Skip to main content
Log in

Stacking model of multi-label classification based on pruning strategies

  • Smart Data Aggregation Inspired Paradigm & Approaches in IoT Applns
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Exploiting dependencies between the labels is the key of improving the performance of multi-label classification. In this paper, we divide the utilizing methods of label dependence into two groups from the perspective of different ways of problem transformation: label grouping method and feature space extending method. As to the feature space extending method, we find that the common problem is how to measure the dependencies between labels and to select proper labels to add to the original feature space. Therefore, we propose a ReliefF-based pruning model for multi-label classification (ReliefF-based stacking, RFS). RFS measures the dependencies between labels in a feature selection perspective and then selects the more relative labels into the original feature space. Experimental results of 9 multi-label benchmark datasets shows that RFS is more effective compared to other advanced multi-label classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://mulan.sourceforge.net/.

  2. http://www.cs.waikato.ac.nz/ml/weka/.

  3. http://mulan.sourceforge.net/datasets-mlc.html.

References

  1. Tsoumakas G, Katakis I, Vlahavas I (2009) Mining multi-label data. Data Mining and knowledge discovery handbook. Springer, New York, pp 667–685

    Book  Google Scholar 

  2. Katakis I, Tsoumakas G, Vlahavas I (2008) Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML/PKDD 2008 discovery challenge, Antwerp, Belgium

  3. Turnbull D, Barrington L, Torres D et al (2008) Semantic annotation and retrieval of music and sound effects. IEEE Trans Audio Speech Lang Process 16(2):467–476

    Article  Google Scholar 

  4. Snoek CGM, Worring M, Van Gemert JC et al (2006) The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th annual ACM international conference on Multimedia. ACM, pp 421–430

  5. Yang S, Kim SK, Ro YM (2007) Semantic home photo categorization. IEEE Trans Circuits Syst Video Technol 17(3):324–335

    Article  Google Scholar 

  6. Zhang ML, Zhou ZH (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  Google Scholar 

  7. Dembczyński K, Waegeman W, Cheng W et al (2012) On label dependence and loss minimization in multi-label classification. Mach Learn 88(1–2):5–45

    Article  MathSciNet  Google Scholar 

  8. Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-labelsets for multilabel classification. IEEE Trans Knowl Data Eng 23(7):1079–1089

    Article  Google Scholar 

  9. Rokach L, Schclar A, Itach E (2014) Ensemble methods for multi-label classification. Expert Syst Appl 41(16):7507–7523

    Article  Google Scholar 

  10. Read J, Pfahringer B, Holmes G et al (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333–359

    Article  MathSciNet  Google Scholar 

  11. Godbole S, Sarawagi S (2004) Discriminative methods for multi-labeled classification. In: Proceedings of Pacific-Asia conference on knowledge discovery and data mining. Springer Berlin Heidelberg, pp 22–30

  12. Alvares-Cherman E, Metz J, Monard MC (2012) Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst Appl 39(2):1647–1655

    Article  Google Scholar 

  13. Montañes E, Senge R, Barranquero J et al (2014) Dependent binary relevance models for multi-label classification. Pattern Recognit 47(3):1494–1508

    Article  Google Scholar 

  14. SpolaôR N, Cherman EA, Monard MC et al (2013) A comparison of multi-label feature selection methods using the problem transformation approach. Electron Notes Theor Comput Sci 292:135–151

    Article  Google Scholar 

  15. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of European conference on machine learning. Springer Berlin Heidelberg, pp 171–182

  16. Tsoumakas G, Dimou A, Spyromitros E et al (2009) Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the 1st international workshop on learning from multi-label data, pp 101–116

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672086) and the Beijing Natural Science Foundation (No. 4182052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Z. & Sun, Y. Stacking model of multi-label classification based on pruning strategies. Neural Comput & Applic 32, 16763–16774 (2020). https://doi.org/10.1007/s00521-018-3888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3888-0

Keywords

Navigation