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Abstract
Recurrent neural networks (RNNs) are now widely used on sequence generation tasks due to their ability to learn long-

range dependencies and to generate sequences of arbitrary length. However, their left-to-right generation procedure only

allows a limited control from a potential user which makes them unsuitable for interactive and creative usages such as

interactive music generation. This article introduces a novel architecture called anticipation-RNN which possesses the

assets of the RNN-based generative models while allowing to enforce user-defined unary constraints. We demonstrate its

efficiency on the task of generating melodies satisfying unary constraints in the style of the soprano parts of the J.S. Bach

chorale harmonizations. Sampling using the anticipation-RNN is of the same order of complexity than sampling from the

traditional RNN model. This fast and interactive generation of musical sequences opens ways to devise real-time systems

that could be used for creative purposes.
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1 Introduction

Recently, a number of powerful generative models on

symbolic music have been proposed [14]. If they now

perform well on a variety of different musical datasets,

from monophonic folk music [29] to polyphonic Bach

chorales [19], these models tend to face similar limitations:

they do not provide musically interesting ways for a user to

interact with them. Most of the time, only an input seed can

be specified in order to condition the model upon: once the

generation is finished, the user can only accept the result or

regenerate another musical content. We believe that this

restriction hinders creativity since the user does not play an

active part in the music creation process.

Generation in these generative models is often per-

formed from left to right; recurrent neural networks

(RNNs) [10] are generally used to estimate the probability

of generating the next musical event, and generation is

done by iteratively sampling one musical event after

another. This left-to-right modeling seems natural since

music unfolds through time and this holds both for

monophonic [7, 29] and polyphonic [5, 19] music gener-

ation tasks. However, this does not match real composi-

tional principles since composition is mostly done in an

iterative and non-sequential way [2]. As a simple example,

one may want to generate a melody that ends on a specific

note, but generating such melodies while staying in the

learned style (the melodies are sampled with the correct

probabilities) is in general a non-trivial problem when

generation is performed from left to right. This problem

has been solved when the generative model is a Markov

model [22] but remains hard when considering arbitrary

RNNs.

In order to solve issues raised by the left-to-right sam-

pling scheme, approaches based on MCMC methods have

been proposed, in the context of monophonic sequences

with shallow models [25] or on polyphonic musical pieces

using deeper models [12, 13]. If these MCMC methods

allow to generate musically convincing sequences while

enforcing many user-defined constraints, the generation

process is generally order of magnitudes longer than the
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simpler left-to-right generation scheme. This can prevent

for instance using these models in real-time settings.

Another related approach is the one proposed in [18]

where the authors address the problem of enforcing

deterministic constraints on the output sequences. Their

approach relies on performing a gradient descent on a

regularized objective that takes into account the amount of

constraints that are violated in the output sequence. They

start from a pre-trained unconstrained model and then

‘‘nudge’’ its weights until it produces a valid sequence. If

their model is able to handle a wide range of constraints

(such as requiring the output sequence to belong to a

context-free language), it enforces these constraints using a

costly procedure, namely stochastic gradient descent

(SGD). Sequences are generated using the deterministic

argmax decoding procedure while our sampling scheme is

non-deterministic, which we believe can be a desired fea-

ture in the context of interactive music generation. The

approach of [17] is similar to the latter approach in the

sense that the authors enforce constraints via gradient

descent. However, since they rely on convolutional

restricted Boltzmann machines, their sampling scheme is

no longer deterministic. Their method is a way to sample

polyphonic music having some imposed high-level struc-

ture (repetitions, patterns) which is imposed through the

prescription of some predefined autocorrelation matrix.

The particularity of our approach is that it focuses on a

smaller subset of constraints, namely unary constraints,

which allows our sampling scheme to be faster since the

proposed model takes into account the set of constraints

during the training phase instead of the generation phase.

Except from the approaches cited above, the problem of

generating sequences while enforcing user-defined con-

straints is rarely considered in the general machine learning

literature but it is of crucial importance when devising

interactive generative models. In this article, we propose a

neural network architecture called anticipation-RNN which

is capable of generating in the style learned from a data-

base while enforcing user-defined unary constraints. Our

model relies on two stacked RNNs, a constraint-RNN

going from right to left whose aim is to take into account

future constraints and a token-RNN going from left to right

that generates the final output sequence. This architecture

is very general and works with any RNN implementation.

Furthermore, the generation process is fast as it only

requires two neural network calls per musical event.

Even if the proposed architecture is composed of two

RNNs going in opposite directions, it has not to be con-

fused with the bidirectional-RNNs (BRNNs) architec-

tures [26] which are commonly used to either summarize

an entire sequence as in [24] or in the context of supervised

learning [11]. Even if there have been attempts to use

BRNNs in an unsupervised setting [4], these methods are

intrinsically based on a MCMC sampling procedure which

makes them much slower than our proposed method. The

idea of integrating future information to improve left-to-

right generation using RNNs has been considered in the

Variational Bi-LSTM architecture [28] or in the Twin

Networks architecture [27]. The aim of these architectures

is to regularize the hidden states of the RNNs so that they

better model the data distribution. If ideas could appear to

be similar to the ones developed in this paper, these two

approaches do not consider the generation of sequences

under constraints but are a method to improve the existing

RNNs architectures.

The plan for this article is the following: in Sect. 2, we

precisely state the problem we consider and Sect. 3

describes the proposed architecture together with an

adapted training procedure. Finally, we demonstrate

experimentally the efficiency of our approach on the

dataset of the chorale melodies by J.S. Bach in Sect. 4. In

Sect. 5, we discuss about the generality of our approach

and about future developments.

Code is available at https://github.com/Ghadjeres/

Anticipation-RNN, and the musical examples presented in

this article can be listened to on the accompanying Web

site: https://sites.google.com/view/anticipation-rnn-exam

ples/accueil.

2 Statement of the problem

We consider an i.i.d. dataset D :¼ fs ¼ ðs1; . . .; sNÞ 2
ANg of sequences of tokens st 2 A of arbitrary length N

over a vocabulary A. We are interested in probabilistic

models over sequences p(s) such that

pðsÞ ¼
Y

t

pðstjs\tÞ; ð1Þ

where

s\t ¼
ðs1; . . .; st�1Þ for t[ 0

;; if t ¼ 0:

�
ð2Þ

This means that the generative model p(s) over sequences

is defined using the conditional probabilities pðstjs\tÞ only.
Generation with this generative model is performed itera-

tively by sampling st from pðstjs\tÞ for t ¼ 1. . .N where N

is arbitrary. Due to their simplicity and their efficiency,

recurrent neural networks (RNNs) are used to model the

conditional probability distributions pðstjs\tÞ: they allow

to reuse the same neural network over the different time

steps by introducing a hidden state vector in order to

summarize the previous observations we condition on.

More precisely, by writing f the RNN, int its input, outtþ1

its output and ht its hidden state at time t, we have
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outtþ1; htþ1 ¼ f ðint; htÞ ð3Þ

for all time indices t. When int ¼ st, the vector outtþ1 is

used to define pðstþ1js\tþ1Þ for all time indices t without

the need to take as an input the entire sequence history

s\tþ1.

If this approach is successful on many applications, such

a model can only be conditioned on the past which prevents

some possible creative use for these models: we can easily

fix the beginning s\t of a sequence and generate a con-

tinuation s� t ¼ ðst; . . .; sNÞ but it becomes more intricate to

fix the end s� t of a sequence and ask the model to generate

a beginning sequence.

We now write p�ðsÞ the probability of a sequence s

when no constraint is set. For simplicity of notation, we

will suppose that we only generate sequences of fixed

length N and denote by S :¼ AN the set of all sequences

over A. The aim of this article is to be able to enforce any

set C of unary constraints given by:

C ¼ fði; ciÞgi2I ; ð4Þ

where I is the set of constrained time indexes and ci 2 A

the value of the constrained note at time index i. Ideally,

we want to sample constrained sequences

SþðCÞ :¼ fs 2 S; si ¼ ci 8ði; ciÞ 2 Cg ð5Þ

with the ‘‘correct’’ probabilities. If we denote by pþðsjCÞ
the probability of a sequence s in the constrained model

conditioned on a set of constraints C, this means that we

want for all set of constraints C:

pþðsjCÞ ¼ 0; 8s 62 SþðCÞ; ð6Þ

and

pþðsjCÞ ¼
1

a
p�ðsÞ; 8s 2 SþðCÞ; ð7Þ

where

a :¼
X

s2SþðCÞ
p�ðsÞ:

To put it in words, each set of constraints C defines a

subset SþðCÞ of S from which we want to sample from

using the probabilities (up to a normalization factor) given

by p�. However, sampling from SþðCÞ using the accep-

tance-rejection sampling method is not efficient due to the

arbitrary number of constraints. Exact sampling from

SþðCÞ is possible when the conditional probability dis-

tributions are modeled using models such as Markov

models but is intractable in general. This problem in the

case of Markov models can in fact be exactly solved when

considering more complex constraints on the space of

sequences such as imposing the equality or the difference

between two sequences symbols si and sj. Generalizations

of this problem to other types of constraints are discussed

in Sect. 5.

3 The model

The problem when trying to enforce a constraint c :¼ ði; ciÞ
is that imposing such a constraint on time index i ‘‘twists’’

the conditional probability distributions p�ðstjs\tÞ for t\i.

However, the direct computation of p�ðstjs\t; si ¼ ciÞ
(using Bayes rule when only p�ðstjs\tÞ is known) is

computationally expensive.

The idea to overcome this issue is to introduce a neural

network in order to summarize the set of constraints C. To

this end, we introduce an additional token NC (no con-

straint) to A indicating that no unary constraint is set at a

given position. By doing this, we can rewrite the set C as a

sequence c ¼ ðc1; . . .; cNÞ where ci 2 A [ fNCg. We then

introduce a RNN called constraint-RNN in order to sum-

marize the sequence of all constraints. This RNN goes

backward (from cN to c1), and all its outputs are used to

condition a second RNN called token-RNN.

This architecture, called anticipation-RNN since the

token-RNN is conditioned on what may come next, is

depicted in Fig. 1. We notated by ðo1; . . .; oNÞ the output

sequence of the constraint-RNN (for notational simplicity,

we reversed the sequence numbering: the first output of the

constraint-RNN is oN in our notation). The aim of the

output vector ot is to summarize all information about

constraints from time t up to the end of the sequence. This

vector is then concatenated to the input st�1 of the token-

RNN at time index t whose aim is to predict st.

Basically, this amounts to modeling the conditional

probability distribution pþðsjcÞ using the following

factorization:

pþðsjcÞ ¼
Y

t

pþðstjs\t; c� tÞ ¼
Y

t

pþðstjs\t; otÞ; ð8Þ

where c� t is defined similarly as in (2).

Our approach differs from the approaches using Markov

models in the sense that we directly train the conditional

probability distribution (8) rather than trying to sample

sequences in SþðCÞ using p�: we want our probabilistic

model to be able to directly enforce hard constraints.

The anticipation-RNN thus takes as an input both a

sequence of tokens ðs0; . . .; sN�1Þ and a sequence of con-

straints ðc1; . . .; cNÞ and has to predict the shifted sequence

ðs1; . . .; sNÞ. The only requirement here is that the con-

straints have to be coherent with the sequence: ci ¼ si if

ci 6¼ NC. Since we want our model to be able to deal with

any unary constraints, we consider the dataset of couples of

token sequences and constraint sequences Dþ such that
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Dþ :¼ s;mðsÞð Þ; 8s 2 D; 8m 2 f0; 1gN
� �

; ð9Þ

where f0; 1gN is the set of all binary masks: the sequence

of constraints m(s) is then defined as the sequence

ðc1; . . .; cNÞ where ci ¼ si if mi ¼ 1 and ci ¼ NC otherwise.

It is important to note that this model not only is able to

handle unary constraints, but can also include additional

metadata information about the sequence of tokens whose

changes we have to anticipate. Indeed, by including such

temporal information in the c variables, this model can then

learn to anticipate how to generate the tokens that will lead

to a sequence complying with the provided metadata in a

smooth way. These metadata can be musically relevant

features such as the current key or mode, or the position of

the cadences as it is done in [13].

This sampling procedure is fast since it only needs two

RNN passes on the sequence. This modeling is thus par-

ticularly well suited for the real-time interactive generation

of music. Furthermore, once the output of the constraint-

RNN o is computed, sampling techniques usually applied

in sequence generation tasks such as beam search [6, 30]

can be used without additional computing costs.

4 Experimental results

4.1 Dataset preprocessing

We evaluated our architecture on the dataset of the melo-

dies from the four-part chorale harmonizations by J.S.

Bach. This dataset is available in the music21 Python

package [8], and we extracted the soprano parts from all

402 chorales that are in 4/4. In order to encode these

monophonic sequences, we used the melodico-rhythmic

encoding described in [13]. In this encoding, time is

quantized using a sixteenth note as the smallest subdivision

(each beat is divided into four equal parts). On each of

these subdivisions, the real name of the note is used as a

token if it is the subdivision on which the note is played;

otherwise, an additional token denoted as ‘‘ ’’ is used in

order to indicate that the current note is held. A ‘‘rest’’

token is also used in order to handle rests. An example of

an encoded melody using this encoding is displayed in

Fig. 2.

The advantage of using such an encoding is that it

allows to encode a monophonic musical sequence using

only one sequence of tokens. Furthermore, it does not rely

on the traditional MIDI pitch encoding but on the real note

names: among other benefits, this allows to generate music

sheets which are immediately readable and understandable

by a musician and with no spelling mistakes. From a

machine learning perspective, this has the effect of

implicitly taking into account the current key and not

throwing away this important piece of information. The

model is thus more capable of generating coherent musical

phrases. A simple example for this is that this encoding

helps to distinguish between a E# and a F by considering

them as two different notes. Indeed, these two notes would

appear in contexts that are in different keys (in C# major

or F# minor in the first case, in C major or F major in the

second case for instance).

We also perform data augmentation by transposing all

sequences in all possible keys as long as the transposed

sequence lies within the original voice range. We end up

with an alphabet of tokens A of size 125.

4.2 Implementation details

We used a two-layer stacked LSTM [15] for both the

constraint-RNN and the token-RNN using the PyTorch

[23] deep learning framework. Both LSTM networks have

256 units, and the constraints tokens ci and the input tokens

si are embedded using the same embedding of size 20.

Sequences are padded with START and END symbols so that

the model can learn when to start and when to finish. We

Fig. 1 Anticipation-RNN

architecture. The aim is to

predict ðs1; . . .; sNÞ given
ðc1; . . .; cNÞ and ðs0; . . .; sN�1Þ

Fig. 2 Melodico-rhythmic encoding of the first bar of the melody of

Fig. 8a. Each note name such as D4 or F#4 is considered as a single

token
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add dropout on the input and between the LSTM layers and

discuss the effect of the choice of these hyperparameters in

Sect. 4.3. We found that adding input on the input is cru-

cial and set this value to 20%.

We fixed the length of the training subsequences to be

20-beat long which means that using the encoding descri-

bed in Sect. 4.1, we consider sequences of tokens of size

80. The network is trained to minimize the categorical

cross-entropy between the true token at position 40 and its

prediction. For each training sequence, we sample the

binary masks m(s) of (9) by uniformly sampling a masking

ratio p 2 ½0; 1� and then setting each unary constraint with

probability p.

We perform stochastic gradient descent using the Adam

algorithm [16] using the default settings provided by

PyTorch for ten epochs with a batch size of 256. In this

setting, our best model achieves a validation accuracy of

92.9% with a validation loss of 0.22. These figures are of

course highly dependent on our modeling choices such as

the number of subdivisions per beat, the preprocessing of

our corpus as well as the way we sampled the binary

masks.

The sampling procedure is then done iteratively from

left to right by sampling the token at time t according to the

probabilities given by pþðstjs\t; otÞ, where s\t is the

sequence of previously generated tokens and ot the output

of the constraint-RNN at position t.

4.3 Enforcing the constraints

We first check that the proposed architecture is able to

enforce unary constraints; namely, that it fulfills the

requirement (6).

In order to evaluate this property, we compute the

amount of constraints that are enforced for various sets of

constraints C. We chose for these sets of constraints dif-

ferent ‘‘kinds’’ of constraints, from constraints that are in

the ‘‘style of the corpus’’ to constraints that are totally

‘‘out-of-style.’’ More precisely, we considered:

– C1: the beginning and the ending of an existing chorale

melody (first five bars of the chorale melody ‘‘Wer nur

den lieben Gott läßt walten’’ with two ablated bars),

– C2: the beginning and the ending of the same chorale

melody, but where the ending has been transposed to a

distant key (from G minor to C# minor),

– C3: constraints forcing the model to make ‘‘big’’ leaps

(chorale melodies tend to be composed of conjunct

melodic motions),

– C4: a chromatic ascending scale,

– C5: random notes every eighth note,

– C6: the same random notes as above, but every quarter

note.

These sets of unary constraints are displayed in Fig. 3.

We measure the influence of the amount of the dropout

that we use in our models (dropout between the LSTM

layers) on the following task: for each set of constraints Ci

and for each model, we generate 1000 sequences using

pþð:jCiÞ and compute the percentage of constrained notes

that are sampled correctly. We report the results in Table 1.

These results show that for all sets of constraints that

define a ‘‘possibly-in-style’’ musical constraint (constraint

sets C1 to C4), the model manages to enforce the con-

straints efficiently: even if such constraints could not be

encountered in the original dataset (constraint sets C2 and

C4) . On the contrary, for truly out-of-style constraints

(constraint sets C5 and C6), the model performs poorly on

the task of enforcing these constraints. We do not think that

it is a drawback of the model since its aim is to generate

melodies in the style of the corpus which is made impos-

sible when constrained with these incoherent constraints.

Table 1 also reveals the non-trivial effects of the choice

of the amount of dropout of the models upon their per-

formance on this task.

4.4 Anticipation capabilities

If the preceding section demonstrated that the anticipation-

RNN architecture is able to enforce a wide variety of sets

of unary constraints, we will explore in this section the role

of the constraint-RNN and in particular how it is able to

learn how to ‘‘propagate’’ the constraints backward, mak-

ing the token-RNN able to anticipate what will come next.

For this, we will evaluate how the constrained model

deviates from the unconstrained model. We compare the

constrained model pþ on the same set of constraints C with

its unconstrained counterpart p�. The latter is obtained by

conditioning the model of Fig. 1 on a sequence of con-

straints in the special case where no constraint is set: the

sequence of constraints is ðNC; . . .; NCÞ.
More precisely, for a set of constraints C, we quantify

how the probability distributions pþð:js\t;CÞ differ from

the probability distributions p�ð:js\tÞ by computing how

dissimilar they are. We chose as a measure of dissimilarity

[3, 9] the Jensen–Shannon divergence [1, 20] which is

defined by:

JSðpjjqÞ :¼ 1

2
KLðpjjmÞ þ 1

2
KLðqjjmÞ; ð10Þ

where m ¼ pþq
2
, with KL denoting the Kullback–Leibler

divergence
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KLðpjjqÞ :¼
X

i

pi log
pi

qi

� �
: ð11Þ

The Jensen–Shannon divergence has the property of being

symmetric, bounded (and thus always definite), and its

square root satisfies the triangle inequality [21] which is an

important feature compared to other divergences.

In Fig. 4, we plot the evolution of the Jensen-Shannon

divergence between the two distributions pþð:js\t;CÞ and

p�ð:js\tÞ during generation for different sets of constraints

C. We generated 1000 sequences using the constrained

model and computed the average Jensen–Shannon diver-

gence between the two models for each time step. We then

averaged the values over each beat in order not to take into

account the intra-beat variations. Indeed, due to encoding

we chose as well as to the singularity of the musical data

we considered, patterns of oscillations appear. Indeed, both

models agree in putting much of their probability mass on

Fig. 3 Sets of constraints Ci

described in Sect. 4.3, for

i ranging from 1 to 5. In this

particular figure, rests denote

the absence of constraints

Table 1 Percentage of correctly sampled constrained notes for different models pþ differing only by the amount of dropout they use and

constrained on different sets of constraints

C1 C2 C3 C4 C5 C6

LSTM dropout ¼ 0.2, dropout on input ¼ 0.2 99.78 99.73 98.78 99.77 41.28 57.06

LSTM dropout ¼ 0.5, dropout on input ¼ 0.2 99.90 99.01 99.32 98.68 43.83 62.08

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

1 2 3 4 5 1 2 3 4 5 6

(a) (b)

Fig. 4 Plot of the evolution of the Jensen–Shannon divergence JS

ðpþðstjsi\t;C
iÞjjp�ðstjsi\tÞÞ between the constrained model pþ and

the unconstrained model p� during generation for two sets of

constraints C1 and C3. Each point represents the average value of the

divergence over one beat. The location of the constraints has been

highlighted in red. a Set of constraints C1. b Set of constraints C3

(color figure online)
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the hold symbol ‘‘ ’’ on the second sixteenth note of each

beat since the soprano parts in Bach chorales are mostly

composed of half notes, quarter notes and eighth notes.

This is independent of the presence or absence of con-

straints so the constrained and unconstrained models make

similar predictions on these time steps resulting in a low

divergence.

This plot confirms that the constraints are propagated

backward in time and the token-RNN is not only able to

enforce constraints but also able to anticipate how to do so.

We now illustrate this feature on a specific example.

Figure 5 shows the evolution of pþðstjs\t;C
3Þ and

p�ðstjs\tÞ during generation. It is interesting to note that

the conditional probability distributions returned by

pþðstjs\t;C
3Þ are more concentrated on specific values

than the ones returned by p�ðstjs\tÞ. The concentration of

the all probability mass of pþðstjs\t;C
3Þ on constrained

notes confirms, on this specific example, that the proposed

architecture has learned to enforce hard unary constraints.

In order to understand the effect of the constraints, we

plot the difference between the two distributions of Fig. 5

for each time step in Fig. 6. This highlights the fact that the

probability mass distribution of pþ is ‘‘shifted upward’’ few

beats in advance when the next unary constraint is higher

than the current note and ‘‘downward’’ in the opposite case.

4.5 Sampling with the correct probabilities

We now evaluate that the sampling using pþ fulfills the

requirement (7). This means that for any set of constraints

C, the ratio between the probabilities of two sequences in

SþðCÞ is identical if probabilities are computed using the

unconstrained model p�ð:Þ or if they are computed using

the constrained model pþð:jCÞ. We introduce the set of

constraints C0 consisting of a single constrained note.

For a given set of constraints C, we generated 500

sequences and verified that the requirement (6) is fulfilled

for all of these sequences (i.e. all constraints are enforced).

In order to check the fulfillment of the requirement (7), we

plot for each sequence s its probability in the constrained

model pþðsÞ (defined as in Eq. 1) as a function of p�ðsÞ in
logarithmic space. We compute these probabilities using

(8), but only keep the time steps on which notes are not

constrained. The resulting plots are shown in Fig. 7.

Table 2 quantifies to which amount the two distributions

are proportional on the subsets SþðCiÞ for different sets of
constraints Ci and for different models.

The translation in logarithmic space indicates the pro-

portionality between the two distributions as desired.

The conclusion is that our model is able to correctly

enforce all constraints for sets of constraints that are

plausible with respect to the training dataset (Sect. 4.3) and

that on these specific sets of constraints, our sampling

procedure respects the relative probabilities between the

sequences. In other words, the anticipation-RNN is able to

sample with the correct probabilities a subset of sequences

defined by a set of unary constraints.

4.6 Musical examples

We end this section with the discussion over some gener-

ated constrained sequences. Figure 8 shows examples of

the enforcement and the propagation of the constraints for

the set of constraints C3: even if generation is done from

left to right, the model is able to generate compelling

musical phrases while enforcing the constraints. In partic-

ular, we see that the model is able to ‘‘anticipate’’ the

moment when it has to ‘‘go’’ from a low-pitched note to a

high-pitched one and vice versa. The use of the melodico-

rhythmic encoding allows to only impose that a note should

be played at a given time, without specifying its rhythm. It

is interesting to note that such a wide melodic contour

(going from a D4 to a D5 and then going back to a D4 in

only two bars) is unusual for a chorale melody. Nonethe-

less, the proposed model is able to generate a convincing

Bach-like chorale melody. The three displayed examples

show that there is a great variability in the generated

solutions: even when constrained on the same set of con-

straints, the generated melodies have distinct characteris-

tics such as, for example, the key they are in or where

cadences could be.

Similarly to [13], we provide a plug-in for the MuseS-

core music score editor which allows to call the anticipa-

tion-RNN in an intuitive way.

5 Conclusion

We presented the anticipation-RNN, a simple but efficient

way to generate sequences in a learned style while

enforcing unary constraints. This method is general and can

be used to improve many existing RNN-based generative

models. Contrary to other approaches, we teach the model

to learn to enforce hard constraints at training time. We

believe that this approach is a first step toward the gener-

ation of musical sequences subjected to more complex

constraints.

The constrained generation procedure is fast since it

requires only 2N RNN calls, where N is the length of the

generated sequence; as it does not require extensive com-

putational resources and provides an interesting user–ma-

chine interaction, we think that this architecture paves the

way to the development of creative real-time composition

software. We also think that this fast sampling could be
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used jointly with MCMC methods in order to provide fast

initializations.

Our approach can be seen as a general way to condition

RNN models on time-dependent metadata. Indeed, the

variable c in (8) is not only restricted to the value of the

(a)

(b)

Fig. 5 Plot of pðstjs\tÞ as a
function of t during the

generation of the melody

displayed in Fig. 8a in the

constrained and unconstrained

cases. Beats on which a

constraint is set are circled. a

Constrained case: p ¼ pþð:jC3Þ.
b Unconstrained case: p ¼ p�
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Fig. 6 Difference between

pþðstjs\tÞ and p�ðstjs\tÞ as a
function of t during the

generation of the melody

displayed in Fig. 8a. Beats on

which a constraint is set are

circled. We see that between

beats 9–13, the probability mass

of the constrained model pþ is

shifted upward (compared to the

probability distribution given by

the unconstrained model p�) in
order to enforce the unary

constraint D5 set at beat 13.

From beats 13–17, the situation

is reversed: the probability mass

of the constrained model pþ is

shifted downward in order to

enforce the unary constraint D4

on beat 17
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Fig. 7 Point plots in logarithmic scale of ln pþðsjCiÞ (y-axis) versus
p�ðsÞ (x-axis) on a set of 500 sequences generated using pþðsjCiÞ, for
C0 and C3. The identity map is displayed in red and the linear

regression of the data points in blue. The lines are closed to being

parallel indicating the proportionality between the two distributions

(color figure online)

Table 2 Slopes of the linear

interpolations displayed in

Fig. 7 for different models and

different sets of constraints Ci

C0 C1 C2 C3

LSTM dropout ¼ 0.2, dropout on input ¼ 0.2 0.99 0.99 1.05 0.96

LSTM dropout ¼ 0.5, dropout on input ¼ 0.2 0.99 0.93 1.00 0.92

The closer the values are to one, the better the requirement (7) is achieved
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unary constraints, but can contain more information such as

the location of the cadences or the current key. We suc-

cessfully applied the anticipation-RNN in this setting and

report that it manages to enforce these interesting and

natural musical constraints in a smooth way while staying

in the style of the training corpus.

Future work will aim at handling other types of con-

straints (imposing the rhythm of the sequences, enforcing

the equality between two notes or introducing soft con-

straints) and developing responsive user interfaces so that

all the possibilities offered by this architecture can be used

by a wide audience.
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