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Abstract
Uncertain and imprecise data are inherent to many domains, e.g. casting lightweight components. Fuzzy logic offers a way

to handle such data, which makes it possible to create predictive models even with small and imprecise data sets.

Modelling of cast components under fatigue load leads to understanding of material behaviour on component level. Such

understanding is important for the design for minimum warranty risk and maximum weight reduction of lightweight cast

components. This paper contributes with a fuzzy logic-based approach to model fatigue-related mechanical properties of

as-cast components, which has not been fully addressed by the current research. Two fuzzy logic models are constructed to

map yield strength to the chemical composition and the rate of solidification of castings for two A356 alloys. Artificial

neural networks are created for the same data sets and then compared to the fuzzy logic approach. The comparison shows

that although the neural networks yield similar prediction accuracy, they are less suitable for the domain because they are

opaque models. The prediction errors exhibited by the fuzzy logic models are 3.53% for the model and 3.19% for the

second, which is the same error level as reported in related work. An examination of prediction errors indicated that these

are affected by parameters of the membership functions of the fuzzy logic model.

Keywords Fuzzy logic � Membership functions � Artificial neural networks � Prediction accuracy � Mechanical properties

prediction � A356 alloy � Cast components

1 Introduction

Uncertain and imprecise data are inherent to complex

systems. To effectively model uncertainty and imprecision,

performance and quality of raw data must be understood

and managed. In addition to this, not all data sets will be

complete and data may exist only in discrete ranges. Fuzzy

logic has been proposed as a method to deal with uncertain,

imprecise and incomplete data [34]. The engineering

domains provide many examples of fuzzy logic applica-

tions dealing with uncertainty and imprecision. Bed-to-wall

heat transfer in circulating fluidised bed boilers has been

modelled with fuzzy logic in [17, 18]. The constructed

model was used to predict the overall heat transfer coeffi-

cient in the combustion chamber with the maximum rela-

tive prediction error lower than 3%. A comparison of fuzzy

logic with a more traditional cluster renewal approach [3]

showed that the fuzzy logic model exhibits the same

accuracy but at the same time provides an advantage of

simple investigation of the influence of input parameters on

the output values. Fuzzy logic models have been created to

model the pullout strengths of near-surface-mounted fibre-

reinforced polymer strips or rods [22]. The results showed

better accuracy of the constructed models than the pub-

lished models as well as high interpretability of the fuzzy

rule base of the Mamdani system. Among IT-related

examples is determination of a learning level of a student

with a fuzzy logic model that is part of an intelligent
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551 11 Jönköping, Sweden

123

Neural Computing and Applications (2020) 32:5833–5844
https://doi.org/10.1007/s00521-019-04056-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6671-6157
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04056-5&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04056-5


tutoring system [14]. The fuzzy logic decision system helps

to eliminate uncertainty in the student’s score that enhance

individual learning. Fuzzy logic has also been used to

detect selfish nodes in ad hoc networks [11]. The results

showed that the fuzzy logic approach performs better than

deterministic algorithms for determining node status.

Casting is an important engineering area, which pro-

vides very effective methods to produce near net shape

components and offers a great design freedom [13]. For

lightweight cast components, the automotive industry is the

largest user.1 This will be strongly affected by the transi-

tion from the use of combustion engines to electrical

vehicles where lightweight design and sustainability are

likely to increase in importance. Designing for weight

reduction can be made by material replacement or by a

lighter design in similar materials. Most commonly, this

means less material to carry the load resulting in similar or

higher levels of stress making it necessary to understand

and to describe material behaviour on component level in

detail to design for minimum warranty risk and maximum

weight reduction. Most castings fail due to fatigue load but

for automotive applications ductility requirements are

equally important. The understanding of this behaviour is

under extensive research for wrought materials, but cast

materials, with many different large phases and great

variation in mechanical properties, are poorly understood

[16] and the spread in fatigue life is significant [28] as well

as in ductility.

The performance of a cast component depends on sev-

eral factors. Deterministic models will be highly useful in a

part design process as it will be distinct differences

between different design and solutions. It must be pointed

out, however, that other imperfections resulting from melt

treatment and casting process will inherently display a

stochastic behaviour. In addition to this, there are a number

of uncontrolled parameters that vary in a foundry, which

will also result in variations in part quality and accuracy of

a simulation [25]. These variations will limit the ability of a

deterministic model to predict the actual outcome as well

as necessitate management of the uncertainty. The quality

of available data also affects prediction capabilities. For

example, material performance of a part shows inherent

variations due to the location of the tensile bar and varia-

tions from different foundries producing the casting [29].

Data produced in this way indicate part performance but

are rather imprecise. The alloy type varies as well, and the

variation may be confined within one specific specification

that for instance after heat treatment of AlSi9Cu3Fe could

be reduced with one-third compared to the peek value [20].

Industrial applications of fuzzy control, which are based

on fuzzy logic, have been successful in managing complex

nonlinear systems [24]. In particular, fuzzy logic models

have been used to predict mechanical properties such as

hardness and roughness of cast and metallic materials

[2, 12, 27, 35]. However, the current research has not fully

addressed mapping of mechanical properties of metallic

materials, which are related to fatigue stress, to the process

parameters. This paper investigates the use of fuzzy logic

systems for the prediction of mechanical properties of as-

cast components based on experimental data. The fuzzy

logic models are compared with artificial neural networks

(ANN) created for the same data. The main contributions

of the paper are (1) to propose fuzzy logic models for

prediction of yield strength of as-cast components with

satisfactory accuracy, and (2) to show that the performance

of fuzzy logic modelling is the same or better compared to

ANN in the case of small experimental data sets. This

initial work is delimited to an as-cast A356 alloy type of

chemistry and microstructure.

The paper is structured as follows. Section 2 introduces

fuzzy logic systems and describes related work. Section 3

presents details of melt preparation and casting, and results

of tensile testing. The proposed approach to fuzzy logic

modelling is described in Sect. 4. The evaluation of the

constructed models is presented in Sect. 5. The comparison

of the fuzzy logic approach to the use of artificial neural

networks for prediction is described in Sect. 6. The results

are discussed in Sect. 7. The conclusions are drawn in Sect.

8.

2 Related work

2.1 Handling uncertainty when modelling
ductile failures

Models of mechanical properties of cast and metallic

materials are often constructed with the help of empirical

data. Working with such data that are collected through

laboratory tests and filed experiments involves handling

uncertainty. Probabilistic methods are powerful tools to

deal with uncertainties. They have been applied to predict

component performance since the Weibull distribution was

proposed in 1951, representing the distribution of steel

yield strength and fatigue life [31]. In contrast to deter-

ministic analysis, a probabilistic method represents the

input parameters as probability distributions and identifies

the distributions of performance. Additionally, as part of

the analysis, the most critical input parameters to the per-

formance distribution can be identified. Various studies

corroborate this by successful investigations of different

probabilistic aspects of component performance, including

1 OICAs statistics of worldwide vehicle sales http://www.oica.net/

category/sales-statistics/.
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variability in stress-life data (e.g. [5, 19]), fatigue crack

growth rate (e.g. [7, 32]), life prediction considering micro-

structure (e.g. [26, 30]), etc.

Probabilistic methods handle uncertainty in the form of

probability based on bivalent logic [33]. Every proposition

is either true or false, with no shades of grey allowed. The

probability of a proposition is the degree of belief on the

truth of the proposition. On the contrary, fuzzy logic is a

logic of imprecise propositions that may be more or less

true. The truth of a proposition is a matter of degree. Fuzzy

logic deals with uncertainty and imprecision of which both

are inherent parts of complex systems. This makes a fuzzy

logic approach very interesting for the prediction of ductile

failure. Hence, fuzzy logic is an appropriate approach to

predict cast component performance, particularly, fatigue

life properties for ductile materials to which probabilistic

methods are less likely to be successful [8].

2.2 Application of fuzzy logic to model
mechanical properties of industrial materials

Fuzzy logic has long been applied to industrial problems

with successful results [24]. However, very few studies

have applied fuzzy logic in casting and metal industry.

Several papers have been published on predicting surface

roughness and hardness of cast and metallic components.

The authors in [2] used fuzzy logic to predict surface

roughness of die casting alloys after machining. The Al–

11.3Si–2Cu–0.4Fe alloy was treated with different addi-

tives such as Sr, Bi, and Sb, and workpieces were cast after

that. The surface roughness of a workpiece was measured

after the machining. The fuzzy logic modelling resulted in

mapping the presence of additives and machining param-

eters to surface roughness with the error of 5.4%. In the

work [12], a fuzzy expert system is described that first

optimises parameters of the milling process for a given

objective, e.g. maximise tool life, and then infers predicted

values of performance measures for the selected milling

parameters. The fuzzy logic module of the expert system is

used to predict surface roughness of a machined workpiece

based on milling orientation, cutter’s helix angle, work-

piece material hardness and coolant.

Surface hardness of aluminium alloy with TiN coating

has been predicted in [35] with the error of 3.85%. The TiN

(titanium nitride) coating was added on Al-7075–T6 by a

sputtering machine, and then the surface hardness was

measured. The fuzzy logic model built by the authors

predicts surface hardness with the help of four inputs:

direct current power, substrate temperature, nitrogen flow

rate and direct current bias voltage. The work [27]

describes the application of a neuro-fuzzy system and

particle swarm optimisation to determine optimal process

parameters for aluminium metal matrix composites. In the

study, a A356 matrix was reinforced with Al2O3 nano-

particles before casting and tension tests were performed.

The adaptive neuro-fuzzy inference system built by the

authors can estimate hardness of a compo casting with the

average testing error of 3.96. The neuro-fuzzy system uses

seven inputs: mould temperature, mix time, impeller speed,

powder temperature, cast temperature, particle volume

percentage and particle size.

Moreover, fuzzy logic has been used to predict

mechanical properties of non-metallic materials or to relate

resulting mechanical properties to the casting process. The

work in [4] aimed at predicting mechanical properties of

cross-linked polyethylene (XLPE) insulation used in

medium- and high-voltage cables. The insulation samples

were aged at four different temperatures and then subjected

to tensile stress. The built fuzzy logic model maps the

ageing time and ageing temperature to tensile strength,

elongation at rupture and hot set test elongation. The rel-

ative error of the model is between 1.6 and 5.0%. The

authors in [6] have used fuzzy logic in combination with

grey relational analysis to determine optimal parameters

for die casting of AZ91D magnesium alloy components.

The resulting mechanical properties, namely casting den-

sity, warpage and flow mark were first transformed into

grey relational coefficients based on the experimental data.

After that, the fuzzy logic module computed grey-fuzzy

reasoning grade, which was used to find optimal casting

parameters: die temperature, the pressure of injection, the

plunger velocity and the filling time. The results showed

improvements of the die casting process by using the grey-

based fuzzy approach.

Hence, fuzzy logic has been applied to model mechan-

ical properties of die casts and metallic materials with good

accuracy. The predicted properties were surface roughness

and hardness. Fuzzy logic was also successfully used to

predict tensile strengths and elongation at rapture of insu-

lation material. However, there are only limited attempts to

predict mechanical properties, such as yield strength, of

cast components, which is the focus of this paper and then

in particular the aluminium alloy A356 and linking the

performance to process and microstructural in-data.

2.3 Artificial neural networks for prediction
of mechanical properties of alloys

Artificial neural networks (ANN) are a widely accepted

method to deal with complex and nonlinear problems in an

alternative way. Once trained, ANN can perform prediction

and generalisation at high speed and with good accuracy.

Many applications of ANN can be found in modelling and

predicting mechanical properties of industry materials (e.g.

[10, 21, 23]). The work that is most relevant to this paper is

the one by Ozerdem and Kolukisa published in [23]. They
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applied an ANN approach to predict the tensile strength,

yield strength and elongation of Cu–Sn–Pb–Zn–Ni cast

alloys given Cu–Sn–Pb–Zn–Ni (wt.%) contents as the

input. The intent of the presented work is to apply the fuzzy

logic approach to predict mechanical properties of as-cast

alloys as an alternative method. In contrast to an ANN that

is an opaque model, ‘‘black box’’, a fuzzy logic model is a

‘‘white box’’. This makes the fuzzy logic approach espe-

cially interesting for industrial applications as soon as

model transparency is often required by the stakeholders

for the model to be used at a working place. The advantage

of the transparency of the fuzzy system is pointed out in

[22]. In the presented paper, ANN models were created for

the same prediction task. The fuzzy logic approach has

been evaluated against the ANN approach to demonstrate

that both approaches yield very similar predication quality.

3 Experimental work

This section first describes the process to cast cylindrical

rods. After that, the procedure is presented to test bars

machined from the solidified rods. The data collected

during this experimental phase were used to create the

fuzzy logic models presented in Sect. 4.

3.1 Melt preparation and casting

Seven Al–7%Si–0.4%Mg alloys, based on A356 master

alloy, modified with approximately 200–250 ppm Sr and

alloyed with various Cu concentrations were melt in a

resistance furnace. Cylindrical rods (length 18 cm, diam-

eter 1 cm) were thereafter cast in a 200 �C preheated

permanent copper mould. Afterwards, the rods were

inserted into the Bridgeman furnace, Fig. 1, at 710 �C,

remelted for 20 min. and thereafter directionally solidified.

The speed of the furnace during the passage of molten rod

during the cooling channels determines the solidification

rate of the samples; different microstructures can thereby

be produced by changing the speed. Three different

coarsenesses of the microstructure having Secondary

Dendrite Arm Spacing (SDAS) of approximately 10, 25

and 50 lm were directionally solidified for the present

investigation. Water cooling was used for high furnace

speeds, 3 mm/s and 0.3 mm/s corresponding to SDAS of 10

and 25 lm, respectively, whereas no water cooling was

used for the 0.03 mm/s velocity that corresponds to SDAS

of 50 lm; instead, air was the cooling media.

3.2 Tensile testing

Tensile test bars with a gauge length of 50 mm and a

diameter of 7 mm were machined from the directionally

solidified rods. Tensile tests were performed at a constant

strain rate of 0.5 mm/min using a Zwick/Roell Z100

machine equipped with a 100-kN load cell and a clip-on 20

mm gauge length extensometer. The samples were tested

until fracture, using three tensile test bars for each condi-

tion. Since the proposed directional solidification technol-

ogy has proven to deliver optimal tensile test results due to

excellent feeding during solidification, revealing the

potential of studied alloys, only samples that represent the

potential of the alloy in terms of tensile properties are

presented.

4 Fuzzy logic models to predict yield
strength of cast components

The fuzzy logic modelling presented in this section was

carried out with the help of data obtained during the

experimental work described in Sect. 3. As soon as two

different additives, Cu and Si, were used, two versions of a

fuzzy inference system were created to predict yield

strength of a cast component. The Matlab Fuzzy Logic

Toolbox was used to implement the Mamdani fuzzy

inference systems. The experimental results provided data

on cast specimens that included variation in the casting

process—SDAS—and variation in the chemical composi-

tion of cast alloys—percentage of Cu or Si. As described in

Sect. 3.1, the speed of the furnace during the passage of

molten rod during the cooling channels was varied, which

Fig. 1 The Bridgman furnace; directional solidification equipment
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lead to different coarsenesses of the specimen microstruc-

ture measured as Secondary Dendrite Arm Spacing

(SDAS). The experimental data also contained measure-

ments of mechanical properties—yield strength in this

study.

The first series of experiments was conducted on spec-

imens cast with the alloy A356—Al–7%Si–0.4%–Mg–

0.25%Fe with variation of Cu. The second series was based

on alloy A356—Al–7%Si–0.4%Mg with variation of Si. In

both series, the solidification rate of the samples was varied

as described in Sect. 3.1. The first data set contained 67

data points. They were divided into two parts: a training

data set with 46 data points and a test data set with 21 data

points. The second data set contained 52 data points. This

data set was divided into two parts: a training data set with

36 data points and a test data set with 16 data points. The

complete data sets were used to define required member-

ship functions for input and output linguistic variables

(Sect. 4.1), while the training data sets were utilised to

derive fuzzy inference rules (Sect. 4.2). The utilised

aggregation method was max, and the defuzzification

method was centroid. The prediction accuracy of the cre-

ated fuzzy models was evaluated with the help of the test

data sets (Sect. 5).

4.1 Linguistic variables and membership
functions

The first phase of the construction of the fuzzy logic sys-

tems was to define linguistic variables. The required vari-

ables were identified after the training data sets inspection

and discussion with domain experts. Two input variables

were defined: ‘‘sdas’’, representing microstructure coarse-

ness, and ‘‘Cu-amount’’ or ‘‘Si-amount’’, representing the

percentage of Cu in the first data set and the percentage of

Si in the second data set, respectively. One output variable

‘‘yield-strength’’ was defined for the resulting yield

strength. The Gaussian type was chosen for the member-

ship functions of all the variables for the following reasons.

First, the domain experts considered the Gaussian type to

be the most adequate based on the experimental data.

Second, Gaussian and triangular are often used as the

membership function types in similar domains

[2, 4, 12, 27, 35]. The examination of the training data sets

included two steps:

1. Compilation of the existing values of an input/output (a

process parameter or mechanical property) in a list and

sorting it to determine the range of the variable.

2. Partitioning of the value list into segments to determine

the number of membership functions (linguistic labels)

for a variable and the parameters for each membership

function, i.e. r, which controls the width of the ‘‘bell’’

of the curve, and c, which defines the position of the

centre of the curve peak. The size of each partition was

chosen to encompass a few values, and the overall

partitioning was discussed with the domain experts.

The linguistic variables with their characteristics for the

input and output parameters are presented in Table 1. The

three membership functions of the first input variable for

both experimental series correspond to the three coarse-

nesses of microstructure presented in Sect. 3.1. They are

shown in Fig. 2c. The second input variable required five

membership functions for both experimental series. Fig. 2a

depicts the membership functions for the first data set and

Fig. 2b for the second data set. The amount of the additives

(Cu and Si) was changed in uneven steps according to the

judgement of the domain experts. As a result, the shapes of

the membership functions are not uniform to allow for a

finer distinction between lower percentages of Cu or higher

percentages of Si that were more often used in the exper-

imental series. The five membership functions of the output

variable are depicted in Fig. 2d for the first data set. The

‘‘yield-strength’’ variable for the second data set differs

only in the range, which is between 107 and 193. The

typical number of membership functions for a variable is

between three and seven [2, 6, 12, 27, 35], two and more

than seven membership functions being a more rare case

[4, 12]. The number of five membership functions was

chosen for most variables because it allowed for good

coverage of the variable ranges from the data sets. Only the

coarsenesses of microstructure were measured with three

distinct values, which required three membership functions

to represent them.

4.2 Fuzzy inference rules

The second phase was to derive fuzzy inference rules from

the training data sets. The process of the rule creation was

carried out by a knowledge engineering expert. Each data

point within the training data was inspected, and a col-

lection of IF-THEN rule was formulated using the defined

linguistic variables and logical connectives. The process

consisted of four steps:

1. All numerical values were replaced with linguistic

labels (names of membership functions) and grouped

by the second input (Cu or Si percentage) due to this

input being natural ordering in the data sets.

2. Repetitive rules were removed and rule conflicts were

resolved, a conflict being two rules with the same

antecedent but implying different consequents. The

conflict resolution consisted of selecting the conse-

quent that provided a higher membership value for the

given output value (yield strength) from the data point.
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3. Rules with the same second input were aggregated by

removing the first input (SDAS) when it did not change

the consequent in those rules.

4. Rules with the same first input were aggregated by

removing the second input when it did not change the

consequent in those rules.

The four-step process led to the formalisation of 11 distinct

fuzzy rules from the first training data set, which are listed

in Table 2 in symbolic format & denote logical conjunction

and implemented as min. The logical implication is also

implemented as min. The 10 rules for the second data set

are presented in Table 3. The first two rules in both

tables specify values of only one variable in the antecedent

because the other input variable, that is SDAS, does not

affect the values in the consequent.

5 Evaluation of the accuracy of fuzzy model
prediction

The prediction accuracy of the constructed fuzzy logic

systems was evaluated with the help of the test data sets

and measured using Mean Absolute Percentage Error

(MAPE) [9]. Every pair of input values from each test data

set was entered into the corresponding fuzzy logic system

Table 1 Fuzzy linguistic

variables and values for each

parameter

Linguistic variable Linguistic values Range

The first data set

Inputs

1: SDAS Fine, average, coarse 10–50

2: Cu-amount Very little, little, average much, very much, 0–5.5

Output

Yield-strength Very low, low, average, high, very high 113–210

The second data set

Inputs

1: SDAS Fine, average, coarse 10–50

2: Si-amount Very little, little, average, much, very much 7–14.5

Output

Yield-strength Very low, low, average, high, very high 107–193

Fig. 2 Membership functions for the input and output parameters. For each function, the x-axis indicates input values and the y-axis indicates

their corresponding degree of membership
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to compute an output value. After that, MAPE was com-

puted by dividing the absolute difference of the predicted

and measured values by the absolute value of the measured

value and averaging this ratio over the data. MAPE was

chosen as error measure due to the following reason. Unit-

free measures are often preferred because the scale of data

can vary significantly and there are many data sets with

large numbers [1]. MAPE is frequently used when a unit-

free measure is required. Moreover, MAPE offers expli-

cation of the accuracy of prediction as a relative error [9].

The disadvantages of MAPE are that it is not applicable

when the quantity can take zero values as well as it is

unbalanced in terms of giving more penalty for values that

are higher than the measured values [1, 9]. In this study, all

the experimental and predicted values are nonzero and

there is no prevalence of predicted values that significantly

exceed the measured values. Thus, MAPE is a suitable er-

ror measure that allows for intuitive interpretation of pre-

diction accuracy and comparison of different predictive

models.

The evaluation results are presented in Table 4 for the

first test data set and in Table 5 for the second test data set.

The first column in each table contains the designation of a

casting component from the test data sets. Both tables show

the percentage of Cu/Si and SDAS, which are the input

values to the fuzzy logic models, as well as the measured

value of yield strength in the next three columns. The

values predicted by the fuzzy systems are shown in the fifth

column of each table. The last column contains a (signed)

percentage error for each pair of predicted and measured

values. MAPE is given at the bottom of each table.

The resulting prediction errors, 3.53% for the first fuzzy

logic model and 3.19% for the second model, are of the

same magnitude as the prediction accuracy of the fuzzy

logic-based systems reported in the related work described

in Sect. 2.2. The prediction errors were also discussed with

the domain experts, and they deemed the error level as

acceptable. However, the fuzzy logic models were created

from small data sets as this is initial work on modelling of

yield strength. When more extensive data sets are used for

the modelling, the prediction accuracy may change.

Additionally, the procedure of data collection at a partic-

ular laboratory or foundry could affect the performance of

the fuzzy logic models as well.

The percentage prediction errors are additionally

depicted in Fig. 3, which plots the relative errors in relation

to the measured values of yield strength. The examination

of the plot in Fig. 3b indicates that the biggest errors are

Table 2 List of fuzzy inference

rules derived from the first

training data set

Rule no. Antecedent Consequent

1 (Cu-amount==average) (yield-strength=average)

2 (Cu-amount==much) (yield-strength=average)

3 (sdas==fine) & (Cu-amount==very-little) (yield-strength=low)

4 (sdas==average) & (Cu-amount==very-little) (yield-strength=low)

5 (sdas==coarse) & (Cu-amount==very-little) (yield-strength=very-low)

6 (sdas==fine) & (Cu-amount==little) (yield-strength=average)

7 (sdas==average) & (Cu-amount==little) (yield-strength=average)

8 (sdas==coarse) & (Cu-amount==little) (yield-strength=low)

9 (sdas==fine) & (Cu-amount==very-much) (yield-strength=high)

10 (sdas==average) & (Cu-amount==very-much) (yield-strength=very-high)

11 (sdas==coarse) & (Cu-amount==very-much) (yield-strength=high)

Table 3 List of fuzzy inference

rules derived from the second

training data set

Rule no. Antecedent Consequent

1 (Si-amount==very-little) (yield-strength=low)

2 (sdas==average) (yield-strength=low)

3 (sdas==fine) & (Si-amount==little) (yield-strength=average)

4 (sdas==coarse) & (Si-amount==little) (yield-strength=very-low)

5 (sdas==fine) & (Si-amount==average) (yield-strength=high)

6 (sdas==coarse) & (Si-amount==average) (yield-strength=very-low)

7 (sdas==fine) & (Si-amount==much) (yield-strength=very-high)

8 (sdas==coarse) & (Si-amount==much) (yield-strength=very-low)

9 (sdas==fine) & (Si-amount==very-much) (yield-strength=very-high)

10 (sdas==coarse) & (Si-amount==very-much) (yield-strength=low)
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concentrated in the first quarter of the yield strength range.

When this plot is compared to the plot of the membership

functions for Si-amount in Fig. 2b, the error zone of the

former corresponds to the first two membership functions:

very-little and little. When the values of Si percentage from

the second data set were partitioned, these membership

functions were assigned only one value each and their

bases were made wider than for the other membership

functions for Si-amount. Having such ‘‘low-density’’

membership functions is likely the reason for the lower

precision in the prediction. There is also one bigger error in

the third quarter in Fig. 3b, which might be an outlier

because this error is not explained by the membership

functions for Si-amount. The plot in Fig. 3a provides less

clear indication of big error concentration. The second,

third and fourth quarters of the yield strength range contain

a cluster of big errors each, which correspond to the

membership functions average, much and very-much for

Cu-amount in Fig. 2a. The range for Cu percentage from

the first data set was partitioned in the same manner as the

range for Si-amount, thus making these three membership

functions ‘‘low-density’’ ones and implying the same

explanation. The bigger error in the first quarter in Fig. 3a

might again be an outlier because this error is not explained

by partitioning of the membership functions for Cu-

amount.

Table 4 Evaluation of the error of prediction for the first test data set

Sample Cu SDAS YS measured YS predicted Error

AA13 0 10 125.44 135.02 7.64

AA23 0 20 125.51 135.02 7.58

AA33 0 50 113.06 116.09 2.68

AB13 0.6 10 133.59 135.64 1.54

AB22 0.6 20 135.94 135.64 -0.22

AB32 0.6 50 117.57 117.71 0.12

AC11 1 10 144.96 145.58 0.43

AC21 1 20 145.11 145.58 0.32

AC31 1 50 129.44 129.21 -0.18

AD13 1.5 10 144.20 155.91 8.12

AD23 1.5 20 157.29 155.91 -0.88

AD33 1.5 50 139.01 134.97 -2.91

AE12 1.7 10 151.14 157.62 4.29

AE32 1.7 50 141.50 136.76 -3.35

AF31 2.5 50 152.20 159.83 5.01

AG14 3.5 10 166.83 160.00 -4.10

AG23 3.5 20 173.85 160.00 -7.97

AG33 3.5 50 170.86 160.00 -6.36

AI12 5.5 10 194.70 184.50 -5.24

AI23 5.5 20 202.88 198.19 -2.31

AI32 5.5 50 189.74 184.31 -2.86

MAPE 3.53

Table 5 Evaluation of the error of prediction for the second test data

set

Sample Si SDAS YS measured YS predicted Error

AIA13 7 10 125.44 127.60 1.72

AIA23 7 20 125.51 127.60 1.66

AIA33 7 50 113.06 127.51 12.79

AIB13 10 10 161.20 148.66 -7.78

AIB23 10 20 132.35 130.20 -1.62

AIB33 10 50 108.67 110.69 1.85

AIC13 11.5 10 168.94 168.10 -0.50

AIC33 11.5 50 115.77 110.32 -4.71

AID13 12.5 10 180.14 175.48 -2.59

AID33 12.5 50 110.40 110.85 0.41

AIE13 13 10 176.33 177.76 0.81

AIE23 13 20 136.41 131.13 -3.88

AIE33 13 50 110.99 110.60 -0.35

AIF13 14.5 10 176.03 178.13 1.20

AIF23 14.5 20 128.38 130.70 1.80

AIF33 14.5 50 118.65 127.33 7.31

MAPE 3.19

Fig. 3 Percentage errors of the predictions plotted as stems for each

value of yield strength: a from the first test data set and b from the

second test data set. The x-axis is the baseline containing the

measured values
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6 Comparison of the fuzzy logic models
with ANN prediction approach

Predictive neural networks have been built based on the

Keras neural network sequential model [15] for both data

sets. The network architecture and training parameters are

presented in Table 6. The ANNs were trained and evalu-

ated using the same groups of training and test data as the

ones used for the fuzzy logic models in both data sets.

Figure 4 depicts the results obtained with both ANN and

fuzzy logic approaches as scatter diagrams. The results

indicate that the performances of the two models are sim-

ilar for the first data set. However, the fuzzy logic model

performs better than the ANN model for the second data

set. It is not clear why the ANN model performs worse for

the second data set. One possible explanation could be that

the neural network becomes overfitted due to the small size

of the data set, although the sizes of the first and second

data sets do not differ much and the network performance

is good for the first data set.

7 Discussion of the results

Comparison of the prediction errors (MAPE) of the con-

structed fuzzy logic models (3.53% and 3.19%) with the

errors reported in the related work shows that a lower error

is reported for the fuzzy logic model for predicting

mechanical properties of polyethylene insulation by Bou-

kezzi et al. [4]. It reports Mean Absolute Relative Error

(MARE) of 1.6–1.9% (where MARE is defined in an

equivalent manner as MAPE). Polyethylene insulation is a

very different material from cast components, and thus, it is

difficult to compare the performance of the models. In spite

of this, a plausible explanation for this could be that each

linguistic variable in [4] is defined by nine membership

functions compared to the variables with three and five

membership functions in the current study. A finer parti-

tioning of the range of linguistic variables is likely to lead

to a better performance of fuzzy inference because it

provides for more accurate mapping of the input–output

values. Additionally, the higher number of membership

functions usually requires the higher number of fuzzy

inference rules. The number of fuzzy rules defined in [4] is

18, which is higher compared to the current study (11 and

10 rules). Consequently, the higher number of membership

functions and the bigger size of the rule set could have

contributed to better accuracy reported in [4].

The errors of the fuzzy logic-based systems for predic-

tion of surface hardness/roughness of metallic materials are

similar to the errors of the constructed fuzzy logic models:

MAPE of 3.85% is reported by Zalnezhad et al. [35] and

MAPE of 5.4% by Barzani et al. [2]. In these studies, the

numbers of membership functions for linguistic variables

are not significantly different from the variables in the

current work. In [2], two variables have four membership

functions and the other two have three membership func-

tions, and in [35] all the variables have four membership

functions, which is similar to the current study. One can

note that both Zalnezhad et al. [35] and Barzani et al. [2]

transformed one data point in a training data set to one

inference rule, resulting in 16 rules in [35] and 36 rules in

Table 6 ANN model architecture and training parameters

The number of hidden layers 2

The number of hidden units 10

Activation function Rectifier linear unit

The initial weights LeCun normal initializer

Loss function Mean squared error

Optimizer Adam

Number of iterations 100

Fig. 4 Comparison of the prediction performance of the fuzzy models

and the ANN models based on: a the first test data set and b the

second test data set. The x-axis is the measured value, and the y-axis

is the predicted value
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[2]. In the current study, a different procedure has been

used for rule construction (see Sect. 4.2), which led to

smaller sets of rules: 11 rules in the first model and 10 rules

in the second model. Having fewer fuzzy inference rules,

while keeping the same level of accuracy is advantageous

in terms of performance but also improves the inter-

pretability of the constructed fuzzy logic model. However,

all the compared studies have been constructed from rela-

tively small data sets and the comparison results may

change when more data are used to fine-tune the systems.

Additionally, the modelled components have different

material characteristics, which further complicates the

comparison.

Most related studies described in Sect. 2.2 used the

manual approach to build fuzzy logic models and very few

details of this construction process are revealed in the

reviewed papers. In contrast, an attempt has been made in

the current study to present the procedures for manual

creation of membership functions (Sect. 4.1) and fuzzy

inference rules (Sect. 4.2). Up to now, these procedures

have only been used to build two fuzzy logic models, yet

with a successful outcome. It is worth to mention one result

of applying the rule construction procedure. The first two

rules in Tables 2 and 3 specify values of only one variable

in the antecedent of those rules as soon as one of the input

variables does not affect the values in the consequent. This

implies that microstructure coarseness does not have an

impact on the results when the percentage of Cu is average

or high for the first type of alloy. In the case of the second

alloy type, when the amount of Si is very low, coarseness

does not affect yield strength as well as when the coarse-

ness is average, the Si percentage does not have an impact

on the results.

8 Conclusions

This paper has proposed a fuzzy logic approach to map the

yield strength of an as-cast component to the coarseness of

microstructure and the percentage of Cu/Si in a cast alloy.

Two fuzzy logic models were constructed and evaluated

with the help of data obtained during the experimental

work on die casting and tensile testing. The same mapping

has been also modelled with artificial neural networks and

compared to the fuzzy logic results. The evaluation of the

fuzzy logic models indicates the prediction errors of 3.53%

for the first model and 3.19% for the second model. The

prediction accuracy of the proposed models is at the same

level as the accuracy of the fuzzy logic-based systems for

prediction of surface hardness/roughness of metallic

materials reviewed in Sect. 2.2. The domain experts con-

sidered the error level as acceptable as well. The compar-

ison to the ANN approach shows that the accuracy of the

approaches is similar, although the ANN yields a worse

result for the second data set. However, the main advantage

of fuzzy logic systems over ANN is that the former pro-

vides transparent models, while the latter results in opaque

models. Having transparent models that can be inspected is

important for industrial applications. The presented results

address the lack of research into modelling of mechanical

properties of as-cast components related to the chemical

composition of as-cast A356 alloy type and the parameters

of a solidification equipment.

The examination of the prediction accuracy of the

constructed models suggests that the partitioning of the

range of a linguistic variable may affect the size of the

error of prediction. In the experimental data sets, the values

of the percentage of Cu/Si were not evenly distributed over

the range, which led to bigger prediction errors in the

regions where the values were scarce. The number of

membership functions of linguistic variables might also

affect the accuracy of prediction because the higher num-

ber of membership functions provides for more accurate

mapping of the input–output values. The comparison of the

presented results with the work by Boukezzi et al. [4] is

likely to indicate that counting on twice the amount of

membership functions (nine compared to 3–4) could pro-

vide for two times lower prediction error. Though, this

comparison was difficult to carry out due to the different

nature of the modelled materials.

The paper has also introduced the manual procedure for

creation of membership functions and fuzzy inference

rules. The specified steps can be used to create fuzzy logic

models from empirical data in other domains as well. One

outcome of this procedure is that the built models achieved

the same level of accuracy with fewer inference rules

compared to the work of [2, 35], while having the similar

amount of membership functions. In general, having fewer

inference rules is advantageous because it leads to better

performance of a fuzzy logic system and a higher level of

interpretability. However, the presented fuzzy logic models

have been created from relatively small data sets. The

models and the creation procedure need to be further

improved and tested with the help of additional experi-

mental data.

Future work will be arranged along the following lines.

Firstly, the fuzzy logic models will be extended by incor-

porating other mechanical properties of cast components.

These properties include ultimate tensile strength, elonga-

tion to failure and Young’s modulus. In addition, more

extensive data sets will be used for creation and evaluation.

Secondly, methods will be explored for learning fuzzy

inference rules and membership function parameters from

training data, e.g. the use of genetic algorithms. Manual

creation of fuzzy logic models serves the purpose well as

demonstrated by this study and several of the papers
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described in Sect. 2.2. However, when the volume of data

underlying the model development increases, the manual

creation of models becomes unfeasible. The performance

of the fuzzy logic models built automatically using the

aforementioned methods will be compared to the perfor-

mance of the models constructed manually as well as built

with machine learning methods, e.g. artificial neural net-

works. Finally, more experimentation is needed to inves-

tigate how the partitioning of variable ranges and the

number of membership functions affects the prediction

accuracy of a fuzzy logic model.
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