Skip to main content
Log in

MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study proposes a novel strength of multi-objective gravitational search algorithm and bat algorithm MOGSABAT to solve multi-objective optimisation problem. The proposed MOGSABAT algorithm is divided into three stages. In the first stage (moving space), a switch in a solution from single function to multiple functions that contain more than one objective to use the gravitational search algorithm GSA is determined. We established a new equation to calculate the masses of individuals in the population using the theoretical work found in the strength Pareto evolutionary algorithm. In the second stage (moving in space), how to handle the bat algorithm BAT to solve multiple functions is established. We applied the theoretical work of multi-objective particle swarm optimisation into the BAT algorithm to solve multiple functions. In the third stage, multi-objective GSA and multi-objective BAT are integrated to obtain the hybrid MOGSABAT algorithm. MOGSABAT is tested by adopting a three-part evaluation methodology that (1) describes the benchmarking of the optimisation problem (bi-objective and tri-objective) to evaluate the performance of the algorithm; (2) compares the performance of the algorithm with that of other intelligent computation techniques and parameter settings; and (3) evaluates the algorithm based on mean, standard deviation and Wilcoxon signed-rank test statistic of the function values. The optimisation results and discussion confirm that the MOGSABAT algorithm competes well with advanced metaheuristic algorithms and conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott R, Albach D, Ansell S (2013) Hybridization and speciation. J Evolut Biol (Wiley Online Library) 267(2):229–246

    Article  Google Scholar 

  2. Beheshti Z, Shamsuddin SMH (2014) Centripetal accelerated particle swarm optimization. Inf Sci 256:54–79

    Article  MathSciNet  Google Scholar 

  3. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evolut Comput 8(3):256–279

    Article  Google Scholar 

  4. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

    MATH  Google Scholar 

  5. Deb K (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Article  Google Scholar 

  6. Derrac S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Article  Google Scholar 

  7. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  8. Hassanzadeh HR, Rouhani M (2010) A multi-objective gravitational search algorithm. In: Proceedings of the 2010 second international conference on computational intelligence, communication systems and networks (CICSyN). IEEE, pp 7–12. https://doi.org/10.1109/CICSyN.2010.32.

  9. Huo, J. and Liu, L. (2018). Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model. Neural Comput Appl (2018). https://doi.org/10.1007/s00521-018-3483-4

  10. Karimi-Nasab M, Ghomi SMTF (2012) Multi-objective production scheduling with controllable processing times and sequence-dependent setups for deteriorating items. Int J Prod Res 50(24):7378–7400

    Article  Google Scholar 

  11. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948

  12. Kirkpatrick S, Gelatto CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:67–680

    Article  MathSciNet  Google Scholar 

  13. Li H, Zhang Q, Deng J (2017) Biased multiobjective optimization and decomposition algorithm. IEEE Trans Cybern 47(1):52–66

    Article  Google Scholar 

  14. Liu H-L, Chen L, Deb K, Goodman ED (2017) Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms. IEEE Trans Evolut Comput 21(3):408–25

    Google Scholar 

  15. Ning J, Liu T, Zhang C (2018) A food source-updating information-guided artificial bee colony algorithm. Neural Comput Appl 30:775. https://doi.org/10.1007/s00521-016-2687-8

    Article  Google Scholar 

  16. Nobahari H, Nikusokhan M, Siarry P (2012) A multi-objective gravitational search algorithm based on non-dominated sorting. Int J Swarm Intell Res 3:32–49

    Article  Google Scholar 

  17. Nobahari H, Nikusokhan M, Siarry P (2012) A multi-objective gravitational search algorithm based on non-dominated sorting. Int J Swarm Intell Res 3(3):32–49. https://doi.org/10.4018/jsir.2012070103

    Article  Google Scholar 

  18. Peng G (2016) Multi-objective particle optimization algorithm based on sharinglearning and dynamic crowding distance. Opt Int J Light Electron Opt 127(12):5013–5020

    Article  Google Scholar 

  19. Prakash S, Trivedi V, Ramteke M (2016) An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor. Int J Syst Assur Eng Manag 7(3):299–315

    Article  Google Scholar 

  20. Ramli MR, Abas ZA, Desa MI, Abidin, ZZ, Alazzam MB (2018) Enhanced convergence of Bat Algorithm based on dimensional and inertia weight factor. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2018.03.010

    Article  Google Scholar 

  21. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  Google Scholar 

  22. Rashedi E, Rashedi E, Nezamabadi-pour H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evolut Comput 41:141–158

    Article  Google Scholar 

  23. Reyes-Sierra M, Coello CC (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  24. Sabri NM, Puteh M, Mahmood MR (2013) A review of gravitational search algorithm. Int J Adv Soft Comput Appl 5(3):1–39

    Google Scholar 

  25. Silverman BW (1986) Density estimation for statistics and data analysis. CRC Press, London, p 26

    Book  Google Scholar 

  26. Sun G, Zhang A, Jia X, Li X, Ji S, Wang Z (2016) DMMOGSA: diversity-enhanced and memory-based multi-objective gravitational search algorithm. Inf Sci 363:52–71

    Article  Google Scholar 

  27. Tang KS, Man KF, Kwong S, He Q (1996) Genetic algorithms and their applications. IEEE Signal Process Mag 13(6):22–37

    Article  Google Scholar 

  28. Tharakeshwar T, Seetharamu K, Prasad BD (2017) Multi-objective optimization using bat algorithm for shell and tube heat exchangers. Appl Therm Eng 110:1029–1038

    Article  Google Scholar 

  29. Xiao J, Li W, Liu B (2018) A novel multi-population co-evolution strategy for single objective immune optimization algorithm. Neural Comput Appl 29:1115. https://doi.org/10.1007/s00521-016-2507-1

    Article  Google Scholar 

  30. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization. Studies in Computational Intelligence, vol 284. Springer, Berlin, pp 65–74

    Google Scholar 

  31. Yang X-S (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspir Comput 3(5):267–274

    Article  Google Scholar 

  32. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, vol 264, pp 52–66

  33. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich, Switzerland

  34. Zitzler E, Laumanns M, Thiele L (2001) Improving the strength Pareto evolutionary algorithm. Eidgenssische Technische Hochschule Zrich 103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zaidan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, I., AlSattar, H.A., Zaidan, A.A. et al. MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Comput & Applic 32, 3101–3115 (2020). https://doi.org/10.1007/s00521-018-3808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3808-3

Keywords

Navigation