Skip to main content

Advertisement

Log in

An entropy-based classification of breast cancerous genes using microarray data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Gene expression levels obtained from microarray data provide a promising technique for doing classification on cancerous data. Due to the high dimensionality of the microarray datasets, the redundant genes need to be removed and only significant genes are required for building the classifier. In this work, an entropy-based method was used based on supervised learning to differentiate between normal tissue and breast tumor based on their gene expression profiles. This work employs four widely used machine learning techniques for breast cancer prediction, namely support vector machine (SVM), random forest, k-nearest neighbor (KNN) and naive Bayes. The performance of these techniques was evaluated on four different classification performance measurements which result in getting more accuracy in case of SVM as compared to other machine learning algorithms. Classification accuracy of 91.5% was achieved by support vector machine with 0.833 F1 measures. Furthermore, these techniques were evaluated on the basis of performance by ROC curve and calibration graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  2. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  3. Ben-Dor A, Bruhn L, Friedman N et al (2000) Tissue classification with gene expression profiles. J Comput Biol 7:559–583

    Article  Google Scholar 

  4. DeSantis CE, Siegel RL, Sauer AG et al (2016) Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin 66:290–308

    Article  Google Scholar 

  5. Hedley DW, Rugg CA, Gelber RD (1987) Association of DNA index and S-phase fraction with prognosis of nodes positive early breast cancer. Cancer Res 47:4729–4735

    Google Scholar 

  6. Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  Google Scholar 

  7. Luo J, Ellis MJ (2010) Microarray data analysis in neoadjuvant biomarker studies in estrogen receptor-positive breast cancer. Breast Cancer Res 12:112. https://doi.org/10.1186/bcr2616

    Article  Google Scholar 

  8. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  Google Scholar 

  9. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  Google Scholar 

  10. Wang L, Chu F, Xie W (2007) Accurate cancer classification using expressions of very few genes. IEEEACM Trans Comput Biol Bioinforma TCBB 4:40–53

    Article  Google Scholar 

  11. Furberg CD, Yusuf S (1988) Effect of drug therapy on survival in chronic congestive heart failure. Am J Cardiol 62:41A–45A

    Article  Google Scholar 

  12. Heuvers ME, Hegmans JP, Stricker BH, Aerts JG (2012) Improving lung cancer survival; time to move on. BMC Pulm Med 12:77. https://doi.org/10.1186/1471-2466-12-77

    Article  Google Scholar 

  13. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2012) An ensemble of filters and classifiers for microarray data classification. Pattern Recognit 45:531–539

    Article  Google Scholar 

  14. Herrero J, Valencia A, Dopazo J (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126–136

    Article  Google Scholar 

  15. Dembele D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinformatics 19:973–980

    Article  Google Scholar 

  16. Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  Google Scholar 

  17. Vanitha CDA, Devaraj D, Venkatesulu M (2015) Gene expression data classification using support vector machine and mutual information-based gene selection. Proced Comput Sci 47:13–21

    Article  Google Scholar 

  18. Yeung KY, Haynor DR, Ruzzo WL (2001) Validating clustering for gene expression data. Bioinformatics 17:309–318

    Article  Google Scholar 

  19. Chang JC, Wooten EC, Tsimelzon A et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362:362–369

    Article  Google Scholar 

  20. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30:1145–1159

    Article  Google Scholar 

  21. Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. Mach Learn ECML 98:137–142

    Article  Google Scholar 

  22. Furey TS, Cristianini N, Duffy N et al (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914

    Article  Google Scholar 

  23. Anderson TF, Abrams DS, Grens EA (1978) Evaluation of parameters for nonlinear thermodynamic models. AIChE J 24:20–29

    Article  MathSciNet  Google Scholar 

  24. Serretti A, Smeraldi E (2004) Neural network analysis in pharmacogenetics of mood disorders. BMC Med Genet 5:27

    Article  Google Scholar 

  25. Ng AY, Jordan MI (2002) On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Advances in neural information processing systems. pp 841–848

  26. Ahmed M, Shahjaman M, Rana M et al (2017) Robustification of Naïve bayes classifier and its application for microarray gene expression data analysis. Biomed Res Int 2017:3020627. https://doi.org/10.1155/2017/3020627

    Article  Google Scholar 

  27. Lu Y, Han J (2003) Cancer classification using gene expression data. Inf Syst 28:243–268

    Article  Google Scholar 

  28. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  29. Svetnik V, Liaw A, Tong C et al (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958

    Article  Google Scholar 

  30. Díaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinform 7:3. https://doi.org/10.1186/1471-2105-7-3

    Article  Google Scholar 

  31. Ray C (2011) Cancer identification and gene classification using DNA micro array gene expression patterns. Int J Comput Sci Issues 8:155–160

    Google Scholar 

  32. Zhang M-L, Zhou Z-H (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit 40:2038–2048

    Article  Google Scholar 

  33. Parry RM, Jones W, Stokes TH et al (2010) k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenomics J 10:292–309

    Article  Google Scholar 

  34. Geisser S (1993) Selecting a statistical model and predicting. In: Predictive inference: an introduction. Springer, Berlin, pp 88–117

  35. Demšar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14:2349–2353

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Bioinformatics and Applied Sciences, Indian Institute of Information Technology, Allahabad, for providing computing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritish Kumar Varadwaj.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, M., Semwal, R., Raj, U. et al. An entropy-based classification of breast cancerous genes using microarray data. Neural Comput & Applic 32, 2397–2404 (2020). https://doi.org/10.1007/s00521-018-3864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3864-8

Keywords

Navigation