren F, Cao J (2007) Periodic oscillation of higher-order bidirectional associative memory neural networks with periodic coefficients and delays. Nonlinearity 20(3):605

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu YJ, Tong S (2016) Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems. IEEE Trans Cybern 46(11):2670–2680

    Article  Google Scholar 

  55. Liu L, Wang Z, Zhang H (2017) Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans Autom Sci Eng 14(1):299–313

    Article  Google Scholar 

  56. Liu YJ, Gao Y, Tong S, Chen CP (2016) A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Trans Neural Netw Learn Syst 27(1):139–150

    Article  MathSciNet  Google Scholar 

  57. Gupta M, Jin L, Homma N (2004) Static and dynamic neural networks: from fundamentals to advanced theory. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaouki Aouiti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

1.1 A Proof of Theorem 1

According to system (3), we have:

$$\begin{aligned} x^*_i&= c_i^{-1}\bigg [\displaystyle \sum _{j=1}^{n}a_{ij}f_j(x_j^*)+\displaystyle \sum _{j=1}^{n}b_{ij}g_j(x_j^*)+\displaystyle \sum _{j=1}^{n}d_{ij}h_j(x_j^*)\nonumber \\&\qquad + \displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}T_{ijk}g_k(x^*_k)g_j(x^*_j)+\overline{I}_i\bigg ] \end{aligned}$$
(11)

Define the mapping \({\varPsi }:\mathbb {R}^n\rightarrow \mathbb {R}^n\) as:

$$\begin{aligned} {\varPsi }(x_1,\ldots ,x_n)=\left( \begin{array}{ccc} c_1^{-1}\bigg [\displaystyle \sum _{j=1}^{n}a_{1j}f_j(x_j)+\displaystyle \sum _{j=1}^{n}b_{1j}g_j(x_j) \\ +\displaystyle \sum _{j=1}^{n}d_{1j}h_j(x_j)\\ +\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}T_{1jk}g_k(x_k)g_j(x_j)+\overline{I}_1\bigg ] \\ \vdots \\ c_n^{-1}\bigg [\displaystyle \sum _{j=1}^{n}a_{nj}f_j(x_j)+\displaystyle \sum _{j=1}^{n}b_{nj}g_j(x_j)\\ +\displaystyle \sum _{j=1}^{n}d_{nj}h_j(x_j)\\ +\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}T_{njk}g_k(x_k)g_j(x_j)+\overline{I}_n\bigg ] \end{array}\right) \end{aligned}$$

We will show that \({\varPsi }:\mathbb {R}^n\rightarrow \mathbb {R}^n\) is a global contraction map on \(\mathbb {R}^n\).

In fact, from Assumptions (H1) and (H2), for \(\overline{x}=(\overline{x}_1,\ldots ,\overline{x}_n)^T, x=(x_1,\ldots ,x_n)^T\in \mathbb {R}^n\), we get:

$$\begin{aligned}&\big |{\varPsi }_i(\overline{x}_1,\ldots ,\overline{x}_n))-{\varPsi }_i(x_1,\ldots ,x_n)\big | \\&\quad= \bigg |c^{-1}_i\bigg \{\displaystyle \sum _{j=1}^{n}a_{ij}\bigg [f_j(\overline{x}_j)-f_j(x_j)\bigg ]+\displaystyle \sum _{j=1}^{n}b_{ij}\bigg [g_j(\overline{x}_j)-g_j(x_j)\bigg ]\\&\quad +\displaystyle \sum _{j=1}^{n}d_{ij}\bigg [h_j(\overline{x}_j)-h_j(x_j)\bigg ]\\&\quad +\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}T_{ijk}\bigg [g_k(\overline{x}_k)g_j(\overline{x}_j)-g_k(x_k)g_j(x_j)\bigg ]\bigg \}\bigg |\\&\le \bigg |c^{-1}_i\bigg \{\displaystyle \sum _{j=1}^{n}a_{ij}\bigg [f_j(\overline{x}_j)-f_j(x_j)\bigg ]+\displaystyle \sum _{j=1}^{n}b_{ij}\bigg [g_j(\overline{x}_j)-g_j(x_j)\bigg ]\\&\quad +\displaystyle \sum _{j=1}^{n}d_{ij}\bigg [h_j(\overline{x}_j)-h_j(x_j)\bigg ]\\&\quad +\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}T_{ijk}\bigg [g_k(\overline{x}_k)g_j(\overline{x}_j)-g_k(\overline{x}_k)g_j(x_j)\\&\quad +g_k(\overline{x}_k)g_j(x_j)-g_k(x_k)g_j(x_j)\bigg ]\\ &\le \displaystyle \bigg |c^{-1}_i\bigg \{\displaystyle \sum _{j=1}^{n}a_{ij}\bigg [f_j(\overline{x}_j)-f_j(x_j)\bigg ]+\displaystyle \sum _{j=1}^{n}b_{ij}\bigg [g_j(\overline{x}_j)-g_j(x_j)\bigg ]\\&\quad +\displaystyle \sum _{j=1}^{n}d_{ij}\bigg [h_j(\overline{x}_j)-h_j(x_j)\bigg ]+\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}T_{ijk}\qquad \bigg [g_k(\overline{x}_k)\bigg (g_j(\overline{x}_j)-g_j(x_j)\bigg )\\&\quad +g_j(x_j)\bigg (g_k(\overline{x}_k)-g_k(x_k)\bigg )\bigg ] \end{aligned}$$
$$\begin{aligned}\le & c_i^{-1}\displaystyle \sum _{j=1}^{n}|a_{ij}|L_j\bigg |\overline{x}_j-x_j\bigg |+\displaystyle \sum _{i=1}^{n}c_i^{-1}\displaystyle \sum _{j=1}^{n}|b_{ij}|M_j\bigg |\overline{x}_j-x_j\bigg |\nonumber \\&\quad +\displaystyle \sum _{i=1}^{n}c_i^{-1}\displaystyle \sum _{j=1}^{n}|d_{ij}|N_j\bigg |\overline{x}_j-x_j\bigg |\nonumber \\&\quad +c_i^{-1}\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}|T_{ijk}|\bigg [\big |g_k(\overline{x}_k)\big |\bigg |g_j(\overline{x}_j)-g_j(x_j)\bigg |\nonumber \\&\quad +\big |g_j(x_j)\big |\bigg |g_k(\overline{x}_k)-g_k(x_k)\bigg |\bigg ]\nonumber \\\le & c_i^{-1}\displaystyle \sum _{j=1}^{n}\bigg [L_j|a_{ij}|+M_j|b_{ij}|+\tau N_j|d_{ij}|\bigg ]\bigg |\overline{x}_j-x_j\bigg |\nonumber \\&\quad +c_i^{-1}\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}|T_{ijk}|\bigg [\chi _kM_j\bigg |\overline{x}_j-x_j\bigg |+\chi _jM_k\bigg |\overline{x}_k-x_k\bigg |\bigg ]\nonumber \\\le & c_i^{-1}\displaystyle \sum _{j=1}^{n}\bigg [L_j|a_{ij}|+M_j|b_{ij}|+ N_j|d_{ij}|+\sum _{k=1}^{n}|T_{ijk}|\chi _kM_j\bigg ]\nonumber \\\times & \bigg |\overline{x}_j-x_j\bigg |+c_i^{-1}\displaystyle \sum _{j=1}^{n}\sum _{k=1}^{n}\bigg [|T_{ikj}|\chi _kM_j\bigg ]\bigg |\overline{x}_j-x_j\bigg |\nonumber \\\le & c_i^{-1}\displaystyle \sum _{j=1}^{n}\bigg [L_j|a_{ij}|+M_j|b_{ij}|+ N_j|d_{ij}|+\sum _{k=1}^{n}|T_{ijk}|\chi _kM_j\nonumber \\&\quad +\displaystyle \sum _{k=1}^{n}|T_{ikj}|\chi _kM_j\bigg ]\bigg |\overline{x}_j-x_j\bigg | \end{aligned}$$
(12)

which implies that

$$\begin{aligned} \Vert {\varPsi }(\overline{x})-{\varPsi }(x)\Vert ^2= & \displaystyle \sum _{i=1}^{n}\big |\psi _i(\overline{x})-\psi _i(x)\big |^2 \\\le & \displaystyle \sum _{i=1}^{n}(c_i^{-1})^2\bigg (\displaystyle \sum _{j=1}^{n}\bigg [L_j|a_{ij}|+M_j|b_{ij}|+N_j|d_{ij}| \\&\quad +\sum _{k=1}^{n}|T_{ijk}|\chi _kM_j+\displaystyle \sum _{k=1}^{n}|T_{ikj}|\chi _kM_j\bigg ]\bigg |\overline{x}_j-x_j\bigg |\bigg )^2 \\\le & \displaystyle \sum _{i=1}^{n}(c_i^{-1})^2\displaystyle \sum _{j=1}^{n}\bigg [L_j|a_{ij}|+M_j|b_{ij}|+N_j|d_{ij}| \\&\quad +\sum _{k=1}^{n}|T_{ijk}|\chi _kM_j+\displaystyle \sum _{k=1}^{n}|T_{ikj}|\chi _kM_j\bigg ]^2\displaystyle \sum _{j=1}^{n}\bigg |\overline{x}_j-x_j\bigg |^2 \\\le & \gamma \Vert \overline{x}-x\Vert ^2 \end{aligned}$$

where

$$\begin{aligned} \gamma= & \displaystyle \sum _{i=1}^{n}(c_i^{-1})^2\displaystyle \sum _{j=1}^{n}\bigg [L_j|a_{ij}|+M_j|b_{ij}|+ N_j|d_{ij}|+\sum _{k=1}^{n}|T_{ijk}|\chi _kM_j \\&\quad +\displaystyle \sum _{k=1}^{n}|T_{ikj}|\chi _kM_j\bigg ]^2<1 \end{aligned}$$

From (4) we obtain \(\Vert {\varPsi }(\overline{x})-\psi (x)\Vert \le \sqrt{\gamma }\Vert \overline{x}-x\Vert \) which implies that the mapping \({\varPsi }:\mathbb {R}^n\rightarrow \mathbb {R}^n\) is a contraction on \(\mathbb {R}^n\) endowed with the Euclidean vector norm \(\Vert .\Vert \), and thus, there exists a unique fixed point \(x^*\in \mathbb {R}^n\) such that \({\varPsi }(x^*)=x^*\) which defines the unique solution of the system (1). \(\blacksquare \)

1.2 B Proof of Theorem 2

We only need to prove the zero solution of system (5) is globally exponentially stable.

Construct a Lyapunov–Krasovskii functional as follows: \(V(t)=V_1(t)+V_2(t)+V_3(t)+V_4(t)\), where:

$$\begin{aligned}&V_1(t)=e^{\overline{\varepsilon }t}y^T(t)P_1y(t) \\&\quad V_2(t)=\frac{1}{1-\rho }\displaystyle \int _{t-\tau (t)}^{t}e^{\overline{\varepsilon }s}G^T(y(s))[Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm{d}s \\&\quad V_3(t)=\displaystyle \sum _{j=1}^{n}\left[ q^{(3)}_j+r^{(3)}_j\right] \displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t-\theta }^{t}e^{\overline{\varepsilon }(s+\theta )}H_j^2(y_j(s))\mathrm{d}s\mathrm{d}\theta \end{aligned}$$

where \(Q_3=\mathrm{diag}(q^{(3)}_1,q^{(3)}_2,\ldots ,q^{(3)}_n)\), \(R_3=\mathrm{diag}(r^{(3)}_1,r^{(3)}_2,\ldots ,r^{(3)}_n)\)

$$\begin{aligned} V_4(t)=\sigma \displaystyle \int _{-\sigma }^{0}\int _{t+\theta }^{t}e^{\overline{\varepsilon }s}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm{d}s\mathrm{d}\theta \end{aligned}$$

From the definition of V(t), we know

$$\begin{aligned}&\lambda _\mathrm{min}(P_1)e^{\overline{\varepsilon }t}\Vert y(t)\Vert ^2\le V(t)\le \bigg [\lambda _\mathrm{max}(P_1)e^{\overline{\varepsilon }t}\Vert y(t)\Vert ^2\nonumber \\&\quad +\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*))}{\overline{\varepsilon }(1-\rho )}M\bigg (1-e^{-\overline{\varepsilon }\tau }\bigg )\bigg )\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}\left[ q^{(3)}_j+r^{(3)}_j\right] \max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\frac{1}{\overline{\varepsilon }}(e^{\overline{\varepsilon }\theta }-1)\mathrm{d}\theta \nonumber \\&\quad +\lambda _\mathrm{max}\left( C(Q_4+R_4)C\right) \sigma \left( \frac{1}{\overline{\varepsilon }^2}(\sigma \overline{\varepsilon }+e^{-\overline{\varepsilon }\sigma }-1)\right) \bigg ]e^{\overline{\varepsilon }t}\Vert y(t)\Vert ^2_{\sigma }. \end{aligned}$$
(13)

In addition we have from system (5), Lemmas 2 and 3 for \(t\in [t_k,t_{k+1}[\), \(k=1,2,\ldots ,\):

$$\begin{aligned}D^+V_1(t)&\le \overline{\varepsilon }e^{\overline{\varepsilon }t}y^T(t)P_1y(t)+2e^{\overline{\varepsilon }t}y^T(t)P_1\dot{y}(t)\nonumber \\&\quad +2e^{\overline{\varepsilon }t}\dot{y}^T(t)P_2[-\dot{y}(t)+\dot{y}(t)]\nonumber \\ & \le\, \overline{\varepsilon }e^{\overline{\varepsilon }t}y^T(t)P_1y(t)+2e^{\overline{\varepsilon }t}y(t)^TP_1\bigg [-Cy(t)+C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\nonumber \\&\quad +AF(y(t))+BG(y(t-\tau (t)))+{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\quad +D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]+2e^{\overline{\varepsilon }t}\dot{y}^T(t)\\&\quad P_2\bigg [-\dot{y}(t)-Cy(t)\nonumber \quad +C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s+AF(y(t))\\&\quad+BG(y(t-\tau (t)))\nonumber \\&\quad +{\varGamma }^TT^*G(y(t-\tau (t)))+D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]\nonumber \\\le & \overline{\varepsilon }e^{\overline{\varepsilon }t}y^T(t)P_1y(t)+e^{\overline{\varepsilon }t}\bigg [-2y(t)^TP_1Cy(t)\nonumber \\&\quad +2y(t)^TP_1AF(y(t))+2y(t)^TP_1BG(y(t-\tau (t))\nonumber \\&\quad +2y(t)^TP_1{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\quad +2y(t)^TP_1D\int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s+2y(t)^TP_1C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s-2\dot{y}^T(t)P_2\dot{y}(t)\nonumber \\&\quad -2\dot{y}^T(t)P_2Cy(t)+2\dot{y}^T(t)P_2AF(y(t))+2\dot{y}^T(t)P_2BG(y(t-\tau (t))\nonumber \\&\quad +2\dot{y}(t)^TP_2{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\quad +2\dot{y}^T(t)P_2D\int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s+2\dot{y}^T(t)P_2C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ] \end{aligned}$$
(14)
$$\begin{aligned}D^+V_2(t)&\le \frac{e^{\overline{\varepsilon }t}}{1-\rho }G^T(y(t))[Q_2+R_2+2T^{*T}T^*]G(y(t))\nonumber \\&\quad -e^{\overline{\varepsilon }(t-\tau (t))}G^T(y(t-\tau (t)))[Q_2+R_2+2T^{*T}T^*]G(y(t-\tau (t)))\nonumber \\&\le \frac{e^{\overline{\varepsilon }t}}{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)My^T(t)y(t)\nonumber \\&\quad -e^{\overline{\varepsilon }(t-\tau (t))}G^T(y(t-\tau (t)))[Q_2+R_2+2T^{*T}T^*]G(y(t-\tau (t))) \end{aligned}$$
(15)
$$\begin{aligned}D^+V_3(t)&\le \displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )e^{\overline{\varepsilon }(t+\theta )}H^2_j(y_j(t))\mathrm{d}\theta \nonumber \\&\quad -\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )e^{\overline{\varepsilon }t}H^2_j(y_j(t-\theta ))\mathrm{d}\theta \nonumber \\ &\le e^{\overline{\varepsilon }t}\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]H^2_j(y_j(t))\displaystyle \int _{0}^{+\infty }K_j(\theta )e^{\overline{\varepsilon }\theta }\mathrm{d}\theta \nonumber \\&\quad -e^{\overline{\varepsilon }t}\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )H^2_j(y_j(t-\theta ))\mathrm{d}\theta \nonumber \\&\le \beta _1e^{\overline{\varepsilon }t}\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]H^2_j(y_j(t))-e^{\overline{\varepsilon }t}\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\mathrm{d}\theta \nonumber \\ &\quad\times \displaystyle \int _{0}^{+\infty }K_j(\theta )H^2_j(y_j(t-\theta ))\mathrm{d}\theta \nonumber \\ &\le \beta _1\lambda _\mathrm{max}(Q_3+R_3)Ny^T(t)y(t)-e^{\overline{\varepsilon }t}\bigg (\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg )^T\nonumber \\&\quad\times [Q_3+R_3]\bigg (\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ) \end{aligned}$$
(16)
$$\begin{aligned}D^+V_4(t)&\le \sigma ^2e^{\overline{\varepsilon }t}\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad -\sigma \displaystyle \int _{t-\sigma }^{t}e^{\overline{\varepsilon }s}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm{d}s\nonumber \\&\le \sigma ^2e^{\overline{\varepsilon }t}\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad -\sigma (t)\displaystyle \int _{t-\sigma (t)}^{t}e^{\overline{\varepsilon }s}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm{d}s\nonumber \\&\le \sigma ^2e^{\overline{\varepsilon }t}\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad -e^{-\overline{\varepsilon }\sigma }e^{\overline{\varepsilon }t}\bigg (\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg )^TC[Q_4+R_4]C\bigg (\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg )\nonumber \\&\le \overline{\sigma }^2e^{\overline{\varepsilon }t}\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad -e^{-\overline{\varepsilon }\sigma }e^{\overline{\varepsilon }t}\bigg (C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg )^T[Q_4+R_4]\bigg (C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ) \end{aligned}$$
(17)

Moreover, by Lemmas 1, 2 and 3 we get:

$$\begin{aligned}&2y^T(t)P_1AF(y(t))=2F^T(y(t))A^TP_1y(t)\nonumber \\&\le F^T(y(t))Q_1F(y(t))+y^T(t)P_1AQ_1^{-1}A^TP_1y(t)\nonumber \\&\le \lambda _\mathrm{max}(Q_1)F^T(y(t))F(y(t))+y^T(t)P_1AQ_1^{-1}A^TP_1y(t)\nonumber \\&\le y^T(t)\big [P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI\big ]y(t) \end{aligned}$$
(18)
$$\begin{aligned}2y^T(t)P_1BG(t-\tau (t))&=2G^T(y(t-\tau (t))B^TP_1y(t)\nonumber \\&= \,2\bigg [G(y(t-\tau (t))\sqrt{e^{-\tau \overline{\varepsilon }}}\bigg ]^T\bigg [B^TP_1y(t)\frac{1}{\sqrt{e^{-\tau \overline{\varepsilon }}}}\bigg ]\nonumber \\&\le e^{-\tau \overline{\varepsilon }}G^T(y(t-\tau (t))Q_2G(y(t-\tau (t))\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}y^T(t)P_1BQ_2^{-1}B^TP_1y(t) \end{aligned}$$
(19)
$$\begin{aligned}&2y^T(t)P_1D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\nonumber \\&= 2\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]^TD^TP_1y(t)\nonumber \\&= 2\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\sqrt{e^{-\tau \overline{\varepsilon }}}\bigg ]^T\bigg [D^TP_1y(t)\frac{1}{\sqrt{e^{-\tau \overline{\varepsilon }}}}\bigg ]\nonumber \\&\le e^{-\tau \overline{\varepsilon }}\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]^TQ_3\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}y^T(t)P_1DQ_3^{-1}D^TP_1y(t) \end{aligned}$$
(20)
$$\begin{aligned}2y(t)^TP_1C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s&=2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]^TP_1y(t)\nonumber \\&= 2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\sqrt{e^{-\sigma \overline{\varepsilon }}}\bigg ]^T\bigg [P_1y(t)\frac{1}{\sqrt{e^{-\sigma \overline{\varepsilon }}}}\bigg ]\nonumber \\&\le e^{-\sigma \overline{\varepsilon }}\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]^TQ_4\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]\nonumber \\&\quad +e^{\sigma \overline{\varepsilon }}y^T(t)P_1Q_4^{-1}P_1y(t) \end{aligned}$$
(21)

In addition, since \({\varGamma }^T{\varGamma }=\Vert \xi \Vert ^2I\) and \(\Vert \xi \Vert \le \Vert \chi \Vert \), then we have \(y^T(t)P_1{\varGamma }^T{\varGamma }P_1y(t)\le \Vert \chi \Vert ^2y^T(t)P^2_1y(t)\) where \(\chi =(\chi _1,\chi _2,\ldots ,\chi _n)^T\), Thus, we obtain

$$\begin{aligned}&2y^T(t)P_1{\varGamma }^TT^*G(y(t-\tau (t)))=2G^T(y(t-\tau (t)))T^{*T}{\varGamma }P_1y(t)\nonumber \\&= 2\bigg (T^*G(y(t-\tau (t)))\sqrt{e^{-\tau \overline{\varepsilon }}}\bigg )^T\bigg ({\varGamma }P_1y(t)\frac{1}{e^{-\tau \overline{\varepsilon }}}\bigg )\nonumber \\&\le e^{-\tau \overline{\varepsilon }} G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\nonumber \\&\quad +\frac{1}{e^{-\tau \overline{\varepsilon }}}y^T(t)P_1{\varGamma }^T{\varGamma }P_1y(t)\nonumber \\&\le e^{-\tau \overline{\varepsilon }} G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2y^T(t)P^2_1y(t) \end{aligned}$$
(22)

Similarly, to (18)–(22) we obtain easily

$$\begin{aligned}2\dot{y}^T(t)P_2AF(y(t))&\le F^T(y(t))R_1F(y(t))\nonumber \\&\quad +\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t)\nonumber \\&\le \lambda _\mathrm{max}(R_1)F^T(y(t))F(y(t))+\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t)\nonumber \\&\le y^T(t)\lambda _\mathrm{max}(R_1)LIy(t)+\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t) \end{aligned}$$
(23)
$$\begin{aligned} 2\dot{y}^T(t)P_2BG(t-\tau (t))\le & e^{-\tau \overline{\varepsilon }}G^T(y(t-\tau (t))R_2G(y(t-\tau (t))\nonumber \\&\quad + e^{\tau \overline{\varepsilon }}\dot{y}^T(t)P_2BR_2^{-1}B^TP_2\dot{y}(t) \end{aligned}$$
(24)
$$\begin{aligned}&2\dot{y}^T(t)P_2{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\le e^{-\tau \overline{\varepsilon }} G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\\&\quad+\,e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2\dot{y}^T(t)P^2_2\dot{y}(t) \end{aligned}$$
(25)
$$\begin{aligned}&2\dot{y}^T(t)P_2D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\nonumber \\&\le e^{-\tau \overline{\varepsilon }}\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]^TR_3\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}\dot{y}^T(t)P_2DR_3^{-1}D^TP_2\dot{y}(t)\end{aligned}$$
(26)
$$\begin{aligned} 2\dot{y}(t)^TP_2C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\le & e^{-\sigma \overline{\varepsilon }}\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]^TR_4\nonumber \\\times & \bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]+e^{\sigma \overline{\varepsilon }}\dot{y}^T(t)P_2R_4^{-1}P_2\dot{y}(t) \end{aligned}$$
(27)
$$\begin{aligned} -2\dot{y}^T(t)P_2Cy(t)= & -2(Cy)^T(t)P_2\dot{y}^T(t)\le y^T(t)CR_5Cy(t)\nonumber \\&\quad +\dot{y}^T(t)P_2R_5^{-1}P_2\dot{y}^T(t) \end{aligned}$$
(28)

Then, by (18)–(28) we get

$$\begin{aligned}&D^+V_1(t)\le \overline{\varepsilon }e^{\overline{\varepsilon }t}y^T(t)P_1y(t)+e^{\overline{\varepsilon }t}\bigg \{-2y(t)^TP_1Cy(t)\\&\quad +y^T(t)\big [P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI\big ]y(t)\\&\quad +e^{-\tau \overline{\varepsilon }}G^T(y(t-\tau (t))Q_2G(y(t-\tau (t))\\&\quad +e^{\tau \overline{\varepsilon }}y^T(t)P_1BQ_2^{-1}B^TP_1y(t)+e^{-\tau \overline{\varepsilon }} G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\\&\quad +e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2y^T(t)P^2_1y(t)+e^{-\tau \overline{\varepsilon }}\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]^TQ_3\\&\quad \times \bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]+e^{\tau \overline{\varepsilon }}y^T(t)P_1DQ_3^{-1}D^TP_1y(t)\\&\quad +e^{-\sigma \overline{\varepsilon }}\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]^TQ_4\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]\\&\quad +e^{\sigma \overline{\varepsilon }}y^T(t)P_1Q_4^{-1}P_1y(t)-2\dot{y}^T(t)P_2\dot{y}(t)+y^T(t)CR_5Cy(t)\\&\quad +\dot{y}^T(t)P_2R_5^{-1}P_2\dot{y}^T(t)+y^T(t)\lambda _\mathrm{max}(R_1)LIy(t)\\&\quad +\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t)+e^{-\tau \overline{\varepsilon }}G^T(y(t-\tau (t))R_2\\&\quad \times G(y(t-\tau (t))+e^{\tau \overline{\varepsilon }}\dot{y}^T(t)P_2BR_2^{-1}B^TP_2\dot{y}(t)\\&\quad +e^{-\tau \overline{\varepsilon }}G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\\&\quad +e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2\dot{y}^T(t)P^2_2\dot{y}(t)+e^{-\tau \overline{\varepsilon }}\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]^TR_3\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]\\&\quad +e^{\tau \overline{\varepsilon }}\dot{y}^T(t)P_2DR_3^{-1}D^TP_2\dot{y}(t)\\&\quad +e^{-\sigma \overline{\varepsilon }}\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]^TR_4\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]\\&\quad +e^{\sigma \overline{\varepsilon }}\dot{y}^T(t)P_2QR_4^{-1}P_2\dot{y}(t)\bigg \} \end{aligned}$$

then

$$\begin{aligned}D^+V_1(t)&\le e^{\overline{\varepsilon }t}\bigg \{y(t)^T\big [\overline{\varepsilon }P_1-2P_1C+P_1AQ_1^{-1}A^TP_1\nonumber \\&\quad +\lambda _\mathrm{max}(Q_1)LI+e^{\tau \overline{\varepsilon }}P_1BQ_2^{-1}B^TP_1+e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2P^2_1\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}P_1DQ_3^{-1}D^TP_1+e^{\sigma \overline{\varepsilon }}P_1Q_4^{-1}P_1+CR_5C\nonumber \\&\quad +\lambda _\mathrm{max}(R_1)LI\big ]y(t)\nonumber \\&\quad +e^{-\tau \overline{\varepsilon }}G^T(y(t-\tau (t))\big [Q_2+R_2+2T^{*T}T^*\big ]G(y(t-\tau (t))\nonumber \\&\quad +e^{-\tau \overline{\varepsilon }}\bigg [\displaystyle \int_{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\bigg ]^T\big [Q_3+R_3\big ]\left[\displaystyle \int_{-\infty }^{t}K(t-s)H(y(s))\mathrm{d}s\right]\nonumber \\&\quad +e^{-\sigma \overline{\varepsilon }}\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm{d}s\bigg ]^T\big [Q_4+R_4\big ]\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]\nonumber \\&\quad +\dot{y}^T(t)\big [-2P_2+P_2R_5^{-1}P_2+P_2AR_1^{-1}A^TP_2+e^{\tau \overline{\varepsilon }}P_2BR_2^{-1}B^TP_2\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2P^2_2+e^{\tau \overline{\varepsilon }}P_2DR_3^{-1}D^TP_2+e^{\sigma \overline{\varepsilon }}P_2R_4^{-1}P_2\big ]\dot{y}(t)\bigg \} \end{aligned}$$
(29)

by (29) and derivate of \(V_i,\; i=2,3,4\) we get

$$\begin{aligned}D^+V(t)&\le e^{\overline{\varepsilon }t}y^T(t)\bigg [\overline{\varepsilon }P_1-2P_1C+P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}P_1BQ_2^{-1}B^TP_1+e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2P^2_1+e^{\tau \overline{\varepsilon }}P_1DQ_3^{-1}D^TP_1\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}P_1Q_4^{-1}P_1+CR_5C+\lambda _\mathrm{max}(R_1)LI\nonumber \\&\quad +\frac{1}{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)M\nonumber \\&\quad +\beta _1\lambda _\mathrm{max}(Q_3+R_3)N\bigg ]y(t)+e^{\overline{\varepsilon }t}\dot{y}^T(t)\bigg [-2P_2+P_2R_5^{-1}P_2\nonumber \\&\quad +P_2AR_1^{-1}A^TP_2+e^{\tau \overline{\varepsilon }}P_2BR_2^{-1}B^TP_2+e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2P^2_2\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}P_2DR_3^{-1}D^TP_2+e^{\tau \overline{\varepsilon }}P_2R_4^{-1}P_2+\sigma ^2 C[Q_4+R_4]C\bigg ]\dot{y}(t)\nonumber \\&\quad +\big [e^{\overline{\varepsilon }(t-\tau )}-e^{\overline{\varepsilon }(t-\tau )}\big ]G^T(y(t-\tau (t))[Q_2+R_2+2T^{*T}T^*]\nonumber \\&\quad \times G(y(t-\tau (t))\nonumber \\&\quad +e^{\overline{\varepsilon }t}\big [e^{-\overline{\varepsilon }\tau }-1\big ]\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]^T[Q_3+R_3]\nonumber \\&\quad \times \bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]\nonumber \\&\quad +e^{\overline{\varepsilon }t}\big [e^{-\overline{\varepsilon }\sigma }-e^{-\overline{\varepsilon }\sigma }\big ]\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]^T[Q_4+R_4]\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ] \end{aligned}$$
(30)

then we have

$$\begin{aligned}&D^+V(t)\le e^{\overline{\varepsilon }t}y^T(t)\bigg [\overline{\varepsilon }P_1-2P_1C+P_1AQ_1^{-1}A^TP_1\nonumber \\&\quad +\lambda _\mathrm{max}(Q_1)LI+e^{\tau \overline{\varepsilon }}P_1BQ_2^{-1}B^TP_1+e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2P^2_1\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}P_1DQ_3^{-1}D^TP_1+e^{\sigma \overline{\varepsilon }}P_1Q_4^{-1}P_1+CR_5C+\lambda _\mathrm{max}(R_1)LI\nonumber \\&\quad +\frac{1}{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)M+\beta _1\lambda _\mathrm{max}(Q_3+R_3)N\bigg ]y(t)\nonumber \\&\quad +e^{\overline{\varepsilon }t}\dot{y}^T(t)\bigg [-2P_2+P_2R_5^{-1}P_2+P_2AR_1^{-1}A^TP_2+e^{\tau \overline{\varepsilon }}P_2BR_2^{-1}B^TP_2\nonumber \\&\quad +e^{\tau \overline{\varepsilon }}\Vert \chi \Vert ^2P^2_2+e^{\tau \overline{\varepsilon }}P_2DR_3^{-1}D^TP_2+e^{\sigma \overline{\varepsilon }}P_2R_4^{-1}P_2\nonumber \\&\quad +\sigma ^2 C[Q_4+R_4]C\bigg ]\dot{y}(t) \end{aligned}$$
(31)

By using (i) and (ii), we obtain

$$\begin{aligned} D^+V(t)\le 0 \end{aligned}$$
(32)

In addition, we note by system (5) and Lemma 1

$$\begin{aligned}V(t_k)&=e^{\overline{\varepsilon }t_k}y^T(t_k)P_1y(t_k)+\frac{1}{1-\rho }\displaystyle \int _{t_k-\tau (t_k)}^{t_k}e^{\overline{\varepsilon }s}G^T(y(s))\nonumber \\&\quad \times [Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm{d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t_k-\theta }^{t_k}e^{\overline{\varepsilon }(s+\theta )}H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t_k+\theta }^{t_k}e^{\overline{\varepsilon }s}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&= e^{\overline{\varepsilon }t^{-}_k}y^T(t^{-}_k)E_kP_1E_ky(t^{-}_k)+\frac{1}{1-\rho }\displaystyle \int _{t^{-}_k-\tau (t^{-}_k)}^{t^{-}_k}e^{\overline{\varepsilon }s}G^T(y(s))\nonumber \\&\quad \times [Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t^{-}_k-\theta }^{t^{-}_k}e^{\overline{\varepsilon }(s+\theta )}H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t^{-}_k+\theta }^{t^{-}_k}e^{\overline{\varepsilon }s}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&\le e^{\overline{\varepsilon }t^{-}_k}\xi _ky^T(t^{-}_k)P_1y(t^{-}_k)+\frac{1}{1-\rho }\displaystyle \int _{t^{-}_k-\tau (t^{-}_k)}^{t^{-}_k}e^{\overline{\varepsilon }s}G^T(y(s))\nonumber \\&\quad \times [Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t^{-}_k-\theta }^{t^{-}_k}e^{\overline{\varepsilon }(s+\theta )}H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t^{-}_k+\theta }^{t^{-}_k}e^{\overline{\varepsilon }s}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&\le \max \big \{\xi _k,1\big \}V(t^{-}_k) \end{aligned}$$
(33)

By (32) and (33) we obtain for \(k\ge 1\)

$$\begin{aligned} \lambda _\mathrm{min}(P_1)e^{\overline{\varepsilon }t}\Vert y(t)\Vert ^2\le & V(t)\le V(t_0)\displaystyle \prod _{t_0<t_k\le t}\max \big \{\xi _k,1\big \} \end{aligned}$$
(34)

In addition, utilizing (13), for \(t=t_0\) we get

$$\begin{aligned} V(t_0)\le & \bigg [\lambda _\mathrm{max}(P_1)+\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{\overline{\varepsilon }(1-\rho )}M\bigg (1-e^{-\overline{\varepsilon }\tau }\bigg )\bigg )\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\frac{1}{\overline{\varepsilon }}(e^{\overline{\varepsilon }\theta }-1)\mathrm{d}\theta \nonumber \\&\quad +\lambda _\mathrm{max}\big (C(Q_4+R_4)C\big )\sigma \big (\frac{1}{\overline{\varepsilon }^2}(\sigma \overline{\varepsilon }+e^{-\overline{\varepsilon }\sigma }-1)\big )\bigg ]e^{\overline{\varepsilon }t_0}\Vert \varphi \Vert ^2_\sigma \end{aligned}$$
(35)

Hence, we have from (34) and (35),

$$\begin{aligned} \Vert y(t)\Vert ^2\le & \frac{1}{\lambda _\mathrm{min}(P_1)}\bigg [\lambda _\mathrm{max}(P_1)+\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{\overline{\varepsilon }(1-\rho )} \\&\quad \times M\bigg (1-e^{-\overline{\varepsilon }\tau }\bigg )\bigg ) \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\frac{1}{\overline{\varepsilon }}(e^{\overline{\varepsilon }\theta }-1)\mathrm{d}\theta \\&\quad +\lambda _\mathrm{max}\big (C(Q_4+R_4)C\big )\sigma \big (\frac{1}{\overline{\varepsilon }^2}(\sigma \overline{\varepsilon }+e^{-\overline{\varepsilon }\sigma }-1)\big )\bigg ] \\&\quad \times e^{-\overline{\varepsilon }(t-t_0)}\Vert \varphi \Vert ^2_\sigma \displaystyle \prod _{t_0<t_k\le t}\max \big \{\xi _k,1\big \} \end{aligned}$$

Using condition (iii), we furthermore obtain

$$\begin{aligned} \Vert y(t)\Vert ^2\le & \frac{1}{\lambda _\mathrm{min}(P_1)}\bigg [\lambda _\mathrm{max}(P_1)+\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{\overline{\varepsilon }(1-\rho )} \\&\quad \times M\bigg (1-e^{-\overline{\varepsilon }\tau }\bigg )\bigg ) \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\frac{1}{\overline{\varepsilon }}(e^{\overline{\varepsilon }\theta }-1)\mathrm{d}\theta \\&\quad +\lambda _\mathrm{max}\big (C(Q_4+R_4)C\big )\sigma \big (\frac{1}{\overline{\varepsilon }^2}(\sigma \overline{\varepsilon }+e^{-\overline{\varepsilon }\sigma }-1)\big )\bigg ] \\&\quad \times e^{-(\overline{\varepsilon }-\overline{\alpha })(t-t_0)}e^{\lambda }\Vert \varphi \Vert ^2_\sigma \end{aligned}$$

Then

$$\begin{aligned} \Vert y(t)\Vert\le & M^*e^{-\frac{1}{2}(\overline{\varepsilon }-\overline{\alpha })(t-t_0)}e^{\lambda }\Vert \varphi \Vert ,\;\;\; \forall t\ge t_0 \end{aligned}$$

where

$$\begin{aligned} M^{*2}= & \frac{1}{\lambda _\mathrm{min}(P_1)}\bigg [\lambda _\mathrm{max}(P_1)+\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{\overline{\varepsilon }(1-\rho )} \\&\quad \times M\bigg (1-e^{-\overline{\varepsilon }\tau }\bigg )\bigg ) \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\frac{1}{\overline{\varepsilon }}(e^{\overline{\varepsilon }\theta }-1)\mathrm{d}\theta \\&\quad +\lambda _\mathrm{max}\big (C(Q_4+R_4)C\big )\sigma \big (\frac{1}{\overline{\varepsilon }^2}(\sigma \overline{\varepsilon }+e^{-\overline{\varepsilon }\sigma }-1)\big )\bigg ]e^{\lambda }\ge 1 \end{aligned}$$

by which we can conclude the exponential stability of the zero solution of system (5), i.e., the equilibrium point of system (1) is globally exponentially stable and the approximate exponential convergent rate is \(\frac{1}{2}(\overline{\varepsilon }-\overline{\alpha })\).\(\blacksquare \)

1.3 C Proof of Theorem 3

We first prove the zero of system (5) is uniformly stable.

Construct a Lyapunov–Krasovskii functional in the form \(V(t)=V_1(t)+V_2(t)+V_3(t)+V_4(t)\), where

$$\begin{aligned}V_1(t)&=[1+\varepsilon^*(t-t_0)^2]y^T(t)P_1y(t) \\V_2(t)&=\frac{1}{1-\rho }\displaystyle \int _{t-\tau (t)}^{t}(1+(s-t_0)^2) G^T(y(s))[Q_2+R_2+2T^{*T}T^*] \\&\quad \times G(y(s))\mathrm {d}s \\ V_3(t)&=\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t-\theta }^{t}(1+(s+\theta -t_0)^2) \\&\quad \times H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \\ V_4(t)&=\sigma \displaystyle \int _{-\sigma }^{0}\int _{t+\theta }^{t}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \end{aligned}$$

\(\forall t_0\ge 0\), let y(t) be an arbitrary solution of system (5). So, for any \(\varepsilon >0\), we choose \(\delta \) as:

$$\begin{aligned} \delta =\frac{\varepsilon }{\sqrt{\prod }} \end{aligned}$$

where

$$\begin{aligned} \prod= & \bigg [\lambda _\mathrm{max}(P_1)+\bigg (\tau +\frac{\tau ^3}{3}\bigg )\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{1-\rho }M \\&+\lambda _\mathrm{max}(Q_3+R_3)\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\left(\theta +\frac{\theta ^3}{3}\right)\mathrm{d}\theta \\&+\sigma \bigg (\frac{\sigma ^2}{2}+\frac{\sigma ^4}{12}\bigg )\lambda _\mathrm{max}(C(Q_4+R_4)C)\bigg ]\frac{\overline{M}}{\lambda _\mathrm{min}(P_1)} \end{aligned}$$

Now we consider the derivation of \(V_i(t)\), \(i=1,\ldots ,4\) for any \(t\in [t_k,t_{k+1}[,\;\;k=1,2,\ldots \) along the solution of (5)

$$\begin{aligned} D^+V_1(t)\le & 2\varepsilon ^*(t-t_0)y^T(t)P_1y(t)+2[1+\varepsilon ^*(t-t_0)^2]y^T(t)P_1\dot{y}(t)\nonumber \\&\quad +2[1+\varepsilon ^*(t-t_0)^2]\dot{y}^T(t)P_2[-\dot{y}(t)+\dot{y}(t)]\nonumber \\\le & 2\varepsilon ^*(t-t_0)y^T(t)P_1y(t)\nonumber \\&\quad +2[1+\varepsilon ^*(t-t_0)^2]y(t)^TP_1\bigg [-Cy(t)+C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\nonumber \\&\quad +AF(y(t))+BG(y(t-\tau (t)))\\&\quad+{\varGamma }^TT^*G(y(t-\tau (t))) \qquad\qquad\qquad \qquad (36)\\ &\quad +D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]+2[1+\varepsilon ^*(t-t_0)^2]\dot{y}^T(t)P_2\nonumber \\&\quad \times \bigg [-\dot{y}(t)-Cy(t)\nonumber \\&\quad +C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\nonumber \\&\quad +AF(y(t))+BG(y(t-\tau (t)))\nonumber \\&\quad +{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\quad +D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]\nonumber \\\le & 2\varepsilon ^*(t-t_0)y^T(t)P_1y(t)\nonumber \\&\quad +[1+\varepsilon ^*(t-t_0)^2]\bigg [-2y(t)^TP_1Cy(t)\nonumber \\&\quad +2y(t)^TP_1AF(y(t))+2y(t)^TP_1BG(y(t-\tau (t))\nonumber \\&\quad +2y(t)^TP_1{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\quad +2y(t)^TP_1D\int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\nonumber \\&\quad +2y(t)^TP_1C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\nonumber \\&\quad -2\dot{y}^T(t)P_2\dot{y}(t)-2\dot{y}^T(t)P_2Cy(t)\nonumber \\&\quad +2\dot{y}^T(t)P_2AF(y(t))\nonumber \\&\quad +2\dot{y}^T(t)P_2BG(y(t-\tau (t))\nonumber \\&\quad +2\dot{y}(t)^TP_2{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\&\quad +2\dot{y}^T(t)P_2D\int _{t-\tau (t)}^{t}H(y(s))\mathrm {d}s\nonumber \\&\quad +2\dot{y}^T(t)P_2C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ] \end{aligned}$$
(37)
$$\begin{aligned} D^+V_2(t)\le & \frac{1+(t-t_0)^2}{1-\rho }G^T(y(t))[Q_2+R_2+2T^{*T}T^*]\nonumber \\&\quad \times G(y(t))\nonumber \\&\quad (1+(t-\tau (t)-t_0)^2)G^T(y(t-\tau (t)))\nonumber \\&\quad \times [Q_2+R_2+2T^{*T}T^*]G(y(t-\tau (t)))\nonumber \\&\le \frac{1+(t-t_0)^2}{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)My^T(t)y(t)\nonumber \\&\quad (1+(t-\tau (t)-t_0)^2)G^T(y(t-\tau (t)))\nonumber \\&\quad \times (Q_2+R_2+2T^{*T}T^*)G(y(t-\tau (t))) \end{aligned}$$
(38)
$$\begin{aligned}D^+V_3(t)&=\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )(1+(t+\theta -t_0)^2)\nonumber \\&\quad \times H^2_j(y_j(t))\mathrm{d}\theta \nonumber \\&\quad \displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )(1+(t-t_0)^2))H^2_j(y_j(t-\theta ))\mathrm{d}\theta \nonumber \\&\le \displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]H^2_j(y_j(t))\displaystyle \int _{0}^{+\infty }K_j(\theta )(1+(t+\theta -t_0)^2)\mathrm{d}\theta \nonumber \\&\quad (1+(t-t_0)^2))\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\mathrm{d}\theta \displaystyle \int _{0}^{+\infty }K_j(\theta )\nonumber \\&\quad \times H^2_j(y_j(t-\theta ))\mathrm{d}\theta \nonumber \\&\le (1+(t-t_0)^2))\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]H^2_j(y_j(t))\nonumber \\&\quad \times \frac{\displaystyle \int _{0}^{+\infty }K_j(\theta )(1+(t+\theta -t_0)^2)\mathrm{d}\theta }{(1+(t-t_0)^2))}\nonumber \\&\quad (1+(t-t_0)^2))\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\bigg (\displaystyle \int _{0}^{+\infty }K_j(\theta )H_j(y_j(t-\theta ))\mathrm{d}\theta \bigg )^2\nonumber \\&\le (1+(t-t_0)^2))\lambda _\mathrm{max}(Q_3+R_3)\beta _1Ny^T(t)y(t)\nonumber \\&\quad (1+(t-t_0)^2))\bigg (\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg )^T[Q_3+R_3]\nonumber \\&\quad \times \bigg (\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ) \end{aligned}$$
(39)
$$\begin{aligned}D^+V_4(t)&\le \sigma ^2(1+(t-t_0)^2)\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad \sigma \displaystyle \int _{t-\sigma }^{t}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\nonumber \\&\le \sigma ^2(1+(t-t_0)^2)\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad \sigma (t)\displaystyle \int _{t-\sigma (t)}^{t}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\nonumber \\&\le \sigma ^2(1+(t-t_0)^2)\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad \beta _3(1+(t-t_0)^2)\bigg (\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg )^TC[Q_4+R_4]C\bigg (\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg )\nonumber \\&\le \sigma ^2(1+(t-t_0)^2)\dot{y}^T(t)C[Q_4+R_4]C\dot{y}(t)\nonumber \\&\quad \beta _3(1+(t-t_0)^2)\bigg (C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg )^T[Q_4+R_4]\bigg (C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ) \end{aligned}$$
(40)

Moreover, by Lemmas 1, 2 and 3 we get:

$$\begin{aligned}2y^T(t)P_1AF(y(t))&=2F^T(y(t))A^TP_1y(t)\nonumber \\\le & F^T(y(t))Q_1F(y(t))+y^T(t)P_1AQ_1^{-1}A^TP_1y(t)\nonumber \\\le & \lambda _\mathrm{max}(Q_1)F^T(y(t))F(y(t))+y^T(t)P_1AQ_1^{-1}A^TP_1y(t)\nonumber \\\le & y^T(t)\big [P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI\big ]y(t) \end{aligned}$$
(41)
$$\begin{aligned}2y^T(t)P_1BG(t-\tau (t))&=2G^T(y(t-\tau (t))B^TP_1y(t)\nonumber \\= & 2\bigg [G(y(t-\tau (t))\sqrt{\alpha _1}\bigg ]^T\bigg [B^TP_1y(t)\frac{1}{\sqrt{\alpha _1}}\bigg ]\nonumber \\\le & \alpha _1 G^T(y(t-\tau (t))Q_2G(y(t-\tau (t))\nonumber \\&\quad +\frac{1}{\alpha _1}y^T(t)P_1BQ_2^{-1}B^TP_1y(t) \end{aligned}$$
(42)
$$\begin{aligned}&2y^T(t)P_1D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\nonumber \\= & 2\bigg [\displaystyle \int _{t-\tau (t)}^{t}H(y(s))\mathrm {d}s\bigg ]^TD^TP_1y(t)\nonumber \\\le & \bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]^TQ_3\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]\nonumber \\&\quad +y^T(t)P_1DQ_3^{-1}D^TP_1y(t) \end{aligned}$$
(43)
$$\begin{aligned}&2y(t)^TP_1C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s=2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]^TP_1y(t)\nonumber \\= & 2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\sqrt{\alpha _2}\bigg ]^T\bigg [P_1y(t)\frac{1}{\sqrt{\alpha _2}}\bigg ]\nonumber \\\le & \alpha _2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]^TQ_4\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]\nonumber \\&\quad +\frac{1}{\alpha _2}y^T(t)P_1Q_4^{-1}P_1y(t) \end{aligned}$$
(44)

Furthermore, since \({\varGamma }^T{\varGamma }=\Vert \xi \Vert ^2I\), \({\varUpsilon }^T{\varUpsilon }=\Vert \zeta \Vert I\) then we have \(y^T(t)P_1{\varGamma }^T{\varGamma }P_1y(t)\le \Vert \chi \Vert ^2y^T(t)P^2_1y(t)\)

where \(\chi =(\chi _1,\chi _2,\ldots ,\chi _n)^T\).

Thus, we obtain

$$\begin{aligned}&2y^T(t)P_1{\varGamma }^TT^*G(y(t-\tau (t)))\nonumber \\= & 2G^T(y(t-\tau (t)))T^{*T}{\varGamma }P_1y(t)\nonumber \\= & 2\bigg (T^*G(y(t-\tau (t)))\sqrt{\alpha _1}\bigg )^T\bigg ({\varGamma }P_1y(t)\frac{1}{\alpha _1}\bigg )\nonumber \\\le & \alpha _1 G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\nonumber \\&\quad +\frac{1}{\alpha _1}y^T(t)P_1{\varGamma }^T{\varGamma }P_1y(t)\nonumber \\\le & \alpha _1 G^T(y(t-\tau (t))T^{*T}T^*G(y(t-\tau (t))\nonumber \\&\quad +\frac{1}{\alpha _1 }\Vert \chi \Vert ^2y^T(t)P^2_1y(t) \end{aligned}$$
(45)

Similarly, to (41)–(45), it follows that

$$\begin{aligned}&2\dot{y}^T(t)P_2AF(y(t))\nonumber \\ & \le F^T(y(t))R_1F(y(t))+\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t) \\ &\le \lambda _\mathrm{max}(R_1)F^T(y(t))F(y(t))+\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t)\\ & \le y^T(t)\lambda _\mathrm{max}(R_1)LIy(t)+\dot{y}^T(t)P_2AR_1^{-1}A^TP_2\dot{y}(t) \end{aligned}$$
(46)
$$\begin{aligned} 2\dot{y}^T(t)P_2BG(t-\tau (t))\le & \alpha _1 G^T(y(t-\tau (t))R_2G(y(t-\tau (t))\nonumber \\&\quad +\frac{1}{\alpha _1}\dot{y}^T(t)P_2BR_2^{-1}B^TP_2\dot{y}(t)\;\;\;\;\;\; \end{aligned}$$
(47)
$$\begin{aligned} 2\dot{y}^T(t)P_2{\varGamma }^TT^*G(y(t-\tau (t)))\le & \alpha _1 G^T(y(t-\tau (t))T^{*T}T^*\nonumber \\\times & G(y(t-\tau (t))\nonumber \\&\quad +\frac{1}{\alpha _1}\Vert \chi \Vert ^2\dot{y}^T(t)P^2_2\dot{y}(t) \end{aligned}$$
(48)
$$\begin{aligned}&2\dot{y}^T(t)P_2D\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\nonumber \\\le & \bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]^TR_3\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]\nonumber \\&\quad +\dot{y}^T(t)P_2DR_3^{-1}D^TP_2\dot{y}(t) \end{aligned}$$
(49)
$$\begin{aligned} 2\dot{y}(t)^TP_2C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\le & \alpha _2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]^TR_4\nonumber \\\times & \bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]\nonumber \\&\quad +\frac{1}{\alpha _2}\dot{y}^T(t)P_2R_4^{-1}P_2\dot{y}(t) \end{aligned}$$
(50)
$$\begin{aligned} -2\dot{y}^T(t)P_2Cy(t)= & -2(Cy)^T(t)P_2\dot{y}^T(t)\nonumber \\\le & y^T(t)CR_5Cy(t)+\dot{y}^T(t)P_2R_5^{-1}P_2\dot{y}^T(t)\;\;\; \end{aligned}$$
(51)

Then, from (41) and (51), we obtain

$$\begin{aligned}&D^+V_1(t)\le [1+(t-t_0)^2]\bigg \{y(t)^T\big [2\frac{\varepsilon ^*(t-t_0)}{1+(t-t_0)^2}P_1-2P_1C\nonumber \\&\quad +P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI+\frac{1}{\alpha _1}P_1BQ_2^{-1}B^TP_1+\frac{1}{\alpha _1}\Vert \chi \Vert ^2P^2_1\nonumber \\&\quad +P_1DQ_3^{-1}D^TP_1+\frac{1}{\alpha _2}P_1Q_4^{-1}P_1+CR_5C+\lambda _\mathrm{max}(R_1)LI\big ]y(t)\nonumber \\&\quad +\dot{y}^T(t)\big [-2P_2+P_2R_5^{-1}P_2+P_2AR_1^{-1}A^TP_2+\frac{1}{\alpha _1}P_2BR_2^{-1}B^TP_2\nonumber \\&\quad +\frac{1}{\alpha _1}\Vert \chi \Vert ^2P^2_2+P_2DR_3^{-1}D^TP_2+\frac{1}{\alpha _2}P_2Q_4^{-1}P_2\big ]\dot{y}(t)\nonumber \\&\quad +\alpha _1 G^T(y(t-\tau (t))\big [Q_2+R_2+2T^{*T}T^*\big ]G(y(t-\tau (t))\nonumber \\&\quad +\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]^T\big [Q_3+R_3\big ]\nonumber \\\times & \bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]\nonumber \\&\quad +\alpha _2\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]^T\big [Q_4+R_4\big ]\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]\bigg \} \end{aligned}$$
(52)

By \(D^+V_1,D^+V_2,D^+V_3,D^+V_4\), we obtain

$$\begin{aligned}&D^+V(t)\le [1+(t-t_0)^2]y^T(t)\bigg [\varepsilon ^*P_1-2P_1C\nonumber \\&\quad +P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI+\frac{1}{\alpha _1}P_1BQ_2^{-1}B^TP_1\nonumber \\&\quad +\frac{1}{\alpha _1}\Vert \chi \Vert ^2P^2_1+P_1DQ_3^{-1}D^TP_1+\frac{1}{\alpha _2}P_1Q_4^{-1}P_1+CR_5C\nonumber \\&\quad +\lambda _\mathrm{max}(R_1)LI+\frac{1}{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)M\nonumber \\&\quad +\beta _1\lambda _\mathrm{max}(Q_3+R_3+2\overline{T}^{*T}\overline{T}^*)N\bigg ]y(t)\nonumber \\&\quad +\dot{y}^T(t)\bigg [-2P_2+P_2R_5^{-1}P_2+P_2AR_1^{-1}A^TP_2\nonumber \\&\quad +\frac{1}{\alpha _1}P_2BR_2^{-1}B^TP_2+\frac{1}{\alpha _1}\Vert \chi \Vert ^2P^2_2+\frac{1}{P}_2DR_3^{-1}D^TP_2\nonumber \\&\quad +\frac{1}{\alpha _2}P_2R_4^{-1}P_2+\sigma ^2 C[Q_4+R_4]C\bigg ]\dot{y}(t)\nonumber \\&\quad +[1+(t-t_0)^2]\bigg [\alpha _1-\frac{(1+(t-\tau (t)-t_0)^2))}{1+(t-t_0)^2}\bigg ]\nonumber \\&\quad \times G^T(y(t-\tau (t))[Q_2+R_2+2T^{*T}T^*]G(y(t-\tau (t))\nonumber \\&\quad +[1+(t-t_0)^2]\big [1-1\big ]\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]^T\nonumber \\&\quad \times [Q_3+R_3]\bigg [\displaystyle \int _{-\infty }^{t}K(t-s)H(y(s))\mathrm {d}s\bigg ]\nonumber \\&\quad +[1+(t-t_0)^2]\big [\alpha _2-\beta _3\big ]\bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ]^T[Q_4+R_4]\nonumber \\&\quad \times \bigg [C\displaystyle \int _{t-\sigma (t)}^{t}\dot{y}(s)\mathrm {d}s\bigg ] \end{aligned}$$
(53)

According to the hypothesis of Theorem 3, \(\alpha _1\le \beta _2\), \(\alpha _2\le \beta _3\) and \(-\frac{(1+(t-\tau (t)-t_0)^2)}{(1+(t-t_0)^2)}\le -\beta _2\) we have

$$\begin{aligned}D^+V(t)&\le [1+(t-t_0)^2]y^T(t)\bigg [\varepsilon ^*P_1-2P_1C\nonumber \\&\quad +P_1AQ_1^{-1}A^TP_1+\lambda _\mathrm{max}(Q_1)LI+\frac{1}{\alpha _1}P_1BQ_2^{-1}B^TP_1\nonumber \\&\quad +\frac{1}{\alpha _1}\Vert \chi \Vert ^2P^2_1+P_1DQ_3^{-1}D^TP_1+\frac{1}{\alpha _2}P_1Q_4^{-1}P_1+CR_5C\nonumber \\&\quad +\lambda _\mathrm{max}(R_1)LI+\frac{1}{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)M\nonumber \\&\quad +\beta _1\lambda _\mathrm{max}(Q_3+R_3+2\overline{T}^{*T}\overline{T}^*)N\bigg ]y(t)\nonumber \\&\quad +[1+(t-t_0)^2]\dot{y}^T(t)\bigg [-2P_2+P_2R_5^{-1}P_2+P_2AR_1^{-1}A^TP_2\nonumber \\&\quad +\frac{1}{\alpha _1}P_2BR_2^{-1}B^TP_2+\frac{1}{\alpha _1}\Vert \chi \Vert ^2P^2_2+P_2DR_3^{-1}D^TP_2\nonumber \\&\quad +\frac{1}{\alpha _2}P_2R_4^{-1}P_2+\sigma ^2 C[Q_4+R_4]C\bigg ]\dot{y}(t)\nonumber \\&\le 0 \end{aligned}$$
(54)

Moreover, we note by system (5)

$$\begin{aligned}V(t_k)&=[1+(t_k-t_0)^2]y^T(t_k)P_1y(t_k)\nonumber \\&\quad +\frac{1}{1-\rho }\displaystyle \int _{t_k-\tau (t_k)}^{t_k}(1+(s-t_0)^2)\nonumber \\&\quad \times G^T(y(s))[Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t_k-\theta }^{t_k}(1+(s+\theta -t_0)^2)\nonumber \\&\quad \times H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t_k+\theta }^{t_k}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&= [1+(t^{-}_k-t_0)^2]y^T(t^{-}_k)E_kP_1E_ky(t^{-}_k)\nonumber \\&\quad +\frac{1}{1-\rho }\displaystyle \int _{t^{-}_k-\tau (t^{-}_k)}^{t^{-}_k}(1+(s-t_0)^2)\nonumber \\&\quad \times G^T(y(s))[Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t^{-}_k-\theta }^{t^{-}_k}(1+(s+\theta -t_0)^2)\nonumber \\&\quad \times H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t^{-}_k+\theta }^{t^{-}_k}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&\le [1+(t^{-}_k-t_0)^2]\xi _ky^T(t^{-}_k)P_1y(t^{-}_k)\nonumber \\&\quad +\frac{1}{1-\rho }\displaystyle \int _{t^{-}_k-\tau (t^{-}_k)}^{t^{-}_k}(1+(s-t_0)^2)\nonumber \\&\quad \times G^T(y(s))[Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t^{-}_k-\theta }^{t^{-}_k}(1+(s+\theta -t_0)^2)\nonumber \\&\quad \times H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t^{-}_k+\theta }^{t^{-}_k}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&\le \max \big \{\xi _k,1\big \}V(t^{-}_k) \end{aligned}$$
(55)

By (54) and (55) we obtain for \(k\ge 1\)

$$\begin{aligned}&\lambda _\mathrm{min}(P_1)[1+\varepsilon ^*(t-t_0)^2]\Vert y(t)\Vert ^2\le V(t)\nonumber \\&\le V(t_0)\displaystyle \prod _{t_0<t_k\le t}\max \big \{\xi _k,1\big \} \end{aligned}$$
(56)

On other hand, we have

$$\begin{aligned}&V(t)=[1+\varepsilon ^*(t-t_0)^2]y^T(t)P_1y(t)\nonumber \\&\quad +\frac{1}{1-\rho }\displaystyle \int _{t-\tau (t)}^{t}(1+(s-t_0)^2)\nonumber \\&\quad\times G^T(y(s))[Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s\nonumber \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t-\theta }^{t}(1+(s+\theta -t_0)^2)\nonumber \\ &\quad\times H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \nonumber \\&\quad +\sigma \displaystyle \int _{-\sigma }^{0}\int _{t+\theta }^{t}(1+(s-t_0)^2)\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \nonumber \\&\le \bigg \{[1+\varepsilon ^*(t-t_0)^2]\lambda _\mathrm{max}(P_1)\nonumber \\&\quad +\bigg (\tau (t)+\frac{(t-t_0)^3-(t-t_0-\tau (t))^3}{3}\bigg )\\nonumber \\&\quad \times \frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{1-\rho }M+\lambda _\mathrm{max}(Q_3+R_3)\max _{1\le j\le n}N_j^2\nonumber \\&\quad \times \displaystyle \int _{0}^{+\infty }K_j(\theta )\left(\theta +\frac{1}{3}(t+\theta -t_0)^3\right)\mathrm{d}\theta \nonumber \\&\quad +\sigma \bigg (-\frac{1}{12}(t-t_0)^4+\frac{1}{3}(t-t_0)^3\sigma +\frac{\sigma ^2}{2}\nonumber \\&\quad +\frac{1}{12}(t-\sigma -t_0)^4\bigg )\lambda _\mathrm{max}(C(Q_4+R_4)C)\bigg \}\Vert y(t)\Vert ^2_\sigma \end{aligned}$$
(57)

For \(t=t_0\) in (57) we get

$$\begin{aligned}&V(t_0)\le \bigg \{\lambda _\mathrm{max}(P_1)+\bigg (\tau (t_0)+\frac{\tau (t_0)^3}{3}\bigg )\nonumber \\\&\quad times \frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{1-\rho }M\nonumber \\&\quad +\lambda _\mathrm{max}(Q_3+R_3)\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\left(\theta +\frac{\theta ^3}{3}\right)\mathrm{d}\theta \nonumber \\&\quad +\sigma \bigg (\frac{\sigma ^2}{2}+\frac{\sigma ^4}{12}\bigg )\lambda _\mathrm{max}(C(Q_4+R_4)C)\bigg \}\Vert \varphi \Vert ^2_\sigma \nonumber \\&\le \bigg \{\lambda _\mathrm{max}(P_1)+\bigg (\tau +\frac{\tau ^3}{3}\bigg )\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{1-\rho }M\nonumber \\&\quad +\lambda _\mathrm{max}(Q_3+R_3)\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\left(\theta +\frac{\theta ^3}{3}\right)\mathrm{d}\theta \nonumber \\&\quad +\sigma \bigg (\frac{\sigma ^2}{2}+\frac{\sigma ^4}{12}\bigg )\lambda _\mathrm{max}(C(Q_4+R_4)C)\bigg \}\Vert \varphi \Vert ^2_\sigma \end{aligned}$$
(58)

From (56) and (58), we obtain

$$\begin{aligned} \Vert y(t)\Vert ^2&\le \bigg [\lambda _\mathrm{max}(P_1)+\bigg (\tau +\frac{\tau ^3}{3}\bigg ) \\&\quad \times \frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{1-\rho }M \\&\quad +\lambda _\mathrm{max}(Q_3+R_3)\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\left(\theta +\frac{\theta ^3}{3}\right)\mathrm{d}\theta \\&\quad +\sigma \left(\frac{\sigma ^2}{2}+\frac{\sigma ^4}{12}\right)\lambda _\mathrm{max}(C(Q_4+R_4)C)\bigg ]\Vert \varphi \Vert ^2_\sigma \\&\quad \times \frac{\prod _{t_0<t_k\le t}\max \big \{\xi _k,1\big \}}{\lambda _\mathrm{min}(P_1)(1+\varepsilon ^*(t-t_0)^2)} \end{aligned}$$

From condition (iii), there exists a constant \(\overline{M}\) such that

$$\begin{aligned} \frac{\displaystyle \prod\nolimits _{t_0<t_k\le t}\max \big \{\xi _k,1\big \}}{(1+\varepsilon ^*(t-t_0)^2)}<\overline{M} \end{aligned}$$

then

$$\begin{aligned} \Vert y(t)\Vert ^2\le & \bigg [\lambda _\mathrm{max}(P_1)+\bigg (\tau +\frac{\tau ^3}{3}\bigg )\frac{\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)}{1-\rho }M \\&\quad +\lambda _\mathrm{max}(Q_3+R_3)\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }K_j(\theta )\left(\theta +\frac{\theta ^3}{3}\right)\mathrm{d}\theta \\&\quad +\sigma \bigg (\frac{\sigma ^2}{2}+\frac{\sigma ^4}{12}\bigg )\lambda _\mathrm{max}(C(Q_4+R_4)C)\bigg ]\delta ^2\frac{\overline{M}}{\lambda _\mathrm{min}(P_1)} \\\le & \varepsilon ^2 \end{aligned}$$

which implies

$$\begin{aligned} \Vert y(t)\Vert \le \varepsilon \end{aligned}$$

It is concluded that the zero solution of system (1) is uniformly stable.

By condition (iv), it is easy that: \(\limsup _{t\rightarrow +\infty }\Vert y(t)\Vert ^2=0\), then the equilibrium point of system (1) is also uniformly asymptotically stable and globally asymptotically stable. This completes the proof of Theorem 3\(\blacksquare \).

1.4 D Proof of Theorem 4

By Theorem 1, system (1) has a unique equilibrium point, say, \(x^*=(x^*_1,x^*_2,\ldots ,x^*_n)^T\in \mathbb {R}^n\).

Let \(y(t)=(y_1(t),y_2(t),\ldots ,y_n(t))^T\) be a solution of system (5), \(\forall t_0\ge 0\). For any \(\varepsilon >0\), we choose \(\delta \) as: \(\delta =\frac{\varepsilon }{\sqrt{{\varTheta }}}\), \((\star )\) where

$$\begin{aligned}&{\varTheta }=\frac{M^*}{\lambda _\mathrm{min}(P_1)}\bigg [\lambda _\mathrm{max}(P_1)+\frac{\tau }{1-\rho }\lambda _\mathrm{max}(Q_2+R_2+2T^{*T}T^*)M \\&\quad +\displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\max _{1\le j\le n}N_j^2\displaystyle \int _{0}^{+\infty }\theta K_j(\theta )\mathrm{d}\theta \\&\quad +\frac{\sigma ^3}{2}\lambda _\mathrm{max}\big (C(Q_4+R_4)C\big )\bigg ] \end{aligned}$$

Now we consider the Lyapunov functional:

$$\begin{aligned} V(t)=V_1(t)+V_2(t)+V_3(t)+V_4(t), \end{aligned}$$

where

$$\begin{aligned} V_1(t)= & y^T(t)P_1y(t) \\ V_2(t)= & \frac{1}{1-\rho }\displaystyle \int _{t-\tau (t)}^{t}G^T(y(s))[Q_2+R_2+2T^{*T}T^*]G(y(s))\mathrm {d}s \\ V_3(t)= & \displaystyle \sum _{j=1}^{n}[q^{(3)}_j+r^{(3)}_j]\displaystyle \int _{0}^{+\infty }K_j(\theta )\displaystyle \int _{t-\theta }^{t}H_j^2(y_j(s))\mathrm {d}s\mathrm{d}\theta \\ V_4(t)= & \sigma \displaystyle \int _{-\sigma }^{0}\int _{t+\theta }^{t}\dot{y}^T(s)C[Q_4+R_4]C\dot{y}(s)\mathrm {d}s\mathrm{d}\theta \end{aligned}$$

The remainder of the proof is similar to the proof of Theorem 2 and Theorem 3. \(\blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouiti, C., Assali, E.A. Stability analysis for a class of impulsive high-order Hopfield neural networks with leakage time-varying delays. Neural Comput & Applic 31, 7781–7803 (2019). https://doi.org/10.1007/s00521-018-3585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3585-z

Keywords

Navigation