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Abstract
Sudden cardiac death (SCD) is caused by lethal arrhythmia. Ventricular fibrillation (VF) and ventricular tachycardia (VT)

are amenable to defibrillation or electrical shock therapy (‘‘shockable’’ arrhythmia) that can abolish the VF/VT and restore

normal electrical and mechanical heart function. The challenge is to differentiate between shockable and non-shockable

arrhythmia during the emergency response to SCD. When it comes to saving the life, accurate electrocardiogram (ECG)

diagnosis and fast delivery of appropriate treatment is imperative. Automated systems to differentiate shockable from non-

shockable arrhythmia have been developed to overcome the difficulty, and possible errors due to the manual inspection. In

the present work, we have devised an efficient, effective and robust automated system to detect shockable and non-

shockable arrhythmia using an optimal wavelet-based features extracted from ECG epochs of 2 s durations. We employed

optimal two-channel frequency selective orthogonal wavelet filter bank to diagnose shockable ventricular arrhythmia. The

optimization was carried out by minimizing the stop band ripple energy of the wavelet filter. The optimal orthogonal

wavelet filter has been designed using a semi-definite programming (SDP) formulation without the use of any parame-

terization. The SDP solution gave us the desired optimal orthogonal wavelet filter bank with minimum stop band energy

and the desired degree of regularity for the given length of filter. Fuzzy entropy and Renyi entropy features were extracted

from the 2-s ECG epochs. These extracted features were then fed into the classifiers for discrimination of shockable

arrhythmia rhythms and non-shockable arrhythmia rhythms. The best results were obtained from support vector machine.

Accuracy of 97.8%, sensitivity of 93.42%, and specificity of 98.35% were obtained using a tenfold cross validation

scheme. The developed automated system is accurate and robust; therefore, it can be integrated in automated external

defibrillators that can be deployed for hospitals as well as out-of-hospital emergency resuscitation of SCD.
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1 Introduction

Sudden cardiac death (SCD) or cardiac arrest refers to a

situation where the heart stops pumping, which leads either

to death or, frequent devastating neurological deficits

among hospitalized survivors. SCD can be the result of a

heart attack, where sudden blockage in coronary arterial

blood flow to the heart depletes heart muscle oxygen levels

precipitately, triggering off an arrhythmia that embarrasses

heart muscle contraction [18]. Alternatively, congenital or

acquired defects in the electrical conduction system within

the heart can initiate potentially lethal arrhythmia. The

majority of SCD occur out of hospital, with death often

occurring within minutes of presentation. There exists only

a very narrow time window for the emergency response
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team to arrive and deliver treatment of electrical car-

dioversion (or shock) using defibrillators, followed by

cardiopulmonary resuscitation and/or drugs where appro-

priate—to terminate the arrhythmia and avert death. Deaths

due to SCD accounts for more than three hundred thousand

deaths in the United States of America alone every year

[31, 42]. It exacts an equally heavy toll in the developing

world [20]. In India, it has been reported that 10.3% of total

deaths were due to SCD [37]. Electrocardiographic (ECG)

diagnosis is crucial for deciding on the appropriate emer-

gency intervention, i.e., whether or not to deliver electrical

defibrillation or shock treatment. If there is no electrical

activity in the heart (asystole), shock is contraindicated.

Pulseless electrical activity (PEA) occurs when the ECG

signals are present without any pulse. The ECG rhythm in

PEA can either be slow (bradycardia) or fast. Indeed, most

SCD is attributable to rapid high grade ventricular

arrhythmias, for which electrical shock therapy can be used

to terminate the arrhythmia and is potentially life-saving.

All external (and implanted) defibrillators are equipped

with heart rhythm analysis algorithms to detect lethal

ventricular arrhythmia that demands immediate shock—

‘‘shockable’’. As indiscriminate shocks may induce pain

and injure heart muscle, the need for rapid and accurate

differentiation between ‘‘shockable’’ (requires defibrilla-

tion) and non-shockable arrhythmia (defibrillation is not

helpful) is most preferred.

Shockable ventricular arrhythmia comprises ventricular

tachycardia (VT) and ventricular flutter (VFL) and the

most deadly ventricular fibrillation (VF) [18]. In VF, the

ventricles fibrillates, chaotically quivering 400–600 times

per minute, result in disorganized intracardiac blood flow

and absence of effective heart contraction or output. The

ECG shows rapid, irregular and broad QRS complexes.

Death ensues within 3–5 min without shock treatment with

defibrillators, which terminate VF, restore regular (or

sinus) rhythm and synchronized heart contractions which

can generate pulsatile cardiac output. VT is more common,

accounting for 80% of SCD [31]. VT, like VF, originates in

the ventricles from scar tissue due to either prior myocar-

dial infarction or other non-ischemic heart muscle or con-

ductive tissue disease. In VT, the heart beats can beat at a

frequency between 110 and 250 bpm. The ECG in VT

shows regular rapid QRS complexes. There is variable

effect on intracardiac blood flow and cardiac output. In

some cases, the pulse may still be present. However, when

the victim develops hemodynamic compromise evidenced

by sudden drop in blood pressure, loses consciousness due

to blood flow to brain, or the pulse becomes undetected

(pulseless VT), emergency shock therapy is given. VFL is

a regular rapid ventricular rhythm with frequency of

250–350 beats per minute that is intermediate and some-

times transitory between VT and VF.

In general, asystole and bradycardias are non-shockable

rhythms. In asystole, there is neither atrial nor ventricular

electrical activity (absent P waves and QRS complexes)

and the ECG shows a ‘‘flat line’’. The blood pressure is

unrecordable. Use of defibrillators is ineffective in restor-

ing electrical or mechanical heart function. The prognosis

for survival is dismal, and more than 85% of resuscitated

asystolic victims succumb [30]. Similarly, in pulseless

electrical activity (PEA) with bradycardia, even though the

heart is electrically active albeit slow, the rate is too slow to

sustain meaningful mechanical heart muscle contraction

and output. Shock therapy in this case will neither jump-

start electrical nor mechanical heart function and may

induce heart muscle injury.

The ECG must be able to diagnose shockable and non-

shockable arrhythmia attributes, so that appropriate shock

is delivered only for the shockable lethal ventricular

arrhythmia (VF, VFL and pulseless VT). The continual

refinement and optimization of automated algorithms that

achieve higher accuracy for discriminating shockable from

non-shockable arrhythmias with minimum error is most

Desirable. In the literature, several automated systems have

been introduced. Various studies have been conducted on

the detection and classification of shockable arrhythmia

rhythms (SAR) and non-shockable arrhythmia rhythms

(NSAR). We have briefly reviewed few existing state-of-

algorithms below.

Jekova [25] compared the performance of five previ-

ously presented algorithms [8, 13, 29, 61, 71]. Later in

2004, Jekova and Krasteva [27] proposed a simple algo-

rithm for the real-time detection of VT and VF by imple-

menting band-pass digital filter. The complexities and

computational costs present in earlier developed algorithms

motivated Jekova [26] to work on finding a simple algo-

rithm. They presented a set of ten parameters which were

used for the shockable rhythm detection, which can be used

for automated external defibrillators (AED).

Amann et al. [7] worked on the time-delay methods for

the diagnosis of life-threatening VF. Fokkenrood et al. [19]

explored the possibilities of monitoring the heart condition

by using blue-tooth enabled sensing devices and smart

phones for real-time monitoring of heart functioning and

also detection of VT/VF.

Atienza et al. [6] extracted morphological, spectral and

complexity features from ECG signals for the automated

diagnosis of shockable and non-shockable arrhythmia.

They used support vector machine (SVM) for classification

and achieved sensitivity (SEN) and specificity (SPE) of

92.0% and 97.0%, respectively. Alonso-Atienza et al. [6]

analyzed the findings of several algorithms developed

earlier. Thirteen morphological, spectral and complexity

features of the ECG were used for the analysis.
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Li et al. [32] used VF-filter leakage measure, complexity

measure and other statistical features for the classification

problem. They achieved a maximum ACC, SEN and SPE

of 96.3%, 96.2% and 96.2%, respectively, using SVM.

Tripathy et al. [62] employed variational mode decom-

position (VMD) decompose the arrhythmia rhythms into

sub-signals and derived energy, Renyi entropy and per-

mutation entropy of these sub-signals. Further, they used

random forest (RF) classifier on the extracted features for

classification. They achieved ACC of 97.23%, sensitivity

(SEN) of 96.54% and specificity (SPE) of 97.97%.

Acharya et al. [2] processed arrhythmia signal using a

convolutional neural network (CNN) model. Their CNN

model comprised eleven layers and achieved an accuracy

(ACC) of 93.18% with a sensitivity of 95.23% and speci-

ficity of 91.04%.

As SCD is life-threatening, timely and appropriate

emergency intervention mandates accurate diagnosis, i.e.,

whether the arrhythmia recorded during SCD is shockable

or non-shockable. Since wavelet-based features confer

good classification performance for physiological signals

including ECG signals [10, 46, 52, 54], we have employed

optimal orthogonal wavelet filter banks [44] and exploited

the wavelet-based features for automated classification of

shockable and non-shockable arrhythmia in this study. The

objective of this study is twofold. First, we designed an

optimal orthogonal wavelet filter banks [56–58]. Secondly,

we also aim to develop a robust, efficient and inexpensive

computer-aided and efficient classification system for

detecting whether the recorded beats are shockable or non-

shockable rhythms using the designed wavelet-based fea-

tures. The system needs to be accurate, robust and reliable.

As mentioned above, SCD affects developing countries

equally. Hence, the solution should be inexpensive and

feasible for implementation in the third-world countries.

2 Methodology

The flow diagram of the proposed study is shown in Fig. 1.

In this work, we have used two classes of ECG signals, viz.

shockable and non-shockable rhythms. The first step was to

filter out noise and make the raw data ready for the anal-

ysis. Five level decomposition was carried out on the fil-

tered data to obtain six subbands for each ECG epoch. For

this purpose, we used the optimal two-channel frequency

selective orthogonal filter bank designed by Karmakar et al.

[28]. Extraction of features from the data (subbands) was

then performed. The best results were obtained with fuzzy

entropy and Renyi entropy. The extracted features were

then fed into various supervised machine-learning-based

classifiers for the classification of two classes.

3 Material used

The data used in this work were obtained from three

databases, viz. MIT-BIH arrhythmia database (MITDB)

[21, 33], MITBIH malignant ventricular arrhythmia data-

base (VFDB) [21, 23] and Creighton University ventricular

tachyarrhythmia database (CUDB) [21, 36]. The data from

MITDB contains forty-eight two-channel ECG signals of

duration 30 min, and were resampled at 250 Hz. The

MITDB ECG recordings had been annotated using 15

labels including VT, VFL, normal sinus rhythm among

others. The data of VFDB had twenty-two two-lead ECG

signals of, 35 min duration each, and were sampled at 250

Hz. The data from CUDB comprises of thirty-five single-

channel ECG signals of, 8 min duration each, with fre-

quency sampling of 250 Hz. Table 1 presents the summary

of the data used in this study. The ECG recordings have

been labeled as with-VF and without-VF. Figure 2 shows

the ECG signal showing sinus rhythm in a healthy person.

Figures 3 and 4 depict non-shockable and shockable ECG

signals. We have segmented the collected ECG recordings

in to epochs of duration of 2 s each. The SAR ECG epochs

Fig. 1 Proposed methodology

for the automated detection of

shockable ECG signals
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belong to either VT ECG episodes or VF/VFL ECG epi-

sodes. The NSAR ECG epochs comprise normal sinus

rhythm, ventricular bigeminy, ventricular ectopic beats,

and ventricular escape rhythm. We considered total 48,095

NSAR and 6001 SAR ECG epochs in this work.

4 Pre-processing

Raw ECG databases are pre-processed before applying to

the system. The raw ECG signals were pre-processed using

the wavelet-based filtering used in [2]. We have used

orthogonal wavelet filter of length-12 with six vanishing

moments [15] which helps to remove the baseline wander

and noise. Then, filtered ECG signals are windowed and

labeled as NSAR and SAR as per annotations provided in

the respective databases. Each windowed ECG epoch is of

duration 2 s which contains five hundred samples. The

ECG epochs so obtained are normalized using Z-score test.

5 Wavelet filter banks for ECG analysis

Due to the non-stationary nature of ECG signals, Fourier

transform-based techniques fail to analyze the ECG sig-

nals. Wavelet bases have been found to be efficient to

analyze the non-stationary ECG signal [55, 63]. Many

researches have employed discrete wavelet transform

(DWT) for the analysis of ECG signals. Mostly, Daube-

chies orthogonal wavelet filters [15] have been employed

to analyze the ECG signals. Several classes of wavelet

filters have been employed to analyze the non-stationary

signals [64]. The choice of a particular wavelet filter

depends upon the given application, and the type of the

signal to be analyzed. Daubchies orthogonal wavelet filters

cannot be considered as the best choice in every applica-

tion, although they have the maximum smoothness or

regularity. Various optimality criteria [11] have been used

to design optimal wavelet filter banks. Optimal filter

wavelet filter banks have been designed to analyze the

signals accurately [53, 59]. To design optimal filters either

ripple energies or maximum ripples in the passband and

stopband are to be minimized [16, 35]. In this study, we

Table 1 Details of the datasets used in the study

Dataset NoS Duration (min) Frequency (Hz) Leads employed

MITDB 48 30 360 Modified lead-II

VFDB 22 30 250 Lead-I

CBDB 35 8 250 Lead-I
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used optimal wavelet filters obtained by minimizing the

ripple energy in the stopband [28].

We have worked using the optimal two-channel fre-

quency selective orthogonal filter bank [28]. The wavelet

filter bank used in this study belongs to an optimal class of

orthogonal filter bank. There have been several attempts to

classify the bio-signals by applying orthogonal filter banks

[12, 15, 50]. The dyadic wavelets are generated by the

iteration of perfect reconstruction (PR) two-channel filter

bank. In a two-channel PR filter bank, the input signal is

first fed into its high-pass and low-pass components and

then down sampled by a factor of two. The analysis part of

the filter bank breaks down the input signal, while the

synthesis side reconstructs the signal using extrapolation.

The limitation of widely used Daubechies orthogonal filter

banks [15] is that they do not facilitate any freedom for

optimizing desired attributes of the filter. This is because

they are obtained from the factorization of Lagrange half-

band polynomial possessing maximum possible zero

moments (ZM) [53]. Thus, one has no freedom to design an

optimal filter. But, in practice, we need freedom to set the

desired characteristics of the filter, and for this purpose, we

adjust few of ZMs. Suitable filter bank is obtained by

setting the characteristics such as stopband energy, energy-

compaction, smoothness and bandwidth-duration concen-

tration appropriately [49]. Often, an optimal filter is

obtained by minimizing either energy in the stopband or

the highest ripples in the stopband and passbands [49].

It is worth noting that Sharma et al. [47, 60] have used

wavelet-based features for ECG analysis. However, in

those work, they have not attempted to detect SAR using

the wavelet-based features. This is the first time; we use

optimal wavelet-based features for detection of SAR.

Further, in the previous work, Sharma et al. [47, 60] have

designed optimal biorthogonal wavelet filter banks con-

sidering joint duration-bandwidth concentration as an

optimality c-measure. However, the proposed work employ

optimum orthogonal filter banks which have been designed

considering stop band ripple energy as our designing cri-

terion. Further, to design, we use semi-definite program-

ming (SDP) for obtaining the best filters, whereas Sharma

et al. [47, 60] have used eigenvalue based and some other

convex optimization techniques to obtain optimal filters.

In the proposed study, we aim to get a low-pass filter

that has the least stopband ripple energy for the underlying

two-band orthogonal wavelet filter bank and to judge the

efficacy of the optimum filter in SAR detection. The con-

struction of filter bank has been transformed to a semi-

definite programming (SDP) optimization problem [48].

The solution to this SDP will provide us with the desired

filter bank. Also, the filter bank is designed so as to have

the required number of ZMs and with minimum phase [49].

The SDP gives us the coefficients of the filter in the time

domain directly, without implementing any parametriza-

tion technique [46].

5.1 Optimal filter bank design

The analysis part of the two-channel filter bank comprises a

scaling filter C(z) and wavelet filter ~CðzÞ, both followed by

a downsampler which down samples the output of the filter

by a factor of 2. And the synthesis filter bank contains a

scaling filter D(z) and a wavelet filter ~DðzÞ, each one pre-

ceded by upsampler of factor 2. The filters C(z) and D(z)

fulfill orthogonality conditions. The orthogonality condi-

tion can be related to the product filter QðzÞ ¼ CðzÞDðzÞ as
given below [51]:

QðzÞ þ Qð�zÞ ¼ 2 ð1Þ

Here Q(z) is the product filter and is defined as:

QðzÞ ¼ CðzÞDðzÞ ¼ CðzÞCðz�1Þ ð2Þ

The product filter’s the frequency response satisfies the

following non-negativity condition [15]:

QðejxÞ ¼ jCðejxÞj2 � 0 ð3Þ

For the analysis scaling filter C(z) to have Zth-order

regularity, the product filter should have 2Z ZMs. The ZMs

are zeros of the filter at z ¼ � 1 [45].

5.2 Proposed optimization technique

In further discussions, c(n) and d(n) represent the impulse

responses of respective analysis and synthesis scaling fil-

ters. To obtain optimal orthogonal wavelet filter bank, we

minimize the stopband energy of the analysis scaling filter

C(z). As the filter bank is orthogonal, minimization of

stopband energy of C(z) will also give us the synthesis

scaling filter D(z) with minimum stopband energy [15].

The stopband energy, Esp, of the filter C(z) for the given

stopband edge frequency xs is represented by:

Esp ¼
1

p

Z p

xs

jCðejxÞj2dx ð4Þ

where CðejxÞ is the frequency response of the analysis low-
pass filter.

We have transformed filter bank construction problem

into constrained optimization problem, wherein our

objective is to minimize the stopband energy the scaling

filter with the restriction of orthonormality and M-order

smoothness. The design problem has been converted to the

following optimization problem:
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minimizeðEspÞ ¼
1

p

Z p

xs

jCðejxÞj2dx ð5Þ

subject to

XN�1

n¼0

cðnÞcðn� 2kÞ ¼ dðkÞ; k ¼ 0; 1; . . .; ðN=2� 1Þ ð6Þ

XN�1

k¼0

ð�1ÞkklcðkÞ ¼ 0; l ¼ 0; 1; . . .; Z � 1 ð7Þ

where N is the length of the filter and Z denotes the number

of vanishing moments of the filter C(z).

Equation (5) presents the objective function, while

Eq. (6) represents double-shift orthogonality constraint and

Eq. (7) represents the Z-order regularity constraint. The

orthonormality constraints (6) being non-convex lead to a

non-convex optimization problem. To convert the non-

convex optimization problem into a convex problem, the

minimizing function and conditions have been reformu-

lated as functions of the variable Q(z).

The impulse response q(n) of the product filter Q(z) can

be related to the impulse response, c(n) of the analysis

scaling filter as qðnÞ ¼
P

k cðkÞcðk þ nÞ. As mentioned in

(3), QðejxÞ� 0, hence, the sequence q(n) must be an

autocorrelation sequence. In order to satisfy orthogonality

conditions, the product filter Q(z) of order 2N � 2 should

have the following form [34],

QðzÞ ¼ qð0Þ þ
XðN�1Þ

k¼0

qð2k þ 1Þðz�2k�1 þ z2kþ1Þ ð8Þ

Thus, the product filter Q(z) is a positive half-band

polynomial having 2Z zeros at z ¼ � 1.

The aforementioned non-convex constrained optimiza-

tion problem will become:

minimize
1

p

Z p

xs

jQðejxÞj2dx ð9Þ

subject to

q½2m� ¼ dðmÞ; m ¼ 0; 1; . . .; ðN=2� 1Þ ð10Þ

qð0Þ þ
XN�1

n¼1

2ð�1ÞnqðnÞ ¼ 0 ð11Þ

XN�1

k¼0

ð�1Þkk2mqðkÞ ¼ 0; m ¼ 0; 1; . . .; Z � 1 ð12Þ

QðejxÞ� 0; x 2 ½0; p� ð13Þ

The above-stated functions are linear on QðejxÞ. Equa-
tion (9) is a linear in q(n).

Inequality (13) represents (semi) infinite number of

inequality restrictions which are linear. The desired

optimized analysis low-pass filter C(z) can be obtained

through the spectral factorization of Q(z), which is the

optimal solution of the aforementioned optimization

problem (9)–(13).

It is worth noting that the condition (13) represents

infinite number of linear constraints, which may lead to the

possibility of getting an inexact sub-optimum solution.

Therefore, we formulate the design problem as a SDP using

positive real and bounded lemmas [17, 24]. This formula-

tion will transform the (semi) infinite linear inequalities

into a constraint that can be written into finite linear matrix

inequality form. In our study, we have used the Kalman–

Yakubovich–Popov (KYP) lemma for the SDP formulation

[17], according to which, Eq. (13) is valid if one has a

positive-symmetric definite matrix Q 2 RN�N such that

qðmÞ ¼
X
n

½Q�n;nþm; m ¼ 0; 1; 2; . . .;N � 1 ð14Þ

Using (8) and 9), we can express the objective function

as a affine function of the autocorrelation sequence q(n) as

follows:

Esp ¼
Z p

xs

qð0Þ þ 2
XðN�1Þ

k¼1

qðnÞ cosðxkÞ
" #

dx
p

¼ sqT ð15Þ

where, s is a N-length row-vector and given by:

s ¼
ðp� xsÞ

p
; for k ¼ 0

2 sinðkxsÞ
kp

; for 1� k�N � 1

8><
>:

and q ¼ ½qð0Þ; qð1Þ; qð2Þ; . . .; qðN � 1Þ�
The objective function in above equation is a linear

function of q(n). The orthogonality and regularity con-

straints can be formulated as finite convex constraints in

the variable q(n) in the optimization problem given below

minimize
P�0;q½k�

Esp ¼ sqT

subject to ð10Þ; ð11Þ; ð12Þ; ð14Þ
ð16Þ

The benefit of using Eq. (16) is that we will not have to

tackle the infinite constraints presented by Eq. (13).

As the optimization problem is convex, so for the pur-

pose of obtaining a optimal global solution, we can employ

interior point algorithm. To solve the proposed optimiza-

tion problem, we employ CVX toolbox developed by Grant

et al. [22]. The CVX software calls SDPT3 or SeDumi

[9, 49]. Next step after finding optimal product filter Q(z) is

to obtain the required analysis low-pass filter C(z) via

spectral factorization. Spectral factorization gives various

choices for selecting optimal filter. We chose the filter

(spectral factor), which has minimum phase. Thus, we have

obtained optimal orthogonal analysis low-pass filter C	ðzÞ
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and other optimal three filters can be derived from C	ðzÞ
[59].

5.3 Design illustrations

In the following section, we have presented two filter

design examples.

1. We chose a filter with length fourteen having single

vanishing moment and the cutoff frequency was set at

p=2. The minimal stop band energy achieved was

0.0369. The pole-zero plot for the optimal filter is

presented in Fig. 5, and the frequency responses are

shown in Figs. 6 and 7. Table 2 lists down the filter

coefficients. Scaling and wavelet functions, which are

generated through iterations of the cascade algorithm

[59, 70] are shown in Figs. 8 and 9, respectively.

2. Next, we design filter of length eighteen with five

vanishing moments. For this filter, the cutoff frequency

is p=2. The stop band energy for the optimal filter is

Esp ¼ 0:033. Figure 10 depicts pattern of poles and

zeros of the derived optimal filter. The frequency

responses are shown in Figs. 11 and 12. The coeffi-

cients for this filter are provided in Table 2. Scaling

and wavelet functions are shown in Figs. 13 and14,

respectively.

We have used above optimal filters in this study to obtain

SBs of ECG signals. Figure 3 shows the sample ECG

signals. The six decomposed SBs for the sample shockable

and non-shockable signals are shown in Figs. 15 and 16.

The SB are obtained using optimal filter of design exam-

ple-1.

6 Features extraction and statistical analysis

Having obtained six SBs of each ECG epoch, we extracted

fuzzy entropy (FE) and Renyi entropy (RenE) of each SB.

To evaluate the discrimination ability of an individual

feature, we have employed t test to rank all the extracted

features. We have also used Kruskal–Wallis test (KWT) to

calculate the p values corresponding to each feature.

6.1 Fuzzy entropy (FE)

The characteristic of signal used for determining the reg-

ularity of a time series is fuzzy entropy [51]. It is applied to

get precise output from imprecise inputs. Fuzzy sets [69]

are applied to determine the FE of a signal and can be

studied further in [14]. Acharya et al. [3] presented use of

entropy for the detection of epilepsy. In our work, FE of
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Fig. 5 Pole-zero plot for example 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (  rad/samples)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
ag

n
it

u
d

e 
in

 d
B

Fig. 6 Frequency response of designed filter in example 1. Dashed

line represents HPF and solid line represents LPF
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Fig. 7 Frequency response of designed filter in example 1. Dashed

line represents HPF and solid line represents LPF
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wavelet series of ECG signals were calculated and then

was averaged.

6.2 Renyi entropy (RE)

It is defined as the negative logarithm of summation of

energy [41]. RE is given by:

RenEi ¼ � log
X

j pðnÞ j2

where p(n) is the signal sequence.

Thus, we have commuted total 12 features (6 features

each for FE and RE corresponding to each of six SBs). The

computed features have been ranked using t test based on

the their t values.

7 Results

The results are presented in this section. We have tested

many supervised machine learning classifiers such as

K-nearest neighbors, linear discriminant, quadratic dis-

criminant, complex tree and SVM to separate features

corresponding to SAR and NSAR. Table 3 gives classifi-

cation accuracy obtained using various classifiers. It is to

be noted that first, we tested these classifiers using their

Table 2 Optimal filter coefficients for the designed filters

Index Example-1 Example-2

0 3.5882 �10�1 1.9116�10�1

1 6.9973�10�1 6.0827�10�1

2 5.2772�10�1 6.5990�10�1

3 3.5590�10�3 1.9376�10�1

4 � 2.4295�10�1 � 2.0737�10�1

5 � 4.3233�10�2 � 1.6979�10�1

6 1.4473�10�1 1.1036�10�1

7 3.6880�10�2 1.1542�10�1

8 � 9.9208�10�2 � 6.5557�10�2

9 � 2.2908�10�2 � 7.9149�10�2

10 7.4260�10�2 3.7763�10�2

11 4.2128�10�3 7.1062�10�2

12 � 5.6274�10�2 � 5.0459�10�2

13 2.8857�10�2 � 3.5978�10�2

14 – 4.4841�10�2

15 – � 7.5361�10�4

16 – � 1.3544�10�2

17 – 4.2567�10�3
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Fig. 8 Scaling plot for example 1. X and Y axes represent time and

amplitude, respectively
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amplitude respectively
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default values in Matlab Release-12. When default

parameters are chosen, we found the highest performance

with Gaussian SVM for kernel scale r ¼ 1 and box con-

straint BC ¼ 1. Then, we tuned the parameters of Gaussian

SVM to obtain the optimal classification accuracy using

sequential minimal optimization routine. We have varied

kernel scale in the range [.1 100] and box constraint in

range [1, 100]. We obtained the best results with Gaussian

SVM with r ¼ 1:2;BC ¼ 8. In order to provide a fair

comparison, we have tested the same model using standard

db-6 wavelet-based features employing the same method.

From Table 3, it is clear that our optimal wavelet filter-

based features perform better than db-6 wavelet-based

features. We can see from the table that the highest accu-

racy achievable through db-6 wavelet-based features is

95.2%, whereas our optimal wavelet filter bank features

attain maximum accuracy of 97.8%. During classification,

we classified the features using different kernels of SVM.

We used linear, quadratic, cubic and Gaussian kernels, and

achieved the respective Accs of 95.2%, 97.2%, 97.8% and

97.7% respectively. Thus, the SVM classifier with cubic

kernel function surpassed the performance of SVM clas-

sifier with other Kernel function. Table 4 shows the con-

fusion matrix corresponding to the cubic SVM that obtain

the highest classification accuracy. In the table, TP, TN,

FP, FN and PPV [5] denote true positive, true negative,

false positive, false negative and positive predictive value,

respectively. It can be seen from the confusion matrix that

the highest accuracy of 97.8%, the sensitivity of 93.42%

and specificity of 98.35% were obtained when classified

using a combination of RE and FE features. Taking RE and

FE features individually during the classification task also

yielded good performance with an accuracy of 97.3% and

97.5%, respectively. Figures 17, 18 and 19 show the ROC

plots for both the features(RE and FE) when taken sepa-

rately as well as jointly. From figures, it is clear that the

proposed method achieved area under ROC (AUC) of 0.99,

which is very close the perfect value 1. We have also
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Fig. 11 Frequency response of designed filter in example 2. Dashed

line represents HPF and solid line represents LPF
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Fig. 12 Frequency response of designed filter in example 2. Dashed

line represents HPF and solid line represents LPF
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Fig. 15 Decomposed subbands for shockable sample, d1–d5 represents the five detailed subbands, a4 represents the approximate subband
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Fig. 16 Decomposed subbands for non-shockable sample, d1–d5 represents the five detailed subbands, a4 represents the approximate subband
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calculated the F1-score, which is considered to be a better

classification performance indicator than accuracy and

AUC in many cases. Interestingly, our method has attained

F1-score of 0.99 which is close to the perfect value of 1.

Thus, the classification performance of the proposed

method is represented in terms of accuracy, AUC and F1-

Table 3 Comparison of

designed optimal wavelet-based

features and db-6 wavelet-based

features using different

classifier

Classifier ACC% using optimal

OWFB-based feature

ACC% using dB-6

wavelet-based features

Complex tree 97 95.1

Linear discriminant 91.2 86.6

Quadratic discriminant 90.9 81.1

Logistic regression 94.7 94.1

K nearest neighbors 97.6 94.7

SVM 97.8 95.2

Table 4 Overall classification

performance across ten folds
Feature TP TN FP FN Acc. (%) Sen. (%) Spec. (%) PPV (%)

RE 47,767 4846 1155 328 97.3 93.66 97.64 99.32

FE 47,794 4932 1069 301 97.5 94.25 97.81 99.37

FE?RE 47,729 5200 801 366 97.8 93.42 98.35 99.24

Fig. 17 ROC for FE alone

Fig. 18 ROC for RE alone

Fig. 19 ROC for FE and RE features taken together

Table 5 p values of the extracted entropy features

Subband FE RE

SB-1 0 0

SB-2 0 0

SB-3 1:6881� 10�05 0

SB-4 0 0

SB-5 0 0.0129

SB-6 0.0038 3:5353� 10�05
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score. Further, the p values are mentioned in Table 5. From

Table 5, we can see that p values of all the features are less

than the significant level 0.01. Tables 6 and 7 give the

mean, standard deviation and ranking of FE and RE fea-

tures corresponding to each of the six SBs to have an

estimation of classification capability of each feature

individually. We have plotted accuracy with respect to the

number of ranked features in Fig. 20.

8 Discussion

• From Table 4, it is clear that fuzzy entropy wavelet-

based features performed better than RE wavelet-based

in terms of Acc., Sen., Spec. and PPV. From Fig. 19, it

is also evident that FE wavelet-based features dis-

criminate NSAR and SAR better than RE wavelet-

based features, as the AUC of FE wavelet-based fea-

tures is higher than the RE wavelet-based features.

Combining both features in the classification process

improved the classification performance.

• From Table 8, we can see that various automated

systems have used different window lengths (WL)

(10 s, 8 s, 6 s, 5 s and 2 s) for processing ECG epochs.

For the implementation of fast real-time system, a short

window length is desirable because the smaller the WL,

the faster would be the system. It is clear that our

proposed system has used the shortest WL. It is to be

noted that in the recent work by Acharya et al. [2],

authors have also used the shortest window length of

2 s. However, the classification performance of the

proposed model by us is better than their model. It is

worth noting that despite the proposed model by us uses

the shortest WL of 2 s, it outperformed the other

models which used longer WL of duration[ 2 s. Thus

the proposed model is not only accurate but also faster

than other models listed in the Table 8.

• In Table 5, we can notice the p values of all 12 features

are less than the chosen significant level of .01; hence,

all features are statistically significant.

• From Table 6, we can observe that the mean values of

FE of SB-2, SB-3, SB-5 and SB-6 for NSAR are more

than the corresponding SAR. Similarly, the mean values

FE of SB-1 and SB-4 for SAR are more than the

corresponding NSAR. And the mean values for RE of

SB-1, SB-2 and SB-6 for NSAR are more than the

corresponding SAR. Also the mean values RE of SB-3,

SB-4 and SB-5 for SAR are more than the correspond-

ing NSAR.

• From Table 6, we can see that FE corresponding to the

SB-2 is the topmost ranked feature, while the SB-6 is

the least ranked feature. The ranking was done using

student’s t test.

• We have performed all the experiments using Matlab

software with a computer equipped with an Intel’s Xeon

3.5 GHz processor and 16 GB RAM. The model

completed whole training process in 39.53 s and the

prediction speed of the classifier was found to be 23,000

obs/s.

• We studied the reliability of the optimal wavelet-based

entropy features in order to advise an appropriate shock,

which decides the type of arrhythmia (shockable or

Table 6 Statistical results (mean ± standard deviation) and ranking

of FE

SBs FE

NSER SR Rank

SB-1 0.0463 ± 0.0135 0.0637 ± 0.0273 5

SB-2 0.0034 ± 0.0282 - 0.0705 ± 0.0326 1

SB-3 0.1226 ± 0.0586 0.1193 ± 0.0594 11

SB-4 0.1762 ± 0.05326 0.2208 ± 0.0526 4

SB-5 0.1387 ± 0.0360 0.1272 ± 0.0454 9

SB-6 0.1023 ± 0.0205 0.1013 ± 0.0376 12

Table 7 Statistical results (mean ± standard deviation) and ranking

of RE

SBs RE

NSER SR Rank

SB-1 - 10.9671 ± 0.5800 - 11.3664 ± 0.7235 6

SB-2 - 5.0837 ± 0.4273 - 5.4782 ± 0.7412 7

SB-3 - 6.5807 ± 0.7690 - 6.3507 ± 0.6304 8

SB-4 8.5641 ± 0.9956 - 7.1881 ± 0.9524 2

SB-5 - 9.7121 ± 0.7795 - 8.5527 ± 0.9786 3

SB-6 - 10.1636 ± 0.5610 - 10.3502 ± 1.0721 10
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Fig. 20 Plot of accuracy versus number of features
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non-shockable). The efficacy of SAR detection system

was evaluated by employing it in an automated external

defibrillator system.

• One of the advantages of the proposed system is that, it

does not require pre-processing on ECG signals unlike

the other methods [6, 7, 19, 26] which employ complex

pre-processing. Also, we chose ECG epochs of 2 s

without any preselection and our algorithm does not

need to detect R-peaks.

• In this study, we have used only 12 features to

characterize NSARs and SARs epochs of duration 2 s,

whereas Alonso-Atienza et al. [6] extracted 13 features

with epochs of length 8 s. Despite this, our system

classified NASRs and SARs better than the system by

Alonso-Atienza et al. [6]. Though Tripathy et al. [62]

computed only 9 features, they used a window length of

8 s to get their best results. Moreover, they used VMD

decomposition to obtain modes of ECG epochs. We

have used optimal orthogonal wavelet decomposition to

obtain wavelet SBs. The VMD-based mode decompo-

sition is computationally more expensive than wavelet-

based decomposition. Thus our system is more accu-

rate, computationally less expensive and faster than the

recent system by Tripathy et al. [62]. Further, it is to be

noted that Tripathy et al. [62] also computed RE

features for their VMD-based modes. However, the

intrinsic mode-based RE features could attain AUC of

0.644, whereas our wavelet-based RE features attain

AUC of 0.98. Li et al. [32] also used 9 features using

various window lengths, and obtained best results using

10 s WL as shown in Table 8. Using 2 s WL, their

model attained Acc of 95.2%, Sen of 95.1% and Spec of

95.1%. Thus, our model distinguishes NSARs and

SARs better than Li et al. [32]. Recently, Acharya et al.

[2] have introduced CNN-based system which does not

require the extraction of features using epochs of 2 s;

however, the proposed system by us performed signif-

icantly better than their system in terms of Acc, Sen and

Spec. It is to be noted that in CNN-based methods, one

need not to extract the features and takes a long time to

develop the model. Our system takes only 39.52 s for

the whole training process. Hence, the proposed system

Table 8 Comparison with

previous works using the same

database

Reference Methodology/WL Performance

Jekova [25] Five previously proposed methods were reviewed/10 s Sen: 94%

Spec: 91%

Jekova and Krasteva [27] Band-pass filtering/10 s Sen: 94.45%

Spec: 95.9%

Amann et al. [7] Twelve different time-delay methods/8 s Sen: 79%

Spec: 98.5%

Acc: 96.2%

Jekova [26] Discriminant analysis/10 s Sen: 94.1%

Spec: 93.8%

Fokkenrood et al. [19] Amplitude distribution analysis/6 s Sen: 97%

Spec: 98%

Acc: 98%

Alonso-Atienza et al. [6] Morphological, spectral and complexity features of ECG Sen: 92%

Support vector machine/8 s Spec: 97%

Li et al. [32] VF-filter leakage measure Sen: 96.2%

Auxiliary counts Spec: 96.2%

Support vector machine/5 s Acc: 96.3%

Tripathy et al. [62] Variational mode decomposition Sen: 96.54%

Renyi entropy and permutation entropy Spec: 97.97 %

Random forest classifier/8 s Acc: 97.23%

Acharya et al. [2] Convolution neural Sen: 95.32%

Network (CNN)/2 s Spec: 91.04%

Acc: 93.18%

In the presented work Features extracted

FE/2s Sen: 93.42%

RE/2 s Spe: 98.35%

Classification method Acc: 97.8%

SVM F1-score: 0.99
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can be considered more accurate and faster than the

system by Acharya et al. [2].

• The assessment of a model using only Acc may be

sometimes misleading. So, F1-score and AUC are

considered to be better measures to valuate the perfor-

mance of an algorithm. It is to be noted that our model not

only performed well in terms of Acc, Sen and Spec but it

also yielded high F1-score of 0.99 and AUC of 0.99.

• The VF and VT with heart rate [ 180 beats/min are

considered as very serious cardiac disorders that can cause

severe brain injury as well as death if the patient is not

given defibrillation shock immediately using AED. Both

VF and VT have high heart rates; hence, fast and accurate

detection algorithm is essential for the AED system. Since

the model achieved the specificity of 98.35% and F1-

score of 0.99, which is the highest among all existing

state-of-the-art methods, the proposed model reduces the

chances of false defibrillations. Also, our proposed

algorithm presents high classification performance in

terms of F1-score and AUC. Hence, it can be integrated

in AED for emergency resuscitation of SCD and to save

lives. The accurate model reduces the possibility of the

damage caused to the heart due to the misclassification of

either NSAR or SAR.

• In the literature, to analyze physiological signals,

including ECG wavelet-based methods have been used

[47]. However, most of these methods have employed

traditional standard Daubechies wavelet (db)-based

features [15]. The db wavelet filters, however, are not

optimal wavelet in any sense. In this study, we have

used a new class of optimal orthogonal wavelet filter

banks for analyzing ECG signals; this is the novelty of

the proposed study. Further, for SAR detection, state-

of-the-art methods employ various signal processing;

machine-learning- and deep-learning-based methods

(refer Table 8). However, wavelet-based features have

yet not been explored for SAR detection to the best of

our knowledge. We are the one those have used very

first-time optimal wavelet-based features for the detec-

tion of the shockable ventricular arrhythmia. Further-

more, most of the existing methods for SAR detections

employ ECG epochs of the duration of either 10 s or

8 s; in the proposed study by us, we have used epochs

of duration 2 s only despite it, our system has surpassed

others in terms of classification performance.

9 Conclusion

We have evaluated the performance of optimal wavelet-based

entropy features in the proposed method for automated dis-

crimination of NSAR and SAR of ECG. The performance of

our developed system surpasses existing state-of-the-art

detection systems in terms of classification performance,

window length and speed. In the presented work, we

employed an optimal two-channel frequency selective

orthogonal filter to obtain sub-bands of ECG signals. The

proposed system exhibits high potential in detecting shock-

able rhythms using optimal wavelet filter bank-based entropy

features. FE and RE features of the data were calculated and

were fed into the SVM classifier. We tested our method on

ECG signals consisting of shockable and non-shockable

heartbeats. The overall accuracy of 97.8% sensitivity and

specificity of 93.42% and 98.35% were achieved, respec-

tively. Hence, the proposed automated system establishes the

suitability of wavelet-based features in the diagnosis of

shockable ventricular arrhythmia and may help the doctors in

deciding if a shock treatment need to be delivered urgently.

Further, the proposed system employs short-duration ECG

epochs of 2 s, which reduces the computational load of

extricating features and makes the system fast that can also be

considered as a candidate for real-time detection of SAR.

Moreover, in this study, we have used three databases com-

prising total 54,096 ECG segments which make the database

the largest freely available data set used for SAR. The limi-

tation of the proposed study is that we have used a limited

number of subjects in NSAR and SAR classes. In the future,

we intend to use more subjects in both classes. The perfor-

mance of our method may be examined in the presence of

severe noise as a future study. Recently, Acharya et al. [2]

have employed CNN-based deep learning (DL) method to

detect ECG-SAR. It would be interesting to evaluate the

performance of some new DL techniques including LSTM

[1, 4, 5, 38–40, 65–68]. It would be interesting to use the

proposed wavelet as a wavelet sequence in a deep neural

network in the detection of ECG-SAR. The new optimal filter

bank-based features may be examined in the automated

detection of some other cardiac disorders. Further, in this

study, we have used only two entropy-based features, using

the same optimal filter bank. In the future, we can extract

some other nonlinear features such as Hurt exponent, Lya-

punov exponent, fractal and correlation dimensions to

improve the performance of these new wavelet-based features

in SAR detection. Recently, Sharma et al. [43, 47, 60]

designed novel time-frequency optimized orthogonal and

biorthogonal wavelet filter banks. We can explore to observe

the performance of the features obtained using these new filter

banks for this study.
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