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Abstract
Current automatic chord estimation systems are trained and tested using datasets that contain single reference annotations,

i.e., for each corresponding musical segment (e.g., audio frame or section), the reference annotation contains a single chord

label. Nevertheless, theoretical insights on harmonic ambiguity from harmony theory, experimental studies on annotator

subjectivity in harmony annotations, and the availability of vast amounts of heterogeneous (subjective) harmony anno-

tations in crowd-sourced repositories make the notion of a single-harmonic ‘‘ground truth’’ reference annotation a tenuous

one. Recent studies suggest that subjectivity is intrinsic to harmonic reference annotations that should be embraced in

automatic chord estimation rather than resolved. We introduce the first approach to automatic chord label personalization

by modeling annotator subjectivity through harmonic interval-based chord representations. We integrate these represen-

tations from multiple annotators and deep learn them from audio. From a single trained model and the annotators’ chord-

label vocabulary, we can accurately personalize chord labels for individual annotators. Furthermore, we show that chord

personalization using multiple reference annotations outperforms using just a single reference annotation. Our results show

that annotator subjectivity should inform future research on automatic chord estimation to improve the state of the art.
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1 Introduction

Extracting time-aligned sequences of chords from a given

audio music signal, commonly referred to as automatic

chord estimation (ACE), is a well-researched topic in

music information retrieval (MIR). ACE systems consist of

some variation of audio feature extraction followed by a

pattern matching step in which the audio features are

associated with chord labels [22]. Both feature extraction

and pattern matching in modern ACE systems are com-

monly performed using machine learning technique; in

current state-of-the-art ACE systems usually some flavor of

deep learning [10, 17, 22]. Although current state-of-the-art

ACE performance power allows them to be used in com-

mercial products (e.g., Chordify,1 Riffstation2), their per-

formance nevertheless seems to be tapering off in recent

years3 [10]. One of the reasons, Humphrey et al. [10]

argue, is that the perception of chords in recorded music

can be highly subjective, which is problematic for deriving

a single reference ‘‘ground truth’’ chord label annotation.

1.1 The problem of ‘‘ground truth’’ in harmony
transcriptions

Annotators transcribing chords from a recording by ear can

disagree because of personal preference and bias toward a
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particular instrument, and because harmony can be

ambiguous perceptually as well as theoretically by defini-

tion [23, 27]. The harmonic content of an audio recording

is often ambiguous and can result in annotators disagreeing

about which chord label best describes a musical segment.

For example, if in a recording the simultaneously sounding

notes C,E, and G are combined with a melody touching a B,

it is up to the annotator whether to include B in the chord

label (C:maj7) or not (C:maj). Neither of these choices

would be objectively wrong, but each expresses a subjec-

tive selection of the harmonic content of the audio signal.

Furthermore, reharmonization (altering an original har-

mony) is a common phenomenon in harmony transcriptions

of popular music, which can happen implicitly because of

perceptual differences between annotators, or explicitly to

make a transcription more useful in a particular context.

That is, there is an element of usefulness of chord labels

that influences chord label choice. This relates to peda-

gogical aspects (e.g., the playability of a chord on a certain

instrument) or proficiency of a performer (e.g., a music

student of a certain level). Online chord-label repositories

(e.g., Ultimate-Guitar,4 E-Chords5) for popular songs often

contain multiple, heterogeneous chord sheets of the same

song. These chord sheets often contain reharmonizations in

the form of ‘‘convenient’’ chord labels, which probably do

not exactly describe the chords that the musicians of the

original performance played. However, these different

reharmonizations are useful, because playing a song by

oneself might call for slightly different chords than in the

context of a complete band. These kinds of disagreement

should not be confused with error. Annotating chords by

listening is a challenging task even for professional musi-

cians and composers, which creates ample opportunity for

annotation errors. For example, if the instruments in a

recording play the notes C,E, and G, then the chord label

C:min is not a valid subjective choice but simply wrong.

This so-called annotator subjectivity problem makes it

hard to derive one-size-fits-all chord labels and contributed

to annotators creating large amounts of heterogeneous

chord label reference annotations. One approach to the

problem of finding the appropriate chord labels in a large

number of heterogeneous chord label sequences for the

same song is some form of data integration, such as data

fusion. Data fusion research shows that knowledge shared

between sources can be integrated to produce a unified

view that can outperform individual sources when com-

pared to a single ground truth [6] In a musical application,

it was found that integrating the output of multiple ACE

algorithms results in chord label sequences that outperform

the individual sequences when compared to a single ground

truth [14]. However, this approach is built on the

assumption that one single correct ground truth annotation

exists that is best for everybody, on which ACE systems

are exclusively built. Such a reference annotation is either

compiled by a single person [19] or unified from multiple

opinions [2]. Although most of the creators of single ref-

erence annotation datasets warn for subjectivity and

ambiguity, they are in practice used as the de facto ground

truth in MIR harmony research and related tasks, including

but not limited to: ACE [22], analysis of harmonic trends

over time [3, 8, 20], computational hook discovery [30],

chorus analysis of popular music [31], data fusion of ACE

algorithms [14], automatic structural segmentation [5], and

computational creativity, such as automatic generation of

harmonic accompaniment [4] and harmonic blending [11].

On the other hand, it can also be argued that there is no

single best reference annotation and that chord labels are

correct with varying degrees of ‘‘goodness-of-fit’’ depend-

ing on the target audience [24]. In particular for richly

orchestrated, harmonically complex music, different chord

labels can be chosen for a part, depending on the instrument,

voicing or the annotators’ chord-label vocabulary. In an

analysis, Humphrey et al. [10] found a high-degree variance

between different ‘‘ground truth’’ annotations that are often

used in ACE research. In an experimental study, Ni et al.

[24] found that annotators transcribing the same music

recordings disagree on roughly 10 percent of chord labels.

Similarly, low inter-rater agreement was found in an anal-

ysis of human annotations in the MIREX audio similarity

task [7]. Ni et al. found that that state-of-the-art ACE sys-

tems trained on single reference annotations perform worse

on a consensus of annotators than on the single reference

annotations. They suggest that current ACE systems are

starting to overfit to subjective single reference annotations,

thereby producing models that fail to accurately represent

the variability found in human annotations. Humphrey et al.

and Ni et al. both argue in [10, 24] that subjectivity plays a

role in the collection of reference annotations, and that

subjectivity should be embraced in ACE rather than

resolved. The lack of inter-rater agreement between anno-

tators and the observation that current ACE systems are

starting to overfit toward a single subjective reference

annotation implies that ACE can be improved by taking into

account annotator subjectivity.

1.2 Embracing annotator subjectivity in ACE

One approach of embracing annotator subjectivity in ACE

is personalization. Instead of providing all users of an ACE

system with the same chord labels, chord labels could be

tuned for particular use. Personalization could be informed

by, for example, a users’ chord-label preference, primary

instrument, musical proficiency or cultural background.

4 https://www.ultimate-guitar.com/.
5 https://www.e-chords.com/.
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One way of solving this problem would be to build a model

for each subjective annotation or user. This way, for each

user, personalized chord labels could be extracted that are

tailored to the users’ idiosyncrasies. However, this intro-

duces scalability problems: personalization for an arbitrary

number of annotators would potentially mean training and

testing an arbitrary number of models. For large-scale ACE

applications with hundreds of thousands of users, such as

Chordify and Riffstation, this would amount to an

unmaintainable problem. A more maintainable and scal-

able solution would be to create a single model that is

capable of taking into account the variability found in

multiple heterogeneous reference annotations. With correct

modeling of variability and the tuning of model output to

users’ particular idiosyncrasies, specific chord labels could

be provided to particular users.

Many approaches to incorporate user modeling into

machine learning methods have been proposed for various

applications, for example modeling user historical behavior

for scientific paper recommendation [33], integrating user

location [35], time [34], or age and gender information for

collaborative filtering [12]. With the exception of incor-

porating user modeling in music recommendation systems

(e.g., [26]), we are not aware of similar works in the MIR

domain.

In this paper, we propose a solution to the problem of

finding appropriate chord labels in multiple, subjective

heterogeneous reference annotations for the same song. We

propose an automatic audio chord label estimation and

personalization technique using the harmonic content

shared between multiple annotators. After deep learning

this shared information, we can create chord labels that are

tuned to a particular annotator vocabulary, thereby pro-

viding an annotator with familiar, and personal chord

labels. We test our approach on a 50-song dataset with

multiple expert reference annotations, created by annota-

tors who use different chord-label vocabularies. We show

that by taking into account annotator subjectivity while

training our ACE model, we can provide personalized

chord labels for each annotator.

Contribution. The contribution of this paper is as fol-

lows. This paper presents an approach to automatic chord

label personalization by taking into account annotator

subjectivity. This paper extends [15] by way of a harmony

representation that captures more harmonic intervals, use

of a larger dataset, and a more complete evaluation that

includes other harmony representations. We introduce a

mid-level representation that captures harmonic intervals

found in chords. The representation introduced in this

paper extends the one introduced in [15] by a) taking into

account all possible intervals in one octave, and by

including the bass note. This way, we can account for all

chords (with inversions) that contain intervals within one

octave. In contrast to [15], we compare the results of using

this representation to other harmony representations that

are commonly used in ACE. We show that after integrating

these representations from multiple annotators and deep

learning, we can provide better chord labels for each

individual annotator. To this end, we use a new and open

annotator subjectivity dataset that better captures the

variance found in popular music than the one used in [15].

Finally, we show that chord label personalization using

integrated representations outperforms personalization

from a commonly used reference annotation.

2 Chord-label annotator subjectivity

For the goal of automatic chord estimation and personal-

ization, we use two datasets. The Chordify annotator

subjectivity dataset (CASD): this dataset contains multiple

reference annotations for fifty songs from four expert

annotators. The Billboard dataset: this dataset contains

single reference annotations for the same songs. After

briefly discussing the CASD and Billboard dataset in

Sect. 2.1, we discuss the disagreement between annotators

in the CASD in more detail in Sect. 2.2. We investigate the

disagreement between annotators in terms of the average

pairwise agreement between the annotators using the

standard MIREX ACE evaluation measures. This will give

us a musically informed idea of the average agreement

found in our dataset that will inform our personalization

results in further sections. A discussion of the comparison

between the CASD and BB will inform us how much the

annotators agree with a standard reference annotation that

is commonly used in training and testing ACE systems.

2.1 The Billboard (BB) and Chordify annotator
subjectivity dataset (CASD) datasets

The Billboard dataset contains single reference annota-

tions for songs selected randomly from the Billboard hot

100 chart in the USA between 1958 and 1991 and was

introduced by Burgoyne et al. [2]. The transcription pro-

cess concerned multiple people, but their annotations were

integrated into a single annotation. After two annotators

finished transcribing a song, a third meta-annotator

resolved the differences between the annotators and com-

bined them into a single master transcription. The Bill-

board dataset is a commonly used chord label dataset that

is in practice used as the de facto ground truth for a large

number of studies into harmony and related tasks (e.g.,

MIREX ACE).
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The CASD6 dataset was introduced by the authors of

this paper and has a different focus: instead of aiming at

constructing a chord sequence consensus, it provides mul-

tiple reference annotations, provided by four expert

annotators (two guitarists and two pianists) for fifty songs

[16]. All annotators are musical experts: they either studied

composition or music performance at the undergraduate or

graduate level. All annotators are also successful profes-

sional music performers, with between fifteen and twenty

years of experience on their primary instrument. The chord

labels provided by the annotators are encoded using the

chord-label syntax introduced by Harte et al. [9]. This

syntax provides a simple and intuitive encoding that is

highly structured and unambiguous to parse with compu-

tational means. The annotations were created by (a modi-

fied version of the) Chordify web service, and an audio

recording was provided by a YouTube web player. The

YouTube audio was manually checked to be of reasonable

quality. Furthermore, by comparing the audio features

provided by the Billboard dataset with the YouTube audio,

we verified that we used a recording that is similar to the

one used in the Billboard dataset. The musical material was

selected from the Billboard dataset. As a consequence, the

CASD provides Billboard dataset identifiers which make it

possible to cross-reference with the Billboard dataset.

Figure 1 provides an example of the disagreement

between the annotations from annotators A1, A2, A3, A4

from the CASD and the annotation from the Billboard

(BB). The figure shows Constant-Q features calculated

from audio and the corresponding chord labels from the BB

and the CASD. The figure shows that annotators disagree

with each other on the level of root notes (e.g., G and C in

beat 2), intervals (e.g., C:min and C:min11 in beat 0 and

1), and bass notes (e.g., Eb:maj and Eb:maj/3 in beat

4). Furthermore, the figure shows that although the same

disagreement can be found for beat 0 and 1, the corre-

sponding Constant-Q features do not look similar. The root

cause of this disagreement is not known. The first instru-

ment of annotators (i.e., a bias toward listening to the

instrument they are accustomed to listening to), their pre-

ferred level of transcription detail, their musical sophisti-

cation (e.g., instrument and music theory proficiency), and

even their harmonic taste (i.e., simply preferring the sound

of a chord over another) could all be reasons why anno-

tators differ in their transcriptions. In any case, we

hypothesize that disagreement is an important factor in

harmonic transcriptions that, when taken into account, can

improve ACE results by providing tailored chord labels.

2.2 Chord-label agreement in the CASD and BB

In [16], we presented a detailed overview of the agreement

found in the CASD, as well as the agreement from the

annotators from the CASD with the BB [16]. Using the

commonly used MIREX evaluation of chord-label overlap

between annotations, a relatively low agreement with the

annotators was found [25]. Altogether, it was found that the

annotators used a particular set of chord labels, or vocab-

ulary for their transcriptions. Their vocabularies differ in

size and use of particular chord labels. That is, in addition

to sharing common chord labels in their transcriptions,

Fig. 1 Example of Constant-Q audio features and corresponding

disagreement between the Billboard (BB) annotation and annotations

from the four annotators A1, A2, A3, A4 from the CASD for a

selection of beats. The figure shows that annotators can disagree on

root notes, intervals, and inversions. Furthermore, the figure shows

that although for beats 0 and 1 the same disagreement is found, their

corresponding Constant-Q features are different. See that. In this

research, we improve ACE by taking into account this disagreement

when automatically estimating chords from audio for the annotators

6 https://github.com/chordify/CASD.
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each annotator uses a subset of particular chord labels that

are not shared with the other annotators.

The pairwise agreement among all annotators for all

fifty songs and all evaluation methods as reported by

Koops et al. [16] can be found in Fig. 2 in blue. The fig-

ure shows that, overall, there is low agreement between the

annotators, and lower agreement with increased chord-la-

bel granularity: annotators agree more on the root notes

(ROOT) than on complex chord labels (e.g., SEVENTHS).

The average agreement of root notes and majmin chords

(two common evaluation granularities for ACE tasks) were

found to be only 0.76 (r ¼ 0:19), and 73 (r ¼ 0:2),

respectively. These levels of agreement raise questions on

the existence of a subjectivity ceiling in harmonic tran-

scriptions. It can be argued that if such a ceiling exists,

ACE results beyond this ceiling are indicative that an ACE

algorithm is tuned to a particular subjective annotation.

We argued in [16] that the relatively low overall chord-

label agreement between expert annotators is problematic

for the creation of one-size-fits-all chord-label annotations,

which are almost universally used in ACE research. One

approach to solving the problem of creating chord-label

annotations with the broadest appeal is creating a consen-

sus annotation from multiple expert annotations. This was

proposed and presented in the Billboard dataset. The

annotations in this dataset are the result of a meta-annotator

creating a consensus from two expert annotations [2].

Assuming that a consensus annotation is on average closer

to individual annotations than annotations are to each

other, one would expect that the CASD annotators would

agree on average more with the Billboard annotation than

with each other.

In addition to annotator pairwise evaluations, Koops

et al. evaluated the annotations from the CASD on the

corresponding Billboard dataset annotation. Again a rela-

tively low agreement was found. Agreement decreases with

an increase in chord-label granularity: annotators agree

more on the root notes (ROOT) than on complex chords

(e.g., SEVENTHS) of the Billboard annotations. It was

found that the average agreement of root notes is only 0.77

(r ¼ 0:16), with some scores as low as 0.19. Furthermore,

a roughly equal chance was found of annotators agreeing

more with the Billboard than with the other annotators.

This last finding indicates that creating an ideal one-size-

fits-all ‘‘ground truth’’ chord label annotation is

problematic.

The results from analyzing annotator subjectivity in the

CASD and BB in [16] indicate that 1) annotator subjec-

tivity results in significantly different annotations and 2)

that a single reference annotation for ACE is not expressive

enough to provide annotators with tailored chord labels.

Therefore, we propose to leverage annotator subjectivity to

create an ACE system that can provide chord sequences

tailored to specific users.

3 Deep learning harmonic interval
subjectivity

We believe that chord-label sequences are inherently sub-

jective. Based on the use-case and transcription purpose,

user background, harmonic knowledge, and musical skills,

different chord-label sequences can be considered correct

for the same piece. In this research, we propose an ACE

system that can provide personalized chords which are

tailored to the musical preferences of a specific annotator.

To accomplish this, we create a harmonic bird’s-eye view

from different reference annotations, by integrating their

chord labels on the level of root, intervals, and bass. More

specifically, we introduce a new structured representation

that captures the shared harmonic interval profile of mul-

tiple chord labels, which we deep learn from audio and use

to find the most appropriate chord labels for an annotator.

The system is an improved version of the ACE personal-

ization system that was introduced by Koops et al. [15].

Fig. 2 In red: pairwise agreement among the four annotators from the

CASD for all MIREX chord granularity levels (in red). In blue:

pairwise agreement between the four annotators with the Billboard

annotations. The figure shows overall low agreement between the

annotators, and lower agreement with increased chord-label granu-

larity. Furthermore, the annotators do on average not agree more with

the Billboard annotation than with each other. This figure is adapted

from Koops et al. [16] (color figure online)
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Figure 3 shows the pipeline of our proposed system,

using annotations from multiple annotators from the CASD

at the top and the single reference annotation from the BB

at the bottom. For the CASD system we convert the

annotators’ chord labels into harmonic interval profiles

(HIP). To capture annotator subjectivity, we integrate the

HIP from all annotators into a shared harmonic interval

profile (SHIP). SHIP captures the average harmonic con-

tent shared between the annotators. After extracting Con-

stant-Q (CQT) features from audio, we train a deep neural

network (DNN) to associate a context window of CQT to

SHIP features. In the testing phase, we extract new SHIP

from unseen CQT. We then use the SHIP to rank the chord

labels from an annotator’s chord-label vocabulary. The

top-ranked chord label is chosen for that annotator. We

compare this system with another system with a similar

pipeline. The only difference is that we train the DNN on

only the single BB reference annotation before personal-

izing chord labels for each annotator. The following sec-

tions discuss each of the steps of the system in more detail.

3.1 Structured harmony representation

Several harmony representations have been proposed in

computational harmony research, of which chroma is most

commonly used. Chroma captures the pitch class content of

a chord wrapped into a single octave. Korzeniowski et al.

[17] showed that this representation can be learned from

audio using a deep neural network. This representation is

sometimes extended to include a one-hot vector repre-

senting the root, or bass note. McFee et al. [21] proposed to

learn such an extended chroma representation using deep

learning for the goal of large-vocabulary automatic chord

estimation. To personalize chord labels from an arbitrarily

sized vocabulary for an arbitrary number of annotators, we

need a chord representation that (i) is robust against label

sparsity, and (ii) captures an integrated view of all anno-

tators. We hypothesize that the commonly used chroma

representation is not able to capture these properties needed

for chord-label personalization. Therefore, we propose to

use a new representation that captures a harmonic interval

profile (HIP) of chord labels, instead of the common

approach of directly learning a chord-label classifier.

3.1.1 Harmonic interval profile (HIP)

The rationale behind the HIP is that most chords can be

reduced to the root note and a set of intervals relative to the

root, where the amount and combination of intervals

determine the chord quality and possible extensions. The

Fig. 3 Pipeline of our proposed CASD chord-label personalization

ACE system. We start by creating Harmonic Interval Profiles (HIP)

for each chord label for each annotator of the CASD. Then we

integrate their HIP into a shared harmonic interval profile (SHIP),

capturing the shared perceived harmonic content. We then train a

DNN on Constant-Q audio features input to learn SHIP. After

training, we rank annotator Ax’s chord-label vocabulary using the

SHIP. For each annotator individually, their highest ranked chord

label is chosen, resulting in possibly different chord labels for each

annotator. We compare this system with the same system, but with the

DNN trained only on the HIP of the Billboard annotation

934 Neural Computing and Applications (2020) 32:929–939
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HIP captures this intuition by reducing a chord label to its

root note, interval profile, and bass note.

Previous research by Koops et al. [15] proposed to use

HIP containing a concatenation of three one-hot vectors:

roots, thirds sevenths. In this paper, we use a larger HIP, to

account for more intervals and inversions. The HIP in this

research contains a concatenation of a couple of vectors:

roots, intervals, and inversions. With these vectors, we can

encode all possible chord labels. The first vector is of size

13 and denotes the 12 chromatic root notes (C...B) ? a ‘‘no

chord’’ (N) bin. The second vector is of size 4 and denotes

if the chord denoted by the chord label contains a major

second (2), minor second ([2), both major and minor (2B)

or no second (H2) relative to the root note. The third

vector, also of size 4 represents the same, but for thirds (3,

[3, 3&[3, H3). The fourth vector denotes the fourth

intervals (]4, [4, ]4&[4, H4). The fifth vector, of size 2,

denotes whether the chord contains a fifth (5 or H5). The

sixth vector, size 4, denotes the sixth intervals (]6, [6,

]6&[6, H6). The seventh vector denotes the sevenths

intervals (]7, [7, ]7&[7, H7). With these intervals, com-

bined with the root and bass, we can represent and evaluate

every chord label in the CASD and Billboard using the

standard MIREX ACE evaluation measures. The HIP can

be extended or reduced to other intervals as well. Figure 4

shows a number of example chord labels and their HIP

equivalent.

3.1.2 Shared harmonic interval profile (SHIP)

To capture the harmonic content shared among different

HIP, we create a Shared harmonic interval profile (SHIP)

by computing the columnwise arithmetic mean of multiple

HIPs. The last row of Fig. 4 shows an example of the SHIP

created from the HIPs above it. By averaging, we create a

fuzzy chord representation: the SHIP essentially contains a

concatenation of probability density functions for the root,

bass, and each stacked intervals. These probability density

functions express the average harmonic content shared

among the annotators’ chord labels. Instead of the classical

ACE approach of trying to estimate just a single chord

label, we propose to estimate this fuzzy representation from

audio.

3.2 Audio feature extraction

From audio, we calculate a time-frequency representation

where the frequency bins are geometrically spaced and

ratios of the center frequencies to bandwidths of all bins are

equal, called a Constant-Q (CQT) spectral transform [28].

CQT have proven to be very successful audio features for

ACE and are commonly used in state-of-the-art ACE sys-

tems [17]. We calculate these CQT features with a hop

length of 4096 samples, a minimum frequency of � 32:7

Hz (C1 note), 24 � 8 ¼ 192 bins, with 24 bins per octave,

from an audio signal with a sample rate of 44.1 Khz. This

way we can capture pitches spanning from low notes to 8

octaves above C1. Two bins per semitone allow for slight

tuning variations. In Fig. 1, several examples of CQT can

be found.

3.3 Deep learning shared harmonic interval
profiles

We use a dense deep neural network to learn SHIP from

CQT. Experiments with other deep architectures, such as

convolutional neural networks, did not give us significantly

better results, yet significantly increased computation time.

Based on preliminary experiments, a dense architecture

with three leaky (a ¼ 0:3) hidden rectifier unit layers of

sizes 512, 512, and 512 is chosen. Research in audio

content analysis has shown that better prediction accuracies

can be achieved by aggregating information over several

frames instead of using a single frame [1, 29]. Therefore,

the input to our DNN is a window (i.e., patch) of CQT

features from which we learn the SHIP corresponding to

the center frame. From experiments we found an optimal

window size of 15 frames, that is: 7 frames left and right

directly adjacent to a frame. Consequently, our neural

network has an input layer size of 192 � 15 ¼ 2880. The

output layer consists of 48 units corresponding with the

SHIP features (containing roots, thirds, fifths, sixths, and

sevenths) as explained above.

Fig. 4 Example harmonic interval profiles (HIP) of different chord

labels and their SHIP. HIP consists of several concatenated vectors.

The first one is a one-hot vector representing root notes (12 ? 1 ‘no

chord’ N bins). The second vector represents the intervals contained in

the chord label relative to the root. Each interval, except the fourth

and fifth, is represented as present (e.g., 2), present as minor (e.g., [2),

not present (e.g., H2) or both present (e.g., 2B). For fourths, 4 refers

to the perfect fourth and #4 to the augmented fourth. For fifths, we

only include present or not (i.e., 5 and H5). The last vector represents

the bass note (or inversion). Calculating the SHIP results in a

concatenation of three probability density functions that describe the

distribution of perceived harmonic content among the annotators
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We train the DNN framewise using stochastic gradient

descent by minimizing the cross-entropy between the out-

put of the DNN with the desired SHIP (computed by

considering the chord labels from all annotators for the

central audio frame of the 15-frame window). We train the

hyper-parameters of the network using mini-batch (size

512) training using the ADAM update rule [13]. Early

stopping is applied when validation accuracy does not

increase after 10 epochs. During testing, we use the derived

SHIP from unseen CQT (which we will refer to as audio-

SHIP) to rank the chord labels from an annotators’

vocabulary to find the most appropriate chord label for that

annotator.

4 Annotator vocabulary-based chord label
estimation

The audio-SHIP features are used to rank the chord labels

from a given vocabulary. For a chord label L, its HIP h

contains exactly eight ones, corresponding to the root,

seconds, thirds, fourths, fifths, sixths sevenths, and bass of

the label L. From the SHIP A of a particular audio frame,

we project out eight values for which h contains ones

(hðAÞ). The product of these values is then interpreted as

the combined probability CPð¼ P hðAÞÞ of the intervals

in L given A. Given a vocabulary of chord labels, we

normalize the CPs to obtain a probability density function

over all chord labels in the vocabulary given A. The chord

label with the highest probability is chosen as the chord

label for the audio frame associated with A.

For the chord label examples in Fig. 4, the products of

the nonzero values of the pointwise multiplications � 0.13,

0.29, and 0.07 for G:min, Eb:maj/3, Eb:maj, respec-

tively. If we consider these chord labels to be a vocabulary

and normalize the values to sum to unity, we obtain

probabilities � 0.27, 0.59, 0.14, respectively. Given mul-

tiple annotators providing reference annotations, their

chord-label vocabularies, and audio-SHIP, we can now

generate annotator specific chord labels.

5 Evaluation

SHIP models multiple (related) chords for a single frame,

e.g., the SHIP in Fig. 4 models different closely related

chords. For the purpose of personalization, we want to

present the annotator with only the chords they understand

and prefer. In this research, we assume that the annotators

want to be provided chord labels from their own vocabu-

lary. Doing so will produce a high chord label accuracy for

each annotator. For example, if an annotator’s vocabulary

does not contain a G:maj7 but does contain a G:maj, and

both are probably from an audio-SHIP, we like to present

the latter. In this paper, we evaluate our DNN ACE per-

sonalization approach, and the audio-SHIP representation,

for each individual annotator and their vocabulary.

In an experiment we compare training of our chord label

personalization system on multiple reference annotations

from the CASD with training on a commonly used single

reference annotation from the Billboard dataset. In the first

case we train a DNN (DNNCASD) on SHIPs derived from

Table 1 Chord label

personalization accuracies for

annotators A1, A2, A3 and A4

using the multiple reference

annotations from the CASD

(DNNCASD), compared to using

a single Billboard (BB)

reference annotation (DNNBB)

DNNCASD DNNBB

A1 A2 A3 A4 x BB A1 A2 A3 A4 x BB

ROOT .78 .79 .77 .65 .75 .77 .74 .74 .74 .61 .71 .85

MAJMIN .74 .75 .76 .63 .72 .74 .69 .68 .72 .57 .66 .81

MAJMIN_INV .73 .73 .74 .53 .68 .72 .68 .66 .70 .49 .63 .80

THIRDS .73 .74 .72 .62 .70 .71 .69 .67 .69 .56 .65 .80

THIRDS_INV .71 .72 .69 .52 .66 .68 .67 .66 .65 .48 .62 .78

TRIADS .70 .72 .70 .60 .68 .67 .66 .65 .66 .55 .63 .77

TRIADS_INV .69 .71 .67 .51 .65 .65 .64 .64 .64 .47 .60 .76

MIREX .73 .73 .72 .61 .70 .71 .68 .67 .70 .57 .65 .81

TETRADS .60 .63 .56 .54 .58 .54 .55 .54 .51 .48 .52 .71

TETRADS_INV .59 .62 .54 .46 .55 .52 .54 .53 .50 .41 .49 .71

SEVENTHS .64 .66 .63 .57 .62 .62 .58 .56 .57 .50 .55 .75

SEVENTHS_INV .63 .65 .60 .48 .59 .61 .56 .55 .55 .42 .52 .75

x .69 .70 .68 .56 .66 .66 .64 .63 .64 .51 .60 .78

A SHIP with intervals 2,3,4,5,6,7 is used in both cases. Accuracies are consistently higher for all annotators

A1, A2, A3, and A4 when taking into account multiple reference annotations (DNNCASD) compared to

using just a single reference annotation (DNNBB). Nevertheless, the best performances are found for BB on

the right, indicating that DNNBB is tuned to the particular BB annotation and is not ideal for chord-label

personalization
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the Chordify annotator subjectivity dataset containing fifty

popular songs annotated by four expert annotators. In the

second case, we train a DNN (DNNBB) on the HIP of the

Billboard (BB) single reference annotation [19]. For both

systems, we derive audio-SHIP and evaluate the systems

on every individual annotator. We hypothesize that training

a system on SHIP based on multiple reference annotations

from CASD captures the annotator subjectivity of these

annotations and leads to better chord labels per annotator

than training the same system on just a single (BB) refer-

ence annotation.

For each song in the dataset, we calculate CQT and

SHIP features. We randomly divide our CQT and SHIP

dataset framewise into 66% training (163800 frames), 10%

evaluation (24818 frames) and 24% testing (59563 frames)

sets. To account for the ‘‘album effect’’, we make sure

songs are not split across sets [18, 32]. For the testing set,

for each annotator, we create chord labels from the deep

learned SHIP based on the annotators’ vocabulary from the

test set. We use the standard MIREX chord label evalua-

tion methods that are introduced in Sect. 2.2 to compare

the output of our system with the reference annotation from

an annotator [25].

6 Results

Table 1 presents the results of chord label personalization

using the DNNCASD on the left and the DNNBB on the right.

In the columns A1, A2, A3 and A4, personalization accu-

racies can be found for each chord label granularity. The x-

column presents the average accuracy per granularity,

while the x-row presents the average accuracy per anno-

tator. In addition to chord label personalization for each

annotator, we also treated the BB annotation as an anno-

tator and performed chord label personalization. This way,

we can investigate what role a single reference annotation

can play in providing personalized chord labels.

The DNNCASD columns of Table 1 for each annotator

show average accuracies ranging between .71 and .60.

Comparable high-accuracy scores for each annotator show

that the system is able to learn an audio-SHIP representa-

tion that (i) is meaningful for all annotators (ii) from which

chord labels can be accurately personalized for each

annotator.

Comparing the annotator columns of DNNCASD and

DNNBB, we see that for each annotator DNNCASD models

annotator subjectivity better than DNNBB. The average

accuracies of DNNCASD are per annotator on average 2.5

to 9.6 percentage points higher than DNNBB, showing

that for these annotators, using only BB is not enough to

accurately represent the variability found in human

annotations. The difference in accuracy between the

networks is significant (p � 0:01). Furthermore, com-

paring the x-columns shows that per granularity,

DNNCASD outperforms DNNBB on average by 6 per-

centage points, with up to 7 percentage points for the

most complex chord granularity (SEVENTHS). The BB-

column shows the results comparable to the average

annotator (x), which shows that even though the

DNNCASD system did not take the BB annotation into

account when training, it is nevertheless capable of

providing personalized chord labels for BB.

This doesn’t mean that DNNBB is not trained well. On

the contrary, the DNNBB table shows that it provides

much better chord labels for the BB than for the four

annotators. Comparing the x and BB columns for

DNNBB, we find that on average, DNNBB provides better

chord labels for BB than for x with about 19 percentage

point difference. For SEVENTHS, this difference is even

25 percentage points. This shows that the system trained

solely on the BB is good at providing chord labels only

when we evaluate it on that same dataset. It seems that

DNNBB has tuned itself to the particular subjective ref-

erence annotation found in the Billboard dataset. Fur-

thermore, if we assume the existence of a subjectivity

ceiling as suggested in Sect. 2.2, we can see that the

results from the DNNBB evaluated on the BB lie (far)

beyond this ceiling found in the CASD, proving further

proof of overfitting to the BB. If we make the same

comparison for the DNNCASD, we find accuracies that are

very close to the subjectivity ceiling.

To test the contribution of our proposed SHIP repre-

sentation to our system, we compared our system to one in

Table 2 Chord label personalization accuracies for annotators A1,

A2, A3 and A4 using the multiple reference annotations from the

CASD using extended chroma proposed in [17, 21]

DNNchroma

A1 A2 A3 A4 x BB

ROOT .50 .48 .48 .46 .48 .49

MAJMIN .39 .46 .49 .43 .44 .41

MAJMIN_INV .38 .44 .47 .38 .42 .41

THIRDS .45 .45 .45 .44 .45 .49

THIRDS_INV .44 .44 .42 .38 .42 .48

TRIADS .37 .45 .44 .42 .42 .39

TRIADS_INV .36 .43 .42 .37 .40 .38

MIREX .30 .41 .33 .36 .35 .31

TETRADS .29 .39 .31 .31 .33 .30

TETRADS_INV .37 .45 .45 .43 .42 .40

SEVENTHS .32 .43 .39 .38 .38 .32

SEVENTHS_INV .31 .41 .36 .33 .35 .32

x .37 .44 .42 .41 .40 .39

Similar results were found using regular chroma. All results are sig-

nificantly lower than the results from Table 1
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which SHIP is replaced by common 12-bin chroma and

extended chroma as proposed by McFee et al. and Korze-

niowski et al. [17, 21]. After integrating them, we deep

learn these representations in the same fashion as we learn

SHIP, and also perform vocabulary filtering as explained in

Sect. 4 to provide each annotator and the BB with chord

labels. None of these representations yielded satisfactory

results, with low chord-label personalization accuracies

ranging between .29 and .50 for all chord label granulari-

ties for all annotators and the BB. The results for using

extended chroma can be found in Table 2. This table shows

that significantly worse results are obtained using extended

chroma compared to using SHIP in Table 1. Similar worse

results were obtained using common chroma.

Overall, the results from Table 1 show that chord label

personalization using the SHIP is improved by taking into

account multiple reference annotations, while personalization

using a commonly used single reference annotation yields

significantly worse results per annotator. Furthermore, the

poor personalization results from using the common chroma

representation show that, in contrast to chroma, SHIP is

capable of capturing the shared harmonic content needed for

personalization when the average pairwise agreement

between annotators is relatively low (Table 3).

7 Conclusions and discussion

We presented an automatic chord-label estimation and per-

sonalization system that takes into account chord labels from

multiple reference annotations. Our system uses an interval-

based chord label representation that captures the shared

subjectivity between annotators and an annotators’ specific

chord label vocabulary to find appropriate chord labels for

that particular annotator. An experiment showed that for each

annotator, better chord labels can be provided using this

system compared to the conventional ACE approach of using

only a single ‘‘ground truth’’ reference annotation. Further-

more, we found that chord-label personalization using the

common chroma representation yields poor results.

To test the scalability of our system, our experiment

needs to be repeated on a larger dataset, with more songs

and more annotators. Unfortunately, chord label datasets

with multiple reference annotations are scarce, and creating

such datasets is costly and time-consuming. Repetition of a

similar experiment as presented in this paper on a larger

dataset with instrument/proficiency/cultural-specific anno-

tations from different annotators would shed light on

whether our system generalizes to providing chord label

annotations for such different contexts. Furthermore, find-

ing which audio features correlate with subjectivity and

disagreement could provide insight into the audio struc-

tures that influence these aspects, and inform future sys-

tems to predict them directly from recorded sound.

We showed the relative improvement of using multiple

versus a single reference annotation. Other deep architec-

tures and audio features should be explored to investigate if

there are techniques that are perhaps even better for

learning fuzzy chord representations from audio. Although

our ACE accuracies are below the current state of the art, a

comparison to state-of-the-art ACE results might not be

completely fair. The results from our experiments, as well

as the experiments from [24], show that overfitting is a

problem in ACE when using a single reference annotation.

We believe that the agreement from a subjectivity ceiling

should inform future ACE evaluations. From the results

presented in this paper, we consider chord label personal-

ization as the next step in the evolution of ACE systems.
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