Skip to main content
Log in

A deep learning approach for Parkinson’s disease diagnosis from EEG signals

  • S.I. : Computer aided Medical Diagnosis
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen-layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  Google Scholar 

  2. Silver J, Schwab ME, Popovich PG (2015) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 7(3):a020602

    Article  Google Scholar 

  3. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59–77

    Article  Google Scholar 

  4. Heyn SN, Davis CP, Stoppler MC (2018) Parkinson’s disease symptoms, signs, causes, stages, and treatment. Retrieved from Medicine Net. https://www.medicinenet.com/parkinsons_disease/article.htm#parkinsons_definition_and_disease_facts. Accessed 11 June 2018

  5. World Health Organization, Neurological Disorders Public Health Challenges (2006). http://www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf. Accessed 11 June 2018

  6. Han CX, Wang J, Yi GS, Che YQ (2013) Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn 7:351–359

    Article  Google Scholar 

  7. Yuvaraj R, Acharya UR, Hagiwara Y (2016) A novel Parkinson’s diagnosis index using higher-order spectra features in EEG signals. Neural Comput Appl 28:12

    Google Scholar 

  8. Lima CAM, Coelho ALV, Chagas S (2009) Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines. Expert Syst Appl 36(6):10054–10059

    Article  Google Scholar 

  9. Leuchter AF, Cook IA, Gilmer WS, Marangell LB, Burgoyne KS, Howland RH, Trivedi MH, Zisook S, Jain R, Fava M, Iosifescu D, Greenwald S (2009) Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Res 169(2):132–138

    Article  Google Scholar 

  10. Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment—resistant symptoms of schizophrenia. Neuropharmacology 62(3):1504–1518

    Article  Google Scholar 

  11. Hampal H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K (2010) Biomarker for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560–574

    Article  Google Scholar 

  12. Chua KC, Chandran V, Acharya UR, Lim CM (2009) Analysis epileptic EEG signals using higher order spectra. J Med Eng Technol 33(1):42–50

    Article  Google Scholar 

  13. Acharya UR, Chua EC, Chua KC, Min LC, Tamura T (2010) Analysis and automatic identification of sleep stages using higher order spectra. Int J Neutral Syst 20(6):509–521

    Article  Google Scholar 

  14. Martis RJ, Acharya UR, Mandana KM, Ray AK, Chakraborty C (2013) Cardiac decision making using higher order spectra. Biomed Signal Process Control 8:193–203

    Article  Google Scholar 

  15. Yuvraj R, Murugappan M, Norlinah MI, Sundaraj K, Omar MI, Khairiyah M, Palaniappan R (2014) Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson’s disease. Int J Psychophysiol 94(3):482–495

    Article  Google Scholar 

  16. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 1:1097–1105

    Google Scholar 

  17. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Muhammad A (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90

    Article  Google Scholar 

  18. Acharya UR, Fujita H, Oh SL, Muhammad A, Tan JH, Chua KC (2017) Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl Based Syst 132:62–71

    Article  Google Scholar 

  19. Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci 20:70–79

    Article  Google Scholar 

  20. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Muhammad A, Tan RS (2018) Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 13:1–12

    Google Scholar 

  21. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2017) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2017.09.017

    Article  Google Scholar 

  22. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Prog Biomed 161:103–113

    Article  Google Scholar 

  23. Acharya UR, Fujita H, Oh SL, Raghavendra U, Tan JH, Muhammad A, Gerytch A, Hagiwara Y (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comput Syst 79(3):952–959

    Article  Google Scholar 

  24. Faust O, Hagiwara Y, Tan JH, Oh SL, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Prog Biomed 161:1–13

    Article  Google Scholar 

  25. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  Google Scholar 

  26. Cireşan D, Meier U, Masci J (2011) A committee of neural networks for traffic sign classification. In: 396 proceedings of the 2011 international joint conference on neural networks, IEEE, California vol 397, pp 1918–1921

  27. Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 82–91

  28. Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by visual cortex. In: Computer vision and pattern recognition conference, pp 994–1000

  29. Kingman DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, San Diego

  30. Yahr M, Hoehn M (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  Google Scholar 

  31. Chen HL, Huang CC, Yu XG, Xuc X, Sund X, Wang G, Wang SJ (2013) An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl 40(1):263–271

    Article  Google Scholar 

  32. Zuo WL, Wang ZY, Liu T, Chen HL (2013) Effective detection of Parkinson’s disease using an adaptive fuzzy K-nearest neighbor approach. Biomed Signal Process Control 8(4):364–373

    Article  Google Scholar 

  33. Ma C, Ouyang J, Chen HL, Zhao XH (2014) An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Comput Math Methods Med 2014:1–14

    MATH  Google Scholar 

  34. Daliri MR (2013) Chi square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed Signal Process Control 8(1):66–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Rajendra Acharya.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.L., Hagiwara, Y., Raghavendra, U. et al. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput & Applic 32, 10927–10933 (2020). https://doi.org/10.1007/s00521-018-3689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3689-5

Keywords

Navigation