Skip to main content
Log in

Heuristic orientation adjustment for better exploration in multi-objective optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Decomposition strategy which employs predefined subproblem framework and reference vectors has significant contribution in multi-objective optimization, and it can enhance local convergence as well as global diversity. However, the fixed exploring directions sacrifice flexibility and adaptability; therefore, extra reference adaptations should be considered under different shapes of the Pareto front. In this paper, a population-based heuristic orientation generating approach is presented to build a dynamic decomposition. The novel approach replaces the exhaustive reference distribution with reduced and partial orientations clustered within potential areas and provides flexible and scalable instructions for better exploration. Numerical experiment results demonstrate that the proposed method is compatible with both regular Pareto fronts and irregular cases and maintains outperformance or competitive performance compared to some state-of-the-art multi-objective approaches and adaptive-based algorithms. Moreover, the novel strategy presents more independence on subproblem aggregations and provides an autonomous evolving branch in decomposition-based researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195

    Article  Google Scholar 

  2. Asafuddoula M, Ray T, Sarker R (2015) A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans Evol Comput 19(3):445–460. https://doi.org/10.1109/tevc.2014.2339823

    Article  Google Scholar 

  3. Cai X, Li Y, Fan Z, Zhang Q (2015) An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans Evol Comput 19(4):508–523. https://doi.org/10.1109/tevc.2014.2350995

    Article  Google Scholar 

  4. Cai X, Yang Z, Fan Z, Zhang Q (2016) Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans Cybern PP(99):1–14

    Google Scholar 

  5. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791

    Article  Google Scholar 

  6. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. https://doi.org/10.1137/s1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  7. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/tevc.2013.2281535

    Article  Google Scholar 

  8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017 Pii S 1089-778x(02)04101-2

    Article  Google Scholar 

  9. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Cec’02: proceedings of the 2002 congress on evolutionary computation, vol 1–2, pp 825–830

  10. Ding J, Liu J, Chowdhury KR, Zhang W, Hu Q, Lei J (2014) A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization. Neurocomputing 137:261–267

    Article  Google Scholar 

  11. Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many objective particle swarm optimization. Inf Sci 374:115–134. https://doi.org/10.1016/j.ins.2016.09.026

    Article  Google Scholar 

  12. Gee SB, Tan KC, Shim VA, Pal NR (2015) Online diversity assessment in evolutionary multiobjective optimization: a geometrical perspective. IEEE Trans Evol Comput 19(4):542–559. https://doi.org/10.1109/tevc.2014.2353672

    Article  Google Scholar 

  13. Giagkiozis I, Purshouse RC, Fleming PJ (2014) Generalized decomposition and cross entropy methods for many-objective optimization. Inf Sci 282:363–387

    Article  MathSciNet  Google Scholar 

  14. He Z, Yen GG (2016) Many-objective evolutionary algorithm: objective space reduction and diversity improvement. IEEE Trans Evol Comput 20(1):145–160. https://doi.org/10.1109/tevc.2015.2433266

    Article  Google Scholar 

  15. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  Google Scholar 

  16. Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2010) Simultaneous use of different scalarizing functions in MOEA/D. In: Proceedings of the 12th annual conference on genetic and evolutionary computation, ACM, pp 519–526

  17. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    Article  Google Scholar 

  18. Jiang Q, Wang L, Hei X, Yu G, Lin Y, Lu X (2016) Moea/d-ara+ sbx: a new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover. Knowl Based Syst 107:197–218

    Article  Google Scholar 

  19. Jost L (2006) Entropy and diversity. Oikos 113(2):363–375

    Article  Google Scholar 

  20. Li K, Deb K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716. https://doi.org/10.1109/tevc.2014.2373386

    Article  Google Scholar 

  21. Li K, Kwong S, Zhang Q, Deb K (2015) Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans Cybern 45(10):2076–2088

    Article  Google Scholar 

  22. Liu B, Fernandez FV, Zhang Q, Pak M, Sipahi S, Gielen G (2010) An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing. In: 2010 IEEE congress on evolutionary computation (CEC), IEEE, pp 1–7

  23. Mei Y, Tang K, Yao X (2011) Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans Evol Comput 15(2):151–165. https://doi.org/10.1109/tevc.2010.2051446

    Article  Google Scholar 

  24. Ming M, Wang R, Zha Y, Zhang T (2017) Pareto adaptive penalty-based boundary intersection method for multi-objective optimization. Inf Sci 414:158–174. https://doi.org/10.1016/j.ins.2017.05.012

    Article  MathSciNet  Google Scholar 

  25. Pan A, Wang L, Guo W, Wu Q (2018) A diversity enhanced multiobjective particle swarm optimization. Inf Sci 436–437:441–465

    Article  MathSciNet  Google Scholar 

  26. Pilat M, Neruda R (2015) Incorporating user preferences in moead through the coevolution of weights. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation, ACM, pp 727–734

  27. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) Moea/d with adaptive weight adjustment. Evol Comput 22(2):231–264

    Article  Google Scholar 

  28. Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  29. Rubio-Largo A, Zhang Q, Vega-Rodriguez MA (2014) A multiobjective evolutionary algorithm based on decomposition with normal boundary intersection for traffic grooming in optical networks. Inf Sci 289:91–116. https://doi.org/10.1016/j.ins.2014.08.004

    Article  MathSciNet  MATH  Google Scholar 

  30. Sato H (2014) Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, ACM, pp 645–652

  31. Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22:609–622

    Article  Google Scholar 

  32. Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: a matlab platform for evolutionary multi-objective optimization. Neural Evol Comput 12(4):73–87

    Google Scholar 

  33. Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440–462. https://doi.org/10.1109/tevc.2016.2608507

    Article  Google Scholar 

  34. Wang H, Jin Y, Yao X (2016) Diversity assessment in many-objective optimization. IEEE Trans Cybern PP(99):1–13

    Google Scholar 

  35. Wang L, Zhang Q, Zhou A, Gong M, Jiao L (2016) Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(3):475–480. https://doi.org/10.1109/tevc.2015.2457616

    Article  Google Scholar 

  36. Wang R, Xiong J, Ishibuchi H, Wu G, Zhang T (2017) On the effect of reference point in MOEA/D for multi-objective optimization. Appl Soft Comput 58(Supplement C):25–34. https://doi.org/10.1016/j.asoc.2017.04.002

    Article  Google Scholar 

  37. Wang Z, Zhang Q, Li H (2015) Balancing convergence and diversity by using two different reproduction operators in MOEA/D: some preliminary work. In: 2015 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 2849–2854

  38. Wu M, Li K, Kwong S, Zhou Y (2017) Adaptive two-level matching-based selection for decomposition multi-objective optimization. IEEE Trans Evol Comput PP(99):1–1. https://doi.org/10.1109/TEVC.2017.2656922

    Article  Google Scholar 

  39. Yang S, Jiang S, Jiang Y (2017) Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft Comput 21(16):4677–4691

    Article  Google Scholar 

  40. Yu G, Zheng J, Shen R, Li M (2016) Decomposing the user-preference in multiobjective optimization. Soft Comput 20(10):4005–4021. https://doi.org/10.1007/s00500-015-1736-z

    Article  Google Scholar 

  41. Yuan Y, Xu H, Wang B, Zhang B, Yao X (2016) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180–198. https://doi.org/10.1109/tevc.2015.2443001

    Article  Google Scholar 

  42. Zhang H, Llorca J, Davis CC, Milner SD (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222

    Article  Google Scholar 

  43. Zhang H, Song S, Zhou A, Gao XZ (2014) A clustering based multiobjective evolutionary algorithm. In: 2014 IEEE congress on evolutionary computation, pp 723–730

  44. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/tevc.2007.892759

    Article  Google Scholar 

  45. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, pp 1–30

  46. Zhou A, Zhang Q (2016) Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 20(1):52–64. https://doi.org/10.1109/tevc.2015.2424251

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the China Scholarship Council, 201706260064, National Natural Science Foundation of China under Grant Nos. 61503287 & 71771176, NUSRI China Jiangsu Provincial Grant BK20150386 & BE2016077, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18F030010. The authors would like to thank Abigail Martin for the proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, A., Wang, L., Guo, W. et al. Heuristic orientation adjustment for better exploration in multi-objective optimization. Neural Comput & Applic 32, 4757–4771 (2020). https://doi.org/10.1007/s00521-018-3848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3848-8

Keywords

Navigation