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Abstract Separating a singing voice from its music accompaniment remains an
important challenge in the field of music information retrieval. We present a unique
neural network approach inspired by a technique that has revolutionized the field
of vision: pixel-wise image classification, which we combine with cross entropy loss
and pretraining of the CNN as an autoencoder on singing voice spectrograms.
The pixel-wise classification technique directly estimates the sound source label
for each time-frequency (T-F) bin in our spectrogram image, thus eliminating
common pre- and postprocessing tasks. The proposed network is trained by using
the Ideal Binary Mask (IBM) as the target output label. The IBM identifies the
dominant sound source in each T-F bin of the magnitude spectrogram of a mixture
signal, by considering each T-F bin as a pixel with a multi-label (for each sound
source). Cross entropy is used as the training objective, so as to minimize the
average probability error between the target and predicted label for each pixel. By
treating the singing voice separation problem as a pixel-wise classification task,
we additionally eliminate one of the commonly used, yet not easy to comprehend,
postprocessing steps: the Wiener filter postprocessing.

The proposed CNN outperforms the first runner up in the Music Information
Retrieval Evaluation eXchange (MIREX) 2016 and the winner of MIREX 2014
with a gain of 2.2702 ∼ 5.9563 dB global normalized source to distortion ratio
(GNSDR) when applied to the iKala dataset. An experiment with the DSD100
dataset on the full-tracks song evaluation task also shows that our model is able
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1 INTRODUCTION

to compete with cutting-edge singing voice separation systems which use multi-
channel modeling, data augmentation, and model blending.

Keywords Singing Voice Separation · Convolutional Neural Network
· Ideal Binary Mask · Cross Entropy · Pixel-wise Image Classification

1 Introduction

Humans have an exceptional ability to separate different sounds from a musical
signal [3]. For instance, some musicians can distinguish the guitar part from a
song and transcribe it; and most non-musician listeners are able to hear and sing
along to lyrics of a song. Machines, however, have not yet mastered the ability
to separate voices in music, despite the steep increase in the amount of research
on artificial intelligence and music over the past few years [8, 19, 28, 48, 50, 66].
In this paper, we focus on the task of singing voice separation from a polyphonic
musical piece, i.e., the automatic separation of a musical piece into two music
signals: the singing voice and its music accompaniment. Some singing voice sepa-
ration (SVS) systems [48, 52, 65, 66] take this one step further by separating the
music accompaniment into different types of musical instruments. In this research,
we focus on the first task of separating the singing voice from its music accom-
paniment. The potential applications of automatic singing voice separation are
plentiful, and include melody extraction/annotation [12, 56], singing skill evalua-
tion [35], automatic lyrics recognition [46], automatic lyrics alignment [71], singer
identification [37] and singing style visualization [34]. These applications are not
only useful for researchers in the field of music information retrieval (MIR), but
extend to commercial applications such as music for karaoke systems [71].

We propose a novel convolutional neural network (CNN) approach for extract-
ing a singing voice from its musical accompaniment. The key innovations in this
design are the inclusion of Ideal Binary Mask (IBM) [70] as the target label, and
the use of cross entropy [47] as the training objective. This particular combina-
tion of IBM with cross entropy loss has proven to be extremely effective for image
classification [49]. In the case of singing voice separation, the IBM represents a
binary time×frequency matrix, whereby a ‘1’ indicates that the target energy is
larger than the interference energy within the corresponding time-frequency (T-F)
bin and ‘0’ indicates otherwise. The training is guided by cross entropy, i.e., the
average of the probability error between the predicted and the target label for each
T-F bin. Additionally, we pretrain the weights of the CNN by training it as an au-
toencoder using singing voice spectrograms. The proposed network design enables
us to leverage the power of CNNs for pixel-wise image classification, i.e., classify-
ing each individual pixel of an image [32, 42]. This is done performing multiclass
classification (one class per sound source) for each T-F bin in our spectrogram,
thus directly estimating the soft mask. This allows us to eliminate one of the very
commonly used postprocessing step, the Wiener filter [12, 13, 22, 48, 52, 65, 66]
(see Section 2).

We set up an experiment to test the proposed system with state-of-the-art
models for SVS. When training our model on the iKala dataset [5], we achieve
2.2702 ∼ 5.9563 dB Global normalized source-to-distortion ratio (GNSDR) gain
when compared to two state-of-the-art SVS systems [6, 26]. A second experiment,
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2 RELATED WORK

on the full-track songs from the DSD100 dataset [41], shows no statistically sig-
nificant difference between the proposed system and the current state-of-the-art
systems. These experimental results suggest the need for a dataset agnostic model,
meaning that instead of blindly feeding more data to models (which greatly im-
proves training time), there is a need for efficient and effective models that perform
well across different dataset, even with limited data. In the current research, we
work towards this goal by using a network architecture that has shown to be ef-
fective in the field of image classification, and use a validation procedure during
training and postprocessing to ensure that our CNN generalizes better. Further-
more, when designing our novel architecture, we trained and tested the model on
two different datasets, such that the final optimized architecture would perform
well across these datasets.

In the next section, an overview of the current state-of-the art in voice separa-
tion models is given, followed by a description of our proposed CNN model with
a formal definition of IBM and cross entropy. We then describe the details of the
experimental setup and the training methodology, and present the results. Finally,
conclusions regarding our proposed model and future research are offered.

2 Related Work

This section presents existing research in the field of singing voice separation.
Experienced readers, who are familiar with the basics of the field, may skip to the
sixth paragraph of this section for a detailed description of some of the latest state-
of-the-art models. For a more comprehensive overview of the research undertaken
in the last 50 years in this field, we refer the reader to the overview article [55].

The most popular preprocessing method in the field of singing voice separation
involves transforming the time-domain signal into a spectrogram [4, 15, 16, 24, 26,
29, 67, 69]. Given that the value of each time-frequency (T-F) bin in the magnitude
spectrogram X is non-negative, existing research on blind source separation (BSS)
typically applies techniques such as Independent Subspace Analysis (ISA)[4] and
Non-negative Matrix Factorization (NMF) [33]. The former, ISA, is a variant of
Independent Component Analysis (ICA), which has previously been used to solve
the cocktail party problem [7]. Independent Component Analysis is built upon
the assumption that the number of mixture observation signals is equal to or
greater than the target sources. The ISA variant, however, relaxes this constraint
by using the non-negative spectrogram X. The second technique often used for
blind source separation, NMF, decomposes X into two non-negative matrices L
and R. The product of these two matrices approximates X, such that LR ≈ X,
with D being the difference, such that D = X−LR. The matrix D is later assumed
to have the timbral characteristics of the singing voice.

NMF was the most widely adopted BSS technique in the 2000s [9, 11, 14, 15,
67, 69]. The main difference between the various NMF-based methods is how the
objective function is formulated. A typical formulation could be, min ||X − LR||2
or minDiv(X||LR), where Div is the Kullback-Leibler divergence function. The
popularity of NMF is partly due to the fact that the two matrices (L and R) can
easily be interpreted as a set of different types of musical instruments (or different
tracks in the music), which we refer to as I. To understand this interpretation,
let us first assume the columns of L to be the frequency/tone basis functions
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2 RELATED WORK

li and the rows of R to be the time basis functions ri, where i is one of the
musical instrument (or tracks) in the music. The factorized matrices (L and R)
can be decomposed as the sum of the outer product of the basis functions, such
that LR =

∑
i∈I li × ri. Thus, a frequency basis function li can be interpreted

as the timbre of instrument i. The corresponding set of time basis functions ri
indicate how the sound of instrument i evolves during the music. Additionally, I is
sometimes divided into two groups by posing constraints for the set of harmonic or
pitched instruments (e.g. piano), h ∈ I, and the set of the percussion instruments
(e.g. drum), p ∈ I [15, 29, 69].

A related technique, Robust Principal Component Analysis (rPCA), has also
been applied to source sound separation [38]. It uses an augmented Lagrange
multiplier to exactly1 separate X into a low rank matrix and sparse matrix, X =∑
i∈I li×ri−D, was widely adopted since 2012 [24]. The resulting factorized matrix

LR is a low rank approximation of X. The use of rPCA in source separation is
motivated by the fact that (i) that the basis function of LR approximates the
spectrogram of the musical accompaniment component in the mixture signal; and
(ii)D is a sparse matrix that closely approximates the spectrogram of the separated
singing voice. To better understand this, note that X ≈ LR and X ≈

∑
i∈I li×ri.

If the number of musical instruments |I| is the reduced rank of X, then LR is a low
rank approximation of X. Since the singing voice falls in between the harmonic
instruments and percussion instruments, it is assumed to be represented by D.

Ikemiya et al. [26] use rPCA to obtain a sparse matrix, which is treated as
a vocal time-frequency mask, and a vocal spectrogram. They then estimate the
vocal F0 contour in this spectrogram in order to form a harmonic structure mask.
By combining these two masks, they are able to better perform singing voice
separation. This method, referred to as IIY, is the winner of MIREX 20142. Chan
et al. [5] use the annotation of the vocal F0 contour to form a sparsity mask,
which they then use as the input for rPCA to obtain a better vocal spectrogram.
There exist several other approaches for source separation, such as the use of a
similarity matrix [40, 53]. Based on the MIREX 2014 results2, however, none of
them outperform the rPCA-based methods. Hence, rPCA has become the de facto
baseline in recent years.

Inspired by the influential work of Krizhevsky et al. [32] on large-scale image
classification from natural images, the use of deep learning has recently gained a lot
of attention. Most deep-learning based SVS systems [6, 12, 22, 44, 66] are trained
to match the network input (i.e., the magnitude spectrogram of the mixture sig-
nal), with the target label (i.e., the ground truth magnitude spectrogram of the
target sound source). Given enough training data, neural networks are typically
able to estimate good approximations any continuous function [20], in this case,
the magnitude spectrogram for each of the sound sources is estimated. These mag-
nitude spectrograms, however, are not yet a good representation of the different
sources. Contrary to intuition, these systems require a Wiener filter postprocessing
step, in which a soft mask is calculated for the estimated magnitude spectrograms
for every target sound source. These masks are then multiplied with the original
magnitude spectrogram of the mixture signal to recreate each estimated signal.

1 NMF-based methods do not have this strong constraint. After their optimization process,
it likely happens that the rank of LR cannot be reduced to |I|, or that D is not a sparse
matrix.

2 http://www.music-ir.org/mirex/wiki/2014:Singing Voice Separation Results
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3 CNN NETWORK DESIGN

Using these soft masks typically gives a better separation quality than directly
using the network output to synthesize the final signal [66]. This suggests that we
should skip the Wiener filter postprocessing and design a network to learn a soft
mask directly.

Recent advances in the field of computer vision [42] have greatly advanced
image classification techniques by moving away from the image level towards the
pixel-level. Pixel-wise classification aims at classifying each individual pixel in an
image. The task of classifying each T-F bin of a spectrogram into a vocal or non-
vocal component can be considered as a pixel-wise classification problem.

Creating the pixel-wise ground truth for image segmentation typically involves
extensive human effort. Luckily, this is not the case in SVS research as we can
simply calculate the ground truth mask from a training set which contains the
separated signals (see Section 3.2). Simpson et al. [59] and Grais et al. [18] per-
form singing voice separation using IBM as the target label for training a deep
feed-forward neural network. In this research, however, we opt to use a convo-
lutional neural network architecture, which has proven to greatly improve the
performance of image classification tasks [32, 42]. A similar CNN architecture for
SVS, abbreviated in what follows as MC, has been proposed by Chandna et al.
[6]. This method was the first runner up in the MIREX 2016 competition 3. The
architecture proposed in this research improves the dimensions of the convolu-
tional layer and introduces a cross entropy loss function, which greatly improves
performance.

Other state-of-the-art alternatives to using a CNN include the use of Re-
current Neural Networks (RNN) [22] and bi-directional Long Short Term Mem-
ory (BLSTM) Networks [66]. These networks are designed to capture temporal
changes, and may therefore not be necessary in a voice separation context.

Jansson et al. [28] where the first to tackled SVS tasks by using a deep convo-
lutional U-net in which the network predicts the soft mask. Their system shows
remarkable performance on two datasets, iKala and MedleyDB [2]. It should be
noted, however, that while their network was tested on iKala and MedleyDB, it was
trained on a gigantic dataset (the equivalent of two months worth of continuous
audio) supplied by industry [25]. This is much larger than the iKala and DSD100
training sets used in this research, which contain a total of respectively 76 minutes
and 216 minutes of audio. The performance of similar U-net architectures [61, 62]
trained on these smaller training set (e.g. DSD100) perform much worse than the
original model. We can thus conclude that the remarkable performance reported
by Jansson et al. [28] is mainly depended on the tremendous large training set,
instead of the U-net architecture [25].

In this paper, we explore a CNN-based method with soft-mask prediction fur-
ther improve the state-of-the-art in SVS systems. The next section will describe
our proposed system in more detail.

3 CNN Network Design

In this section, we first describe how the original mixture signal is transformed into
a set of spectrogram excerpts, which are used as the input of the proposed CNN

3 http://www.music-ir.org/mirex/wiki/2016:Singing Voice Separation Results
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3.1 Preprocessing 3 CNN NETWORK DESIGN

model. We then outline the network architecture, along with a formal definition
of IBM and cross entropy. Next, we discuss issues related to the implementation
and design of the CNN. Finally, an outline is given of how the network output is
transformed into two separated signals, the singing voice and music accompani-
ment.

3.1 Preprocessing

In the preprocessing stage, the actual input for the CNN is created. First, we apply
a Short-Time Fourier Transform (STFT) on the mixture signal x to obtain the
magnitude spectrogram X and the phase spectrogram pX. For each Fast Fourier
Transform (FFT) step, we use the Hann windowing function [51] with a window
size W of 46.44ms, a hop size H of 11.61ms and a 4× zero padding factor. By
setting the sampling rate fS at 22.05 kHz, each FFT step is with size N=4096,
W=1024 and H=256. This STFT configuration was chosen based on the authors’
previous study on sinusoidal partials tracking [36].

Sinusoidal partials tracking (PT) is a peak-continuation algorithm that links
up the spectral peaks into a set of tracks. Each track models a time-varying sinu-
soid. The tracks are called partials when they represent the deterministic part of
the audio signal. In the previous PT study, the average length of a singing voice
partial was found to be around 9 continuous frames and the 4× zero padding
factor improved the separation quality of the ideal case. Hence we can assume
that these settings should allow for enough temporal and spectral cues in order
to properly train the CNN. The input of the proposed CNN consists of an im-
age snapshot of X with a shape of (9×2049), which is a spectrogram excerpt of
(9×256×1,000)/22,050 = 104.49ms and 11.025 kHz.

3.2 Network Architecture with Ideal Binary Mask and cross entropy

Table 1 shows the network architecture of the proposed CNN along with the con-
figuration and the corresponding number of trainable parameters and features.
We adopt the CNN architecture developed by Schlüter [57] for voice-detection.
For that task, the network was trained on weakly labeled music4. The resulting
saliency map, created through guided backpropagation of the CNN, shows the
singing voice in the T-F bin level.

In the current research, we use the IBM as the target label instead of weak
labels. IBM can be formally defined as follows. Let the F×T matrix X denote the
magnitude spectrogram, whereby F is the number of frequency bins, F = (

⌊
N
2

⌋
+1)

with N as the FFT size, and T is the number of frames. Given the magnitude
spectrogram of the voice XV and of the music accompaniment XS , the IBM of
the singing voice, which is a F×T matrix B, is calculated as,

B[n, t] =

{
1, if XV [n, t] > XS [n, t]

0, otherwise
(1)

4 Each piece of music only has one annotation that indicates whether the music contains
vocals or not.
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3 CNN NETWORK DESIGN3.2 Network Architecture with Ideal Binary Mask and cross entropy

Table 1 Network Architecture of the proposed CNN along with the configuration and the
corresponding number of trainable parameters and features.

Layer Configuration
Num. of

Trainable Parameters

Input
Input Size is (9×2049)

N/A
Num. of features is (9×2049) = 18, 441

Convolution
32@(3×12), Stride 1 (3×12)×32 + 32

Zero Pad, ReLU = 1,184

Convolution
16@(3×12), Stride 1 (3×12)×32×16 + 16

Zero Pad, ReLU = 18,448

Max-Pooling
Non-Overlap (1×12) reshapes

N/Ainput size to (9×12) = 1,539
Num. of features is (9×171)×16 = 24,624

Convolution
64@(3×12), Stride 1 (3×12)×16×64 + 64

Zero Pad, ReLU = 36,928

Convolution
32@(3×12), Stride 1 (3×12)×64×32 + 32

Zero Pad, ReLU = 73, 760

Max-Pooling
Non-Overlap (1×12) reshapes

N/Ainput size to (9×15) = 135
Num. of features is (9×15)×32 = 4,320

Dropout with probability 0.5 N/A

Fully-Connected 2,048 Neurons, ReLU
4,320×2,048 + 2,048

= 8,849,408

Dropout with probability 0.5 N/A

Fully-Connected 512 Neurons, ReLU
2,048×512 + 512

= 1,049,088

Output
18,441 Neurons, Sigmoid 512×18,441 + 18,441

Reshape (9×2049) Singing Voice = 9,460,233
IBM Label to match these Neurons

Objective Function Cross Entropy Total: 19, 489, 049

where t ∈ [1, T ] is the time index and n ∈ [1, F ] is the frequency bin index. The
IBM of the music accompaniment is denoted as B = |1−B|.

The resulting matrix B forms the target label of the neural network. Together
with the network predictions, Y [n, t], formed by the sigmoid output of the final
layer, we can calculate the cross entropy over all T-F bins, as:

C[n, t] =B[n, t]×− log(Y [n, t])+

(1−B[n, t])×− log(1− Y [n, t])
(2)

The training objective of our proposed network minimizes the cross entropy.
This type of objective function performs better then that often used softmax func-
tion, as it is tailored to the fact that each T-F bin can have multiple labels. Unlike
a pixel in an image whose value is paired with the desired label, the value of a
T-F bin in the magnitude spectrogram of a mixture signal is roughly the sum of
the T-F bin of the singing voice and its accompaniment.
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3.3 Postprocessing 3 CNN NETWORK DESIGN

Alternative training objectives were explored, such as minimum mean square
error (MMSE) with both IBM and Ideal Ratio Mask (IRM) [72] as the target
label. We found, however, that the MMSE does not decrease much with IRM and
IBM; and that cross entropy also does not decrease much with IRM. We therefore
opted to integrate IBM with a cross entropy training objective.

To improve the network performance, the weights were first initialized with
Xavier’s initializer [17]. To further improve these initial weights, the CNN trained
as an autoencoder using spectrogram excerpts of the ideal singing voice for 300
epochs. These initial weights allow us to train the resulting separation network
much more efficiently.

An often used technique to speed up a model’s convergence is Batch Normaliza-
tion (BN) [27]. This technique requires a number of extra parameters, and increases
the training time for each epoch. When implementing BN in our network, we did
not notice an improvement in training time, and most importantly, there was no
improvement of the separation quality. We therefore opted not to include BN in
the proposed system. Similarly, we also did not find an improvement of separation
quality and training time when we used the skip connection method [21] and the
method of converting the fully-connected layer to a convolutional layer [42]. Hence,
both methods were not included in the proposed CNN.

Existing network architectures commonly apply a (3×3) filter in the convolu-
tional layers. Because we applied 4× zero padding factor in the frequency domain
during the STFT calculation, we set the convolutional filter size to be (3×12),
whereby 3 represents the time and 12 the frequency bin. The time dimension in
the pooling layer was not reduced as this can introduce jitter and other artifacts.
The frequency dimension in the max pooling layer, however, was reduced. This
process is roughly analogous to Mel-frequency calculation, which has been empir-
ically proven to provide useful features for audio classification tasks [43, 45, 63].
The number of features maps in each convolutional layer is halved compared to the
original voice-detection CNN architecture [57], so as to shorten the training time,
and most importantly, to avoid degradation of the separation quality. Finally, the
dropout [60] settings and ReLU activations [32] are preserved as in the original
architecture.

3.3 Postprocessing

The goal of the singing voice separation task is to get two isolated music signals:
voice and accompaniment. We therefore need to convert the estimated soft mask
by network into two audio signals. In order to do this, the CNN output is first
reshaped from (1×18,441) to (9×2,049) in order to reconstruct the 9 frames. The
estimated network output, before postprocessing, is considered to be the soft mask
of the estimated singing voice spectrogram, meaning that the value for each T-F
can range from 0 to 1. This assumption is justified by the fact that IBM was
selected as the target label during training and thus used to calculate the cross
entropy with sigmoid function. The value of each T-F bin in the soft mask can be
interpreted as the probability e that the T-F bin belongs to the singing voice.

To further improve the separation quality, we carry out the following optional
refinement using the validation set. For a threshold θ, we set e to zero when e < θ.
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4 EXPERIMENT SETUP

Based on an experiment using the validation set (see Section 4), we set θ to be
0.35 for the iKala dataset and 0.15 for the DSD100 dataset.

Fig. 1 Architecture for estimating a soft mask based on an entire track.

The neural network architecture described above takes 9 audio frames as input.
In order to estimate a single soft mask MV for separating the singing voice from
an entire song, we follow a two step approach inspired by Schlüter [57]. First,
overlapping spectrogram excerpts (each 9 frames long) are fed into the network
with a hop size of 1 frame. The middle frames of each estimated soft mask is
then concatenated to create MV . These two steps are illustrated in Figure 1. The
soft mask MS for obtaining the music accompaniment from a test song can be
calculated by 1−MV .

Finally, the isolated signing voice signal is obtained by calculating the inverse
TFT (iSTFT) of the element-wise multiplication between the estimated MV and
X, and the original phase spectrogram pX. Similarly, we can obtain the isolated
musical accompaniment signal by calculating the iSTFT of the element-wise mul-
tiplication between MS and X using pX. In the case of a stereo recording, all of
the procedures mentioned above should be carried out for each channel separately.

4 Experiment Setup

The separation quality of the proposed CNN model is evaluated and compared
to other state-of-the-art SVS systems. This is achieved by using two datasets
that are specifically designed for the SVS task. Before discussing the results of our
experiment in the next section, a brief description of the music clips in each dataset
is given, together with how these are divided into development and test sets. We
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4.1 iKala Dataset 4 EXPERIMENT SETUP

then describe the evaluation procedure and discuss how the proposed CNN should
be properly trained, so that a state-of-the-art results can be obtained.

4.1 iKala Dataset

The iKala dataset [5] is a public dataset specifically created for the SVS task. Each
clip in the dataset is recorded in a CD quality wave file and sampled at 44.1 kHz,
with two channels. One channel consists of the ground truth singing voice V , and
the other one forms the ground truth music accompaniment S. The mixture signal
M is simply the sum of V and S. There are 6 singers, of which three were female
and three male. The singing voice tracks were almost entirely performed by one or
more of these singers. The musical accompaniment tracks were all performed by
professional musicians. Each clip is 30 sec long and contains non-vocal regions with
varied duration. The language of the lyrics is either English, Mandarin, Ksorean,
or Taiwanese. The dataset contains 352 music clips, 100 of them are reserved for
the evaluation of the MIREX5 singing voice separation task and are not publicly
available. Among the remaining 252 clips, 137 of these clips are labeled Verse and
115 clips as Chorus.

In order to properly evaluate our proposed model, the 252 music clips in the
iKala dataset were randomly divided into 3 sets, namely training, validation, and
test set. The training set consisted of 152(∼ 60%) clips, 50 (∼ 20%) music clips
form the validation set and 50 (∼ 20%) the test set. The details of each set are
described in Table 2.

4.2 Evaluation under iKala Dataset

In line with the MIREX2016 evaluation procedures, we use a standard quality
assessment tool for evaluating SVS systems called BSS Eval Version 3.0 [68]. For
each estimated/original clip, four quality metrics are calculated in order to assess
the separation quality, namely Source to Distortion Ratio (SDR), source Image to
Spatial distortion Ratio (ISR), Source to Interferences Ratio (SIR), and Sources
to Artifacts Ratio (SAR). The global separation quality for each clip in terms of
singing voice, is measured by the normalized SDR (NSDR). This ratio is calculated
as

NSDR(V , V,M) = SDR(V , V )− SDR(M,V ) (3)

Here, V represents the audio signal of the estimated singing voice. The overall
singing voice separation quality on a test set is determined by the global NSDR
(GNSDR). This ratio is calculated as

GNSDR =
1

|Λ|
∑
i∈Λ

NSDR(Vi, Vi,Mi) (4)

whereby Λ is a set of test clips; and the total number of the test clips is
represented by |Λ|. A better separation quality is reflected by a larger GNSDR.

5 http://www.music-ir.org/mirex/wiki/MIREX HOME
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4 EXPERIMENT SETUP 4.3 DSD100 Dataset

Table 2 The training, validation and test set split based on the iKala dataset. The numbers
represent the file name of the corresponding wave file.

Music Clips Total
Verse Chorus Clips

Training

10174, 21025, 21031, 21032, 21033, 10171, 10174, 21033, 21035, 21038,

152

21035, 21038, 21039, 21040, 21054, 21040, 21054, 21056, 21057, 21059,
21055, 21059, 21060, 21063, 21064, 21061, 21063, 21068, 21074, 21075,
21069, 21076, 21086, 31081, 31099, 21083, 21086, 31047, 31075, 31083,
31101, 31104, 31107, 31109, 31113, 31101, 31103, 31112, 31113, 31115,
31114, 31119, 31134, 31136, 31143, 31118, 31135, 45305, 45358, 45361,
45305, 45358, 45359, 45362, 45367, 45363, 45367, 45368, 45369, 45378,
45368, 45378, 45381, 45382, 45386, 45382, 45384, 45386, 45387, 45392,
45387, 45388, 45389, 45390, 45393, 45398, 45406, 45413, 45422, 45424,
45398, 45404, 45414, 45415, 45421, 45425, 45428, 45429, 54189, 54190,
45423, 45428, 45429, 45434, 54173, 54192, 54202, 54211, 54220, 54221,
54186, 54191, 54192, 54194, 54205, 54223, 54226, 54233, 54236, 54239,
54223, 54226, 54245, 54246, 61670, 54243, 54245, 54246, 54249, 61647,
61671, 61673, 61674, 66558, 66564, 61671, 61676, 61677, 66556, 66557,
66565, 71706, 71710, 71711, 71719, 71710, 71716, 71719, 71720, 71726,
80612 90586

Validation

10161, 10171, 21068, 31092, 31129, 10170, 21025, 21045, 21073, 21084,

50
31139, 31142, 45369, 45384, 45400, 31092, 31100, 31129, 31137, 31143,
45409, 45417, 45422, 45435, 54016, 45381, 45385, 45389, 45416, 45419,
54189, 54219, 54242, 66559, 66560, 45435, 54173, 54183, 54210, 54212,
66563, 66566, 71712, 71720, 90586 54228, 66559, 66561, 66563, 71711

Test

21045, 21058, 21061, 21062, 21071, 10161, 10164, 21058, 31093, 31109,

50

21073, 21075, 21084, 31083, 31117, 31116, 31126, 31134, 31139, 45412,
31132, 31135, 31137, 31144, 45391, 45415, 54194, 54213, 54227
45392, 45410, 45412, 45416, 45418,
45431, 54190, 54213, 54216, 54227,
54233, 54243, 54247, 54249, 54251,
61647, 66556, 71723, 80614, 80616,
90587

Similarly to the quality of the singing voice, the above formula can be modified to
calculate the separation quality of the music accompaniment by replacing V by S
and V by S respectively. The GNSDR calculation is computationally expensive,
hence we used parallel processing through a GPU6 to accelerate this process.

4.3 DSD100 Dataset

The DSD100 dataset [41] is a public dataset, specifically created for evaluating
source separation algorithms capable of separating professionally produced music
recordings into either two stereo signals (i.e., music accompaniment and singing
voice), or five stereo signals (i.e., singing voice, music accompaniment, drums, bass
and other). There are four wave files for each recording, in addition to the mixed
recording wave file: the ground truth singing voice V , drums U , bass A and other
O. The ground truth music accompaniment S is simply the sum of U , A and O.
The mixture signal M is the sum of V and S. The recordings are all in English, and
feature different artists and genres. For example, the genres includes Rap, Rock,
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4.4 Evaluation under DSD100 Dataset 4 EXPERIMENT SETUP

Heavy Metal, Pop and Country. The time duration ranges from 2 min and 22 sec
to 7 min and 20 sec, with an average duration of 4 min and 10 sec. There are 100
recordings, that are evenly distributed over the development (dev) set and the test
set. We used the dev set to create the training and validation set by following the
procedures described in Section 4.5.

4.4 Evaluation under DSD100 Dataset

To enable easy comparison with other algorithms, we follow the evaluation proce-
dure of the SiSEC 2016 MUS track, and use BSS Eval Version 3.0 [68] to assess the
separation quality of our SVS algorithm. In order to assess the separation quality
of whole songs, however, we carry out the procedures below instead.

The stereo mixture signal of each recording is first divided into a set of 30 sec
long music clips with 15 sec overlap. We then exclude music clips which are smaller
than 30 sec or yield NaN (Not a Number) SDR values for the singing voice. The
NaN SDR values mostly occur at the beginning and end of the recording, where
there is no singing voice.

We refer to the set of 30 sec long clips for a recording r as Λr. In order to
assess the singing voice separation quality of a SVS algorithm, we first calculate
the representative (SDRr) value of a recording r by averaging the singing voice
SDR for each clip i in r, such that SDRr = 1

|Λr|
∑
i∈Λr

SDR(i). The singing voice
separation quality of a SVS algorithm is represented by the median of these SDRr
over the test set. The separation quality of other sound sources can be calculated
similarly.

4.5 Training

The training instances were created by dividing each training song into a set of
(9×2,049) spectrogram excerpts (one spectragram for each 9 frames) using a hop
size of 8 frames (92.88ms). Since there is an overlap of only 1 frame, the training
instances are concise. In the case of stereo recordings, each channel was processed
in the same manner, but we chose to alternatingly use the spectrogram excerpts
from one or the other channel, in order to have the same number of training
instances as for the single channel. This procedure reduces the number of training
instance significantly, yet preserve most of the information of each channel. Both
datasets are evaluated on the basis of 30 sec music clips. Using our network setup,
a 30 sec music clips equates to 30×1000/92.88 = 323 input slices. For the ikala
dataset, there are 152 clips of 30 sec, resulting in 323 × 152 = 49,096 training
instances. For the DSD100 dataset, there are 347 clips of each 30 sec, resulting
in 323× 347 = 112,081 training instances. For each clip, we randomly shuffle the
training instances for the purpose of regularization. In a similar fashion, validation
instances are created using the set of validation songs. They are used for parameter
initialization and model selection.

We use the Tensorflow [1] version of the ADAM [31] optimizer with its default
values, to train a CNN for each dataset. The network is updated per batch of 171 in-
stances. A BizonBox6 with NVIDIA GTX TITAN X was used to train both CNNs.

6 https://bizon-tech.com/
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4 EXPERIMENT SETUP 4.5 Training

Each training epoch needed around 2 min and 6 min for the iKala and DSD100
dataset respectively. For regularization purposes, we used 50% dropout [60] and
shuffled the training instances. The target values were set to 0.02 and 0.98 instead
of 0 and 1, as suggested by Schlüter [57]. This method prevents overfitting more
so than L2 weight regularization.

(a) The loss function for iKala Dataset (b) The loss function for DSD100 Dataset

Fig. 2 Evolution of the cross entropy loss for each dataset during training. The lowest cross
entropy loss of the validation set is 0.4509 and 0.3625 for the iKala and DSD100 dataset
respectively. The final selected model for the iKala and DSD100 dataset was trained with 242
epochs and 280 epochs respectively.

All trainable parameters in our CNN were initialized with Xavier’s initial-
izer [17]. In order to even further improve the set of initial parameters for the SVS
task, the CNN is first treated as an auto-encoder by pre-training it with spectro-
gram excerpts of the ideal singing voice for 300 epochs. The model with the lowest
cross entropy loss for the validation set is then selected as the initial model for
the actual training with the full network. After this parameter initialization, the
proposed CNN is trained by feeding it the spectrogram excerpts of the mixture
signal and the corresponding singing voice IBM as the target label. Figure 2 shows
the evolution of the cross entropy loss for each dataset. Note that we also plot the
cross entropy loss of the test set for the sake of completeness. The final model
is selected based on the lowest cross entropy loss on the validation set, which is
0.4509 and 0.3625, for the iKala and DSD100 dataset respectively. The selected
model for the iKala and DSD100 dataset are trained with 242 epochs and 280
epochs respectively in order to ensure that the validation set has the lowest cost.
The separation quality results of these models on the test set are described in the
next section.
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5 EXPERIMENTAL RESULTS

5 Experimental Results

Using the iKala dataset, the proposed CNN was compared with the first runner
up (MC) of MIREX 2016 [6], the winner (IIY) of MIREX 2014 [26] and the rPCA
baseline [24]. A comparison of our model with the winner of MIREX 2016 [44]
and MIREX 2015 [12] was not possible, as both winners do not share sufficient
information to ensure a fair comparison. For example, they do not share their
trained model, information on the training set, nor their separation results for
each music clip7. The results8 of our experiment are displayed in Figure 3. The
CNN proposed in this paper achieves the highest GNSDRs for both singing voice
and music accompaniment: 9.5774 dB and 9.2484 dB respectively. For the singing
voice, our system achieves 2.2702 dB higher than MC, 5.0908 dB higher than
IIY, and 5.9071 dB higher than rPCA. For the music accompaniment voice, the
proposed CNN achieves 2.3804 dB higher than MC, 5.9563 dB higher than IIY,
and 6.5947 dB higher than rPCA. To further justify that our CNN outperforms
the others, we perform a one-way ANOVA, the results of which are summarized
in Table 3. The p-values confirm that the proposed CNN achieves a statistically
significant GNSDR difference (< 0.01) compared to the other systems.

Fig. 3 The NSDRs distribution of each SVS algorithm. The marks x indicate the GNSDRs of
each SVS algorithm. The left bar represents the ideal GNSDR: 15.1944 dB for singing voice,
and 14.4359 dB for musical accompaniment.

Secondly, the DSD100 dataset was used to compare the proposed CNN to the
SVS systems that participated in the SiSEC 2016 MUS track9. This track included
10 blind source separation methods: CHA [6], DUR [10], KAM [39], OZE [52],

7 The 2016 winner [44] has created a web service for others to try their separation method,
however, each separated clip is only 10 sec long.

8 Readers who are interested in other evaluation metrics of our CNN model, may refer to
https://kinwahedwardlin.wordpress.com

9 http://sisec17.audiolabs-erlangen.de/
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5 EXPERIMENTAL RESULTS

Table 3 The significant GNSDR difference between each pair of the SVS systems evaluated
by a One-way ANOVA test.

Pair
Singing Voice Music Accompaniment

F(1,98) p-value F(1,98) p-value

CNN, MC 8.4989 0.0044 9.2806 0.0002
CNN, IIY 57.9684 1.676× 10−11 76.0115 9.7516× 10−16

CNN, rPCA 59.7874 9.4109× 10−12 147.3874 3.0223× 10−21

MC, IIY 17.9755 5.0706× 10−5 35.8675 3.4918× 10−8

MC, rPCA 22.838 6.1939× 10−6 66.96450 1.0299× 10−12

IIY, rPCA 1.5871 0.2107 1.5620 0.2143

(a) Singing Voice

(b) Music Accompaniment

Fig. 4 The SDR distribution for the dev and test set, sorted by the median values of the test
set for all SVS algorithms. For the Test set, our CNN achieves 4.7385 dB and 9.8567 dB for
the singing voice and its accompaniment respectively. For Dev set, our CNN achieves 6.1632
dB and 11.7888 dB for the singing voice and its accompaniment respectively.

RAF [40, 53, 54], HUA [24] and JEO [30], and 14 supervised learning methods,
which use different types of deep neural networks, including GRA [18], KON [23],
UHL [66], NUG [48], STO [64] and their variants, e.g. UHL1 and UHL2. Given the
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5 EXPERIMENTAL RESULTS

published details of their separation results10, we are able to show the SDR distri-
bution8 for each SVS algorithm in Figure 4. Based on the median values for each
clip in the test set, the proposed CNN ranks 3rd and 8th in term of the separation
quality of the singing voice and the music accompaniment respectively. Its perfor-
mance is just behind UHL and NUG which use multi-channel modeling [48], data
augmentation [66], and model blending [66]. When interpreting these results, one
should keep in mind that we only used 1×105 training instances to train the CNN
(without data augmentation), whereas UHL was trained on 2×106 instances. This
further illustrates the effectiveness of our network design. The result also shows
that our proposed way of proprocessing training instances effectively reduces the
size of the required training set. Furthermore, unlike the UHL1 model, our model
does not require us to train a model separately for each channel.

(a) Singing Voice (b) Music Accompaniment

Fig. 5 P -values of the Pair-wise difference of Wilcoxon signed-rank test over different pairs
of SVS systems. The upper triangle represents the result of the test set and the lower triangle
represents the result of the dev set. Values p > 0.05 indicate no significant differences between
two SVS systems. Note that the Labels of SVS systems are different in these two sub-figures.
They are based on the ranking shown in Figure 4.

To evaluate the significance of the difference in performance, a pairwise two-
tailed Wilcoxon signed-rank test with Bonferroni correction [58] was performed.
Figure 5 summarizes the results. There is no statistical difference, in terms of
separation quality of the singing voice, between our CNN, UHL(1,2), and NUG(1-
4). This relativizes the importance of Figure 4 . The only significant different is
with UHL3, which uses model blending between UHL1 and UHL2. This results
suggests that our CNN might be a suitable candidate for blending with other
state-of-the-art systems.

Jansson et al. [28] reported a remarkable performance by using their U-Net
architecture trained on a huge industry dataset. We refrained from directly com-
paring our CNN with the U-net as we are not able to replicate their extraordinary

10 https://github.com/faroit/sisec-mus-results
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performance when training on the smaller iKala and DSD100 training set. Never-
theless, by looking the empirical results11 reported by similar U-nets [61, 62], we
are confident that our CNN is able to compete with the U-net architecture.

6 Conclusion

A singing voice separation model inspired by recent advances in image processing,
e.g. pixel-wise image classification, is presented in this paper. Details of the full
design process of this model are given, including preprocessing steps such as how
the mixture signal can be transformed to form the model’s input. The full architec-
ture of the proposed convolutional neural network is discussed, which includes an
Ideal Binary Mask component as the prediction target label. Our unique network
approach includes IBM target labels, cross entropy loss, and pretraining the CNN
as an autoencoder on singing voice spectrogram segments.

Computational results based on the iKala and DSD100 dataset show that the
proposed system can compete with cutting-edge voice separation systems. On
the iKala dataset, our model reaches 2.2702 ∼ 5.9563 dB Global GNSDR gain
over the two best performing algorithms [6, 26]. Second, on the DSD100 dataset,
no statistically significant difference was found between the proposed model and
current state-of-the-art (non-fused) systems [41]. Audio examples resulting from
this paper are available online12, together with the spectrogram plots, source code
and trained models.

In future research, it would be interesting to further improve the quality of the
separated music accompaniment, e.g., by dedicated training on specific instruments
in the music accompaniment, and systematically studying the effect of the model’s
components on the separation quality, such as the choices for the number of feature
maps in each layers.
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