Skip to main content
Log in

A novel chaotic optimal foraging algorithm for unconstrained and constrained problems and its application in white blood cell segmentation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Meta-heuristic is defined as an iterative generation process with some random characters, which aims to generate a sufficiently good solution(s) for the global optimization problems. The process of solving a global optimization problem with near-optimal solutions is based on combining in some intelligent way different methodologies for exploiting and exploring the search space and building a structure information through different learning strategies. Optimal foraging algorithm (OFA) is a robust meta-heuristic algorithm inspired by following the animal foraging behavior. Recently, chaos and meta-heuristics have been combined in different algorithms with the aim of overcoming the limitations of meta-heuristics. In this paper, a novel algorithm for combining chaos with OFA is presented. The presented chaotic optimal foraging algorithm (COFA) is introduced with a set of unconstrained and constrained optimization problems using different chaotic maps. The results show that the proposed COFA outperforms the standard OFA for these benchmarks regarding exploitation, exploration, the trajectory of foraging individuals, search history, fitness improvement of the population and convergence rate. The performance of COFA has also compared with other most recent and popular meta-heuristic algorithms proofing its superior. An application of white blood cell segmentation in microscopic images has been chosen, and the proposed chaotic optimal foraging algorithm has been applied to see its ability and accuracy to identify and segment the white blood cell for further diagnosis. According to the statistical analysis of objective values, COFA algorithm is more accurate and robust than original OFA algorithm. COFA proves its ability to converge to the optimal multiple thresholds level-based segmentation more accurate than OFA. The experimental results also show that the proposed COFA proves its high degree of stability compared with original OFA in finding optimal multiple threshold values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbas N, Aftan H (2014) Quantum artificial bee colony algorithm for numerical function imization. Int J Comput Appl 93(9):28–30

    Google Scholar 

  2. Assarzadeh Z, Naghsh-Nilchi AR (2015) Chaotic particle swarm optimization with mutation for classification. J Med Signals Sens 5(1):12–20

    Article  Google Scholar 

  3. Cao L, Shi ZK, Chenp EKW (2002) Fast automatic multilevel thresholding method. Electron Lett 38(16):868–870

    Article  Google Scholar 

  4. Coelho L, Mariani V (2009) A novel chaotic particle swarm optimization approach using Hènon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39(2):510–518

    Article  Google Scholar 

  5. Coello C, Mezura E (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203

    Article  Google Scholar 

  6. Donida R, Piuri V, Scotti F (2011) ALL-IDB: the acute lymphoblastic leukemia image DataBase for image processing. In: The 18th IEEE ICIP international conference on image processing, Brussels, Belgium, pp 2045–2048

  7. Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy

  8. Duraisamy SP, Kayalvizhi R (2010) A new multilevel thresholding method using swarm intelligence algorithm for image segmentation. Intell Learn Syst Appl 2(3):126–138

    Google Scholar 

  9. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  10. Fister I, Yang X-S, Brest J, Fister I (2014) On the randomized firefly algorithm. In: Yang X-S (ed) Cuckoo search and firefly algorithm. Studies in Computational Intelligence, Springer, Cham, pp 27–48

    Chapter  Google Scholar 

  11. Fister J, Yang X-S, Brest J, Fister D, Fister I (2015a) Analysis of randomization methods in swarm intelligence. Int J Bio-Inspir Comput 7(1):36–49

    Article  Google Scholar 

  12. Fister J, Perc M, Kamal SM, Fistera I (2015b) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165

    MathSciNet  MATH  Google Scholar 

  13. Gandomi AH (2013) Metaheuristic applications in structures and infrastructures, pp 1–24

  14. Gandomia AH, Yangb XH (2014) Chaotic bat algorithm. J Comput Sci 5:224–232

    Article  MathSciNet  Google Scholar 

  15. Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59(4):934–946

    Article  Google Scholar 

  16. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  17. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Book  Google Scholar 

  18. Hong YY, Angelo A, Beltran J, Paglinawan AC (2016) A chaos-enhanced particle swarm optimization with adaptive parameters and its application in maximum power point tracking. Math Probl Eng 2016:19

    Google Scholar 

  19. Hussein WA, Sahran S, Abdullah SNHS (2016) A fast scheme for multilevel thresholding based on a modified bees algorithm. Knowl Based Syst 101:114–134

    Article  Google Scholar 

  20. Inclana JE , Dulikravicha G, Yangb XS (2013) Modern optimization algorithms and particle swarm variations. In: The 4th inverse problems, design and optimization symposium (IPDO-2013), Albi, France

  21. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285

    Article  Google Scholar 

  22. Karaboga D, Bahriye B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin P, Castillo O, Aguilar LT, Kacprzyk J, Pedrycz W (eds) Foundations of fuzzy logic and soft computing. Springer, Berlin, pp 789–798

    Chapter  MATH  Google Scholar 

  23. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) imization algorithm for solving constrained optimization problems. In: 12th international fuzzy systems association world congress, Mexico, vol 4529, pp 789–798

  24. Kennedy J, Eberhart R (1995) Particle swarm optimization. pp 1942–1948

  25. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  26. Krebs JR, Erichsen JT, Webber MI (1977) Optimal prey selection in the great tits (Parus major). Anim Behav 25(1):30–38

    Article  Google Scholar 

  27. Krohling R, Coelho L (2006) Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Trans Syst Man Cybern Part B 36(6):1407–1416

    Article  Google Scholar 

  28. Liu H, Abraham A, Clerc M (2007) Chaotic dynamic characteristics in swarm intelligence. Appl Soft Comput 7(3):1019–1026

    Article  Google Scholar 

  29. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  30. Mirjalili SM (2015) Moth-flame imization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  31. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse imizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):1–19

    Article  Google Scholar 

  32. Oliva D, Cuevas E, Pajares G, Zaldivar D, Cisneros MP (2013) Research article multilevel thresholding segmentation based on harmony search optimization. J Appl Math 2013:1–24

    Article  Google Scholar 

  33. Otsu N (1979) A threshold selection method from grey level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  34. Özkaynak F (2015) A novel method to improve the performance of chaos based volutionary algorithms. Opt Int J Light Electron Opt 126:5434–5438

    Article  Google Scholar 

  35. Persohn K, Povinelli R (2012) Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fractals 45(3):238–245

    Article  Google Scholar 

  36. Pike GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Evol Syst 15:523–575

    Article  Google Scholar 

  37. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52(2):37–154

    Article  Google Scholar 

  38. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  39. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based imization with chaos. Neural Comput Appl 25(5):1077–1097

    Article  Google Scholar 

  40. Sayed G, Darwish A, Hassanien A (2018a) A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. J Exp Theor Artif Intell 30(2):293–317

    Article  Google Scholar 

  41. Sayed G, Soliman M, Hassanien A (2018b) Modified optimal foraging algorithm for parameters optimization of support vector machine. In: The international conference on advanced machine learning technologies and applications (AMLTA2018), Springer, Cham, pp 23–32

  42. Seyedali M (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  43. Steen W (1998) Methodological problems in evolutionary biology. XI. Optimal foraging theory revisited. Acta Biotheor 46:321–336

    Article  Google Scholar 

  44. Su S, Su Y, Xu M (2014) Comparisons of firefly algorithm with chaotic maps. Comput Model New Technol 18(12):326–332

    Google Scholar 

  45. Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and fractal nature. J Comput Appl Math 2016(2):1070–1081

    Article  MathSciNet  MATH  Google Scholar 

  46. Teghem J (2010) Metaheuristics. from design to implementation. Eur J Oper Res 205:486–487

    Article  Google Scholar 

  47. Thejashwini M, Padma MC (2015) Counting of RBC’s and WBC’s using image processing technique. Int J Recent Innov Trends Comput Commun 3(5):2948–2953

    Google Scholar 

  48. Tuba M (2014) Multilevel image thresholding by nature-inspired algorithms: a short review. Comput Sci J Moldova 22(3):318–388

    MathSciNet  Google Scholar 

  49. Wanga GG, Guo L, Gandomi AH, Hao GH, Wangb H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  50. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González J et al (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

    Chapter  Google Scholar 

  51. Yang X-S (2010) Test problems in optimization. Wiley, Hoboken, pp 261–266

    Google Scholar 

  52. Yang X (2018) A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang XS (ed) Nature-inspired algorithms and applied optimization, vol 744. Springer, Cham

    Chapter  MATH  Google Scholar 

  53. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

    Article  Google Scholar 

  54. Yilmaz S, Kücüksille E (2015) A new modification approach on bat algorithm for solving imization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  55. Zahara E, Kao Y (2009) Hybrid neldermead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36:3880–3886

    Article  Google Scholar 

  56. Zawbaa H, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PLoS ONE 11(3):e0150652

    Article  Google Scholar 

  57. Zhu GY, Zhang WB (2016) Optimal foraging algorithm for global optimization. Appl Soft Comput 51:294–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Solyman.

Ethics declarations

Conflict of interest

We declare that we have no significant competing financial, professional or personal interests that might have influenced the performance or presentation of the work described in this manuscript.

Additional information

Gehad Ismail Sayed, Mona Solyman and Aboul Ella Hassanien: Scientific Research Group in Egypt http://www.egyptscience.net.

Appendices

Appendix A: List of benchmark global optimization problems

See Tables 15, 16, 17 and 18.

Table 15 Mathematical formula of unimodal benchmark functions
Table 16 The mathematical formula of multi-modal benchmark functions
Table 17 Properties of unimodal benchmark functions, opt denotes optimum value, lb denotes lower bound, dim denotes dimensions, and ub denotes upper bound
Table 18 Properties of multi-modal benchmark functions, opt denotes optimum value, lb denotes lower bound, dim denotes dimensions, and ub denotes upper bound

Appendix B: List of engineering design problems

1.1 The three-bar truss design problem

The three-bar truss design problem is a minimization problem. The mathematical definition of this problem as follows:

$$\begin{aligned} \begin{aligned}&{\text {Minimize}}\ {\text {the}}\ {\text {function}} \\&f(\mathbf {z})=(2\sqrt{2} z_1+z_2)\times l,\\&{\text {Subject}}\,{\text {to}},\\&h_1 (\mathbf {z})=\frac{\sqrt{2} z_1+z_2}{\sqrt{2} z_1^2+2z_1 z_2 } p-\alpha \le 0,\\&h_2 (\mathbf {z})= \frac{z_2}{\sqrt{2} z_1^2+2z_1 z_2 } p-\alpha \le 0,\\&h_3 (\mathbf {z})= \frac{ 1}{\sqrt{2} z_2+z_1 } p-\alpha \le 0,\\&{\text {where,}}\\&0\le z_i \le 1,i=1,2,\\&l= 100\,{\text {cm}},\ p=2\,{\text {kN/cm}}^2\ \alpha =2\,{\text {kN/cm}}^2. \end{aligned} \end{aligned}$$
(17)

1.2 Compression spring design problem

Compression spring design problem is a minimization problem. It has three main variables. These variables are wire diameter (WD), coil diameter (CD), and the number of active coils (NAC). The mathematical definition of this problem as follows:

$$\begin{aligned} \begin{aligned}&{\text {Minimize}}\ {\text {the}}\ {\text {function}}\\&f(\mathbf {z})=(z_3+2)z_2 z_1^2, \mathbf {z}=[z_1 z_2 z_3 ]=(CD)(WD)(NAC),\\&{\text {Subject}}\,{\text {to}},\\&h_1 (\mathbf {z})= 1-\frac{z_2^3 z_3}{717854z_1^4 }\le 0,\\&h_2 (\mathbf {z})= \frac{4z_2^2-z_1 z_2}{12566(z_2 z_1^3-z_1^4) } +\frac{1}{5108z_1^2 } -1 \le 0,\\&h_3 (\mathbf {z})= 1-\frac{140.45z_1}{z_2^2 z_3 }\le 0,\\&h_4 (\mathbf {z})=\frac{z_1+z_2}{1.5}-1\le 0 \\&{\text {where,}} \ \\&0.05\le z_1 \le 2,\\&0.25 \le z_2 \le 1.30,\\&2 \le z_3 \le 15\\ \end{aligned} \end{aligned}$$
(18)

1.3 Welded Beam Design Problem

This problem is a minimization problem. It has four variables. These variables are weld thickness (h), the length of bar attached to the weld (l), the height of the bar (t), and the thickness of the bar. Furthermore, this problem has some constraints. These constraints are the bending stress in the beam \((\alpha )\), the beam deflection \((\beta )\), side and the end deflection of the beam \((\delta )\) constraints, and buckling load on the bar (BL). The mathematical definition of this problem is defined in the following:

$$\begin{aligned} \begin{aligned}&{\text {Minimize}}\ {\text {the}}\ {\text {function}}\ \\&f(\mathbf {z})=1.10471 z_1^2 z_2+0.04811z_3 z_4 (14.0+z_2 ), \mathbf {z}=[z_1 z_2 z_3 ]=[hltb],\\&{\text {Subject}}\,{\text {to}},\\&h_1 (\mathbf {z})= \delta (\mathbf {z})-\delta _{\max }\le 0,\\&h_2 (\mathbf {z})= \alpha (\mathbf {z})- \alpha _{\max }\le 0,\\&h_3 (\mathbf {z})= z_1-z_4\le 0,\\&h_4 (\mathbf {z})= 0.10471z_1^2+0.04811z_3 z_4 (14.0+z_2 )-5.0\le 0,\\&h_5 (\mathbf {z})= 0.125-z_1\le 0,\\&h_6 (\mathbf {z})=\delta (\mathbf {z})-\delta _{\max }\le 0,\\&h_7 (\mathbf {z})= B-BL(\mathbf {z})\le 0 \\&{\text {where}},\\&0.1\le z_1\le 2,\\&0.1\le z_2 \le 10,\\&0.1\le z_3 \le 10,\\&0.1\le z_4 \le 20\\&{\text {and}}\\&\delta (\mathbf {z})=\sqrt{\delta ^{\prime 2}+2\delta ^{\prime } \delta ^n \frac{z_2}{2R}+\delta ^{n2} }\\&\delta ^\prime =\frac{B}{\sqrt{2} z_1 z_2}\\&\delta ^n=\frac{MR}{J}\\&M=B(L+\frac{z_2}{2})\\&R=\sqrt{\frac{z_2^2}{4}+\left( \frac{z_1+z_3}{2}\right) ^2 }\\&J=2\left( \sqrt{2} z_1 z_2 \left[ \frac{z_2^2}{12} \left(\frac{z_1+z_3}{2}\right)^2\right] \right) \\&\alpha (\mathbf {z})=\frac{6PL}{z_4 z_3^2 },\beta (\mathbf {z})=\frac{4PL^3}{Ez_3^2 z+z_4 }\\&BL(\mathbf {z})=\frac{4.013E\sqrt{\frac{z_3^2 z_4^6}{36}}}{L^2} \left(1-\frac{z_3}{2L} \sqrt{\frac{E}{4G}}\right)\\&P=6000\,{\text {lb}},\ L=14\,{\text {in.}},\beta _{\max }=0,\ 25\,{\text {in.}},\ E=30 \times 10^6\, {\text {psi}},G=12\times 10^6\,{\text {psi}},\\&\delta _{\max }=13{,}600,{\text {psi}},\ \alpha _{\max }=30{,}000\,{\text {psi}} \end{aligned} \end{aligned}$$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, G.I., Solyman, M. & Hassanien, A.E. A novel chaotic optimal foraging algorithm for unconstrained and constrained problems and its application in white blood cell segmentation. Neural Comput & Applic 31, 7633–7664 (2019). https://doi.org/10.1007/s00521-018-3597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3597-8

Keywords

Navigation