
DEEP LEARNING FOR MUSIC AND AUDIO

One deep music representation to rule them all? A comparative
analysis of different representation learning strategies

Jaehun Kim1
• Julián Urbano1 • Cynthia C. S. Liem1

• Alan Hanjalic1

Received: 7 December 2017 / Accepted: 12 February 2019 / Published online: 4 March 2019
� The Author(s) 2019

Abstract
Inspired by the success of deploying deep learning in the fields of Computer Vision and Natural Language Processing, this

learning paradigm has also found its way into the field of Music Information Retrieval. In order to benefit from deep

learning in an effective, but also efficient manner, deep transfer learning has become a common approach. In this approach,

it is possible to reuse the output of a pre-trained neural network as the basis for a new learning task. The underlying

hypothesis is that if the initial and new learning tasks show commonalities and are applied to the same type of input data

(e.g., music audio), the generated deep representation of the data is also informative for the new task. Since, however, most

of the networks used to generate deep representations are trained using a single initial learning source, their representation

is unlikely to be informative for all possible future tasks. In this paper, we present the results of our investigation of what

are the most important factors to generate deep representations for the data and learning tasks in the music domain. We

conducted this investigation via an extensive empirical study that involves multiple learning sources, as well as multiple

deep learning architectures with varying levels of information sharing between sources, in order to learn music repre-

sentations. We then validate these representations considering multiple target datasets for evaluation. The results of our

experiments yield several insights into how to approach the design of methods for learning widely deployable deep data

representations in the music domain.

Keywords Representation learning � Music Information Retrieval � Multitask learning

1 Introduction

In the Music Information Retrieval (MIR) field, many

research problems of interest involve the automatic

description of properties of musical signals, employing

concepts that are understood by humans. For this, tasks are

derived that can be solved by automated systems. In such

cases, algorithmic processes are employed to map raw

music audio information to humanly understood descrip-

tors (e.g., genre labels or descriptive tags). To achieve this,

historically, the raw audio would first be transformed into a

representation based on hand-crafted features, which are

engineered by humans to reflect dedicated semantic signal

properties. The feature representation would then serve as

input to various statistical or machine learning (ML)

approaches [1].

The framing as described above can generally be applied

to many applied ML problems: complex real-world prob-

lems are abstracted into a relatively simpler form, by

establishing tasks that can be computationally addressed by

automatic systems. In many cases, the task involves mak-

ing a prediction based on a certain observation. For this,

modern ML methodologies can be employed that auto-

matically can infer the logic for the prediction directly

from (a numeric representation of) the given data, by

optimizing an objective function defined for the given task.

However, music is a multimodal phenomenon that can

be described in many parallel ways, ranging from objective

descriptors to subjective preference. As a consequence, in

many cases, while music-related tasks are well understood

by humans, it often is hard to pinpoint and describe where

& Jaehun Kim

J.H.Kim@tudelft.nl

1 Multimedia Computing Group, Department of Intelligent

Systems, Faculty of Electrical Engineering, Mathematics and

Computer Science, Delft University of Technology, Delft,

Netherlands

123

Neural Computing and Applications (2020) 32:1067–1093
https://doi.org/10.1007/s00521-019-04076-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-5744-9034
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04076-1&domain=pdf
https://doi.org/10.1007/s00521-019-04076-1

the truly ‘relevant’ information is in the music data used for

the tasks, and how this properly can be translated into

numeric representations that should be used for prediction.

While research into such proper translations can be con-

ducted per individual task, it is likely that informative

factors in music data will be shared across tasks. As a

consequence, when seeking to identify informative factors

that are not explicitly restricted to a single task, multitask

learning (MTL) is a promising strategy. In MTL, a single

learning framework hosts multiple tasks at once, allowing

for models to perform better by sharing commonalities

between involved tasks [2]. MTL has been successfully

used in a range of applied ML works [3–10], also including

the music domain [11, 12].

Following successes in the fields of Computer Vision

(CV) and Natural Language Processing (NLP), deep

learning approaches have recently also gained increasing

interest in the MIR field, in which case deep representa-

tions of music audio data are directly learned from the data,

rather than being hand-crafted. Many works employing

such approaches reported considerable performance

improvements in various music analysis, indexing and

classification tasks [13–20].

In many deep learning applications, rather than training

a complete network from scratch, pre-trained networks are

commonly used to generate deep representations, which

can be either directly adopted or further adapted for the

current task at hand. In CV and NLP, (parts of) certain pre-

trained networks [21–24] have now been adopted and

adapted in a very large number of works. These ‘standard’

deep representations have typically been obtained by

training a network for a single learning task, such as visual

object recognition, employing large amounts of training

data. The hypothesis on why these representations are

effective in a broader spectrum of tasks than they originally

were trained for, is that deep transfer learning (DTL) is

happening: information initially picked up by the network

is beneficial also for new learning tasks performed on the

same type of raw input data. Clearly, the validity of this

hypothesis is linked to the extent to which the new task can

rely on similar data characteristics as the task on which the

pre-trained network was originally trained.

Although a number of works deployed DTL for various

learning tasks in the music domain [25–28], to our

knowledge, however, transfer learning and the employment

of pre-trained networks are not as standard in the MIR

domain as in the CV domain. Again, this may be due to the

broad and partially subjective range and nature of possible

music descriptions. Following the considerations above, it

may then be useful to combine deep transfer learning with

multitask learning.

Indeed, in order to increase robustness to a larger scope

of new learning tasks and datasets, the concept of MTL

also has been applied in training deep networks for repre-

sentation learning, both in the music domain [11, 12] and in

general [3, p. 2]. As the model learns several tasks and

datasets in parallel, it may pick up commonalities among

them. As a consequence, the expectation is that a network

learned with MTL will yield robust performance across

different tasks, by transferring shared knowledge [2, 3]. A

simple illustration of the conceptual difference between

traditional DTL and deep transfer learning based on MTL

(further referred to as multitask based deep transfer

learning (MTDTL)) is shown in Fig. 1.

The mission of this paper is to investigate the effect of

conditions around the setup of MTDTL, which are

important to yield effective deep music representations.

Here, we understand an ‘effective’ representation to be a

representation that is suitable for a wide range of new tasks

and datasets. Ultimately, we aim for providing a method-

ological framework to systematically obtain and evaluate

such transferable representations. We pursue this mission

by exploring the effectiveness of MTDTL and traditional

DTL, as well as concatenations of multiple deep repre-

sentations, obtained by networks that were independently

trained on separate single learning tasks. We consider these

representations for multiple choices of learning tasks and

considering multiple target datasets.

Our work will address the following research questions:

• RQ1: Given a set of learning sources that can be used

to train a network, what is the influence of the number

and type of the sources on the effectiveness of the

learned deep representation?

• RQ2: How do various degrees of information sharing in

the deep architecture affect the effectiveness of a

learned deep representation?

By answering the RQ1, we arrive at an understanding of

important factors regarding the composition of a set of

learning tasks and datasets (which in the remainder of this

work will be denoted as learning sources) to achieve an

effective deep music representation, specifically on the

number and nature of learning sources. The answer to RQ2

provides insight into how to choose the optimal multitask

network architecture under MTDTL context. For example,

in MTL, multiple sources are considered under a joint

learning scheme that partially shares inferences obtained

from different learning sources in the learning pipeline. In

MTL applications using deep neural networks, this means

that certain layers will be shared between all sources, while

at other stages, the architecture will ‘branch’ out into

source-specific layers [2, 5–8, 12, 29]. However, an in-

vestigation is still needed on where in the layered archi-

tecture branching should ideally happen—if a branching

strategy would turn out beneficial in the first place.

1068 Neural Computing and Applications (2020) 32:1067–1093

123

To reach the aforementioned answers, it is necessary to

conduct a systematic assessment to examine relevant fac-

tors. For RQ1, we investigate different numbers and

combinations of learning sources. For RQ2, we study

different architectural strategies. However, we wish to

ultimately investigate the effectiveness of the representa-

tion with respect to new, target learning tasks and datasets

(which in the remainder of this paper will be denoted by

target datasets). While this may cause a combinatorial

explosion with respect to possible experimental configu-

rations, we will make strategic choices in the design and

evaluation procedure of the various representation learning

strategies.

The scientific contribution of this work can be summa-

rized as follows:

• We provide insight into the effectiveness of various

deep representation learning strategies under the mul-

titask learning context.

• We offer in-depth insight into ways to evaluate desired

properties of a deep representation learning procedure.

• We propose and release several pre-trained music

representation networks, based on different learning

strategies for multiple semantic learning sources.

The rest of this work is presented as follows: a formal-

ization of this problem, as well as the global outline of how

learning will be performed based on different learning

tasks from different sources, will be presented in Sect. 2.

Detailed specifications of the deep architectures we con-

sidered for the learning procedure will be discussed in

Sect. 3. Our strategy to evaluate the effectiveness of dif-

ferent representation network variants by employing vari-

ous target datasets will be the focus of Sect. 4.

Experimental results will be discussed in Sect. 5, after

which general conclusions will be presented in Sect. 6.

2 Framework for deep representation
learning

In this section, we formally define the deep representation

learning problem. As Fig. 2 illustrates, any domain-specific

MTDTL problem can be abstracted into a formal task,

which is instantiated by a specific dataset with specific

observations and labels. Multiple tasks and datasets are

involved to emphasize different aspects of the input data,

such that the learned representation is more adaptable to

different future tasks. The learning part of this scheme can

be understood as the MTL phase, which is introduced in

Sect. 2.1. Subsequently in Sect. 2.2, we discuss learning

sources involved in this work, which consist of various

tasks and datasets to allow investigating their effects on the

transfer learning. Further, we introduce the label prepro-

cessing procedure that is applied in this work in Sect. 2.3,

ensuring that the learning sources are more regularized,

such that their comparative analysis is clearer.

Task 1 Network

Representation Learning Transfer Learning

Task 1

Network

Task A
Task 2

Task M

...

Learning Task(s) Unseen Task(s)

Task B

Task A

Task B

Performance

Deep
Representation

Deep
Representation

DTL

MTDTL

Fig. 1 Simplified illustration of the conceptual difference between

traditional deep transfer learning (DTL) based on a single learning

task (above) and multitask based deep transfer learning (MTDTL)

(below). The same color used for a learning and an target task

indicates that the tasks have commonalities, which implies that the

learned representation is likely to be informative for the target task.

At the same time, this representation may not be that informative to

another future task, leading to a low transfer learning performance.

The hypothesis behind MTDTL is that relying on more learning tasks

increases robustness of the learned representation and its usability for

a broader set of target tasks (color figure online)

Neural Computing and Applications (2020) 32:1067–1093 1069

123

2.1 Problem definition

A machine learning problem, focused on solving a specific

task t, can be formulated as a minimization problem, in

which a model function ft must be learned that minimizes a

loss function L for given dataset Dt ¼ f ðxðiÞt ; y
ðiÞ
t Þ j

i 2 f1; . . .; Ig g, comparing the model’s predictions given

by the input xt and actual task-specific learning labels yt.

This can be formulated using the following expression:

ĥ ¼ argmin EDt
Lðyt; ftðxt; hÞÞ ð1Þ

where xt 2 Rd is, traditionally, a hand-crafted d-dimen-

sional feature vector and h is a set of model parameters of f.

When deep learning is employed, the model function f

denotes a learnable network. Typically, the network model

f is learned in an end-to-end fashion, from raw data at the

input to the learning label. In the speech and music field,

however, using true end-to-end learning is still not a

common practice. Instead, raw data is typically trans-

formed first, before serving as network input. More

specifically, in the music domain, common input to func-

tion f would be X 2 Rc�n�b, replacing the originally hand-

crafted feature vector x 2 Rd from (1) by a time-frequency

representation of the observed music data, usually obtained

through the short-time Fourier transform (STFT), with

potential additional filter bank applications (e.g., mel-filter

bank). The dimensions c, n, b indicate channels of the

audio signal, time steps, and frequency bins, respectively.

Problem

...Task TA

Transfer

Representation Learning Evaluation

Model Model

Task TB ...Task EA Task EB

Data EB2Data EB1Data EA1

...
Data TA Data TA2 Data TB1 Data EA1 Data EB1 Data EB2

...

...

...
Data TA1’ Data TA2’ Data TB1’ ’ ’ ’

tm

(Xt, yt)

(Xt, zt)

ft(Xt)

(a) Multi-Task Transfer Learning in General Problem Domain

Representation Learning Evaluation

Music Information Retrieval

Auto-Tagging

MSDCDR

...

...
Ext. BallroomGTZAN Last.FM

...

cdr_tag
...

Genre Class. Recommendation ...

Transfer
Model Model

GTZAN
...

Artist Class.

artist Ext. Ballroom Last.FM

tm

(Xt, yt)

(Xt, zt)

ft(Xt)

(b) Multi-Task Transfer Learning in Music Information Retrieval Domain

Fig. 2 Schematic overview of

what this work investigates. The

upper scheme illustrates a

general problem solving

framework in which multitask

transfer learning is employed.

The tasks t 2 ft0; t1; . . .; tMg are

derived from a certain problem

domain, which is instantiated by

datasets, that often are

represented as sample pairs of

observations and corresponding

labels ðXt; ytÞ. Sometimes, the

original dataset is processed

further into simpler

representation forms ðXt; ztÞ, to
filter out undesirable

information and noise. Once a

model or system ftðXtÞ has
learned the necessary mappings

within the learning sources, this

knowledge can be transferred to

another set of target datasets,

leveraging commonalities

already obtained by the pre-

training. Below the general

framework, we show a concrete

example, in which the broad

MIR problem domain is

abstracted into various sub-

problems with corresponding

tasks and datasets

1070 Neural Computing and Applications (2020) 32:1067–1093

123

If such a network still is trained for a specific single

machine learning task t, we can now reformulate (1) as

follows:

ĥ ¼ argmin EDt
Lðyt; ftðXt; hÞÞ: ð2Þ

In MTL, in the process of learning the network model f,

different tasks will need to be solved in parallel. In the case

of deep neural networks, this is usually realized by having

a network in which lower layers are shared for all tasks, but

upper layers are task-specific. Given m different tasks t,

each having the learning label yt, we can formulate the

learning objective of the neural network in MTL scenario

as follows:

ĥ
s
; ĥ

� ¼ argmin Et2T EDt
Lðyt; ftðXt; h

s; htÞÞ ð3Þ

Here, T ¼ ft1; t2; . . .; tmg is a given set of tasks to be

learned and h� ¼ fh1; h2; . . .; hmg indicates a set of model

parameters ht with respect to each task. Since the deep

architecture initially shares lower layers and branches out

to task-specific upper layers, the parameters of shared

layers and task-specific layers are referred to separately as

hs and ht, respectively. Updates for all parameters can be

achieved through standard back-propagation. Further spe-

cifics on network architectures and training configurations

will be given in Sect. 3.

Given the formalizations above, the first step in our

framework is to select a suitable set T of learning tasks.

These tasks can be seen as multiple concurrent descriptions

or transformations of the same input fragment of musical

audio: each will reflect certain semantic aspects of the

music. However, unlike the approach in a typical MTL

scheme, solving multiple specific learning tasks is actually

not our main goal; instead, we wish to learn an effective

representation that captures as many semantically impor-

tant factors in the low-level music representation as pos-

sible. Thus, rather than using learning labels yt, our

representation learning process will employ reduced

learning labels zt, which capture a reduced set of semantic

factors from yt. We then can reformulate (3) as follows:

ĥ
s
; ĥ

� ¼ argmin Et2T EDt
Lðzt; ftðXt; h

s; htÞÞ ð4Þ

where zt 2 Rk is a k-dimensional vector that represents

a reduced learning label for a specific task t. Each zt will be

obtained through task-specific factor extraction methods, as

described in Sect. 2.3.

2.2 Learning sources

In MTDTL context, a training dataset can be seen as the

‘source’ to learn the representation, which will be further

transferred to the future ‘target’ dataset. Different learning

sources of different nature can be imagined that can be

globally categorized as Algorithm or Annotation. As for the

Algorithm category, by employing traditional feature

extraction or representation transformation algorithms, we

will be able to automatically extract semantically inter-

esting aspects from input data. As for the Annotation cat-

egory, these include different types of label annotations of

the input data by humans.

The dataset used as a resource for our learning experi-

ments is the Million Song Dataset (MSD) [30]. In its

original form, it contains metadata and precomputed fea-

tures for a million songs, with several associated data

resources, e.g., considering Last.fm social tags and lis-

tening profiles from the Echo Nest. While the MSD

does not distribute audio due to copyright reasons, through

the API of the 7digital service, 30-s audio previews

can be obtained for the songs in the dataset. These 30-s

previews will form the source for our raw audio input.

Using the MSD data, we consider several subcategories

of learning sources within the Algorithm and Annotation

categories; below, we give an overview of these, and

specify what information we considered exactly for the

learning labels in our work.

2.2.1 Algorithm

• Self. The music track is the learning source itself; in

other words, intrinsic information in the input music

track should be captured through a learning procedure,

without employing further data. Various unsupervised

or auto-regressive learning strategies can be employed

under this category, with variants of autoencoders,

including the Stacked Autoencoder [31, 32], Restricted

Boltzmann Machines (RBM) [33], Deep Belief Net-

works (DBN) [34] and Generative Adversarial Net-

works (GAN) [35]. As another example within this

category, variants of the Siamese networks for simi-

larity learning can be considered [36–38].

In our case, we will employ the Siamese architecture

to learn a metric that measures whether two input music

clips belong to the same track or two different tracks.

This can be formulated as follows:

ĥ
self

; ĥ
s ¼ argmin EXl;Xr �Dself

Lðyself ; fself ðXl;Xr; h
self ; hsÞÞ

ð5Þ

yself ¼
1; if Xl andXr sampled from same track

0 otherwise

�

ð6Þ

where Xl and Xr are a pair of randomly sampled short

music snippets (taken from the 30-s MSD audio pre-

views) and fself is a network for learning a metric

between given input representations in terms of the

criteria imposed by yself . It is composed of one or more

Neural Computing and Applications (2020) 32:1067–1093 1071

123

fully connected layers and one output layer with soft-

max activation. A global outline illustration of our

chosen architecture is given in Fig. 3. Further specifi-

cations of the representation network and sampling

strategies will be given in Sect. 3.

• Feature. Many algorithms exist already for extracting

features out of musical audio, or for transforming

musical audio representations. By running such algo-

rithms on musical audio, learning labels are automat-

ically computed, without the need for soliciting human

annotations. Algorithmically computed outcomes will

likely not be perfect and include noise or errors. At the

same time, we consider them as a relatively efficient

way to extract semantically relevant and more struc-

tured information out of a raw input signal.

In our case, under this category, we use beat per

minute (BPM) information, released as part of the

MSD’s precomputed features. The BPM values were

computed by an estimation algorithm, as part of the

Echo Nest API.

2.2.2 Annotation

• Metadata. Typically, metadata will come ‘for free’ with

music audio, specifying side information, such as a

release year, the song title, the name of the artist, the

corresponding album name, and the corresponding

album cover image. Considering that this information

describes categorization facets of the musical audio,

metadata can be a useful information source to learn a

music representation. In our experiments, we use

release year information, which is readily provided as

metadata with each song in the MSD.

• Crowd. Through interaction with music streaming or

scrobbling services, large numbers of users, also

designated as the crowd, left explicit or implicit

information regarding their perspectives on musical

content. For example, they may have created social

tags, ratings, or social media mentionings of songs.

With many services offering API access to these types

of descriptors, crowd data, therefore, offers scalable,

spontaneous and diverse (albeit noisy) human perspec-

tives on music signals.

In our experiments, we use social tags from

Last.fm1 and user listening profiles from the Echo

Nest.

• Professional. As mentioned in [1], annotation of music

tracks is a complicated and time-consuming process:

annotation criteria frequently are subjective, and con-

siderable domain knowledge and annotation experience

may be required before accurate and consistent anno-

tations can be made. Professional experts in catego-

rization have this experience, and thus are capable of

indicating clean and systematic information about

musical content. It is not trivial to get such professional

annotations at scale; however, these types of annota-

tions may be available in existing professional libraries.

In our case, we use professional annotations from the

Centrale Discotheek Rotterdam (CDR), the largest

music library in The Netherlands, holding all music

ever released in the country in physical and digital form

in its collection. The CDR collection can be digitally

accessed through the online Muziekweb2 platform. For

each musical album in the CDR collection, genre

annotations were made by a professional annotator,

according to a fixed vocabulary of 367 hierarchical

music genres.

As another professional-level ‘description,’ we

adopted lyrics information per each track, which is

provided in Bag-of-Words format with the MSD. To

filter out trivial terms such as stop-words, we applied

TF-IDF [39].

• Combination. Finally, learning labels can be derived

from combinations of the above categories. In our

experiment, we used a combination of artist informa-

tion and social tags, by making a bag of tags at the artist

level as a learning label.

Not all songs in the MSD actually include learning labels

from all the sources mentioned above. Clearly, it is another

advantage of using MTL that one can use such unbalanced

datasets in a single learning procedure, to maximize the

coverage of the dataset. However, on the other hand, if one

uses an unbalanced number of samples across different

Representation
Network

Representation
Network

Sampling Sampling

FCSoftmax (2)

FC (128)

Preprocessing Preprocessing

Fig. 3 Siamese architecture adopted for the self learning task. For

further details of the representation network, see Sect. 3.1 and Fig. 4

1 https://labrosa.ee.columbia.edu/millionsong/lastfm.
2 https://www.muziekweb.nl/.

1072 Neural Computing and Applications (2020) 32:1067–1093

123

https://labrosa.ee.columbia.edu/millionsong/lastfm
https://www.muziekweb.nl/

learning sources, it is not trivial to compare the effect of

individual learning sources. We, therefore, choose to work

with a subset of the dataset, in which equal numbers of

samples across learning sources can be used. As a conse-

quence, we managed to collect 46,490 clips of tracks with

corresponding learning source labels. A 41,841/4,649 split

was made for training and validation for all sources from

both MSD and CDR. Since we mainly focus on transfer

learning, we used the validation set mostly for monitoring

the training, to keep the network from overfitting.

2.3 Latent factor preprocessing

Most learning sources are noisy. For instance, social tags

include tags for personal playlist management, long sen-

tences, or simply typos, which do not actually show rele-

vant nuances in describing the music signal. The

algorithmically extracted BPM information also is imper-

fect, and likely contains octave errors, in which BPM is

under- or overestimated by a factor of 2. To deal with this

noise, several previous works using the MSD [16, 26]

applied a frequency-based filtering strategy along with top-

down domain knowledge. However, this shrinks the

available sample size. As an alternative way to handle

noisiness, several other previous works [11, 17, 27, 40–42]

apply latent factor extraction using various low-rank

approximation models to preprocess the label information.

We also choose to do this in our experiments.

A full overview of chosen learning sources, their cate-

gory, origin dataset, dimensionality, and preprocessing

strategies is shown in Table 1. In most cases, we apply

probabilistic latent semantic analysis (pLSA), which

extracts latent factors as a multinomial distribution of latent

topics [43]. Table 2 illustrates several examples of strong

social tags within extracted latent topics.

For situations in which learning labels are a scalar, non-

binary value (BPM and release year), we applied a Gaus-

sian mixture model (GMM) to transform each value into a

categorical distribution of Gaussian components. In the

case of the Self category, as it basically is a binary mem-

bership test, no factor extraction was needed in this case.

After preprocessing, learning source labels yt are now

expressed in the form of probabilistic distributions zt. Then,

the learning of a deep representation can take place by

minimizing the Kullback–Leibler (KL) divergence

between model inferences ftðXÞ and label factor distribu-

tions zt.

Along with the noise reduction, another benefit from

such preprocessing is the regularization of the scale of the

objective function between different tasks involved in the

learning, when the resulting factors have the same size.

This regularity between the objective functions is particu-

larly helpful for comparing different tasks and datasets. For

this purpose, we used a fixed single value k ¼ 50 for the

number of factors (pLSA) and the number of Gaussians

(GMM). In the remainder of this paper, the datasets and

tasks processed in the above manner will be denoted by

learning sources for coherent presentation and usage of the

terminology.

3 Representation network architectures

In this section, we present the detailed specification of the

deep representation neural network architecture we

exploited in this work. We will discuss the base architec-

ture of the network and further discuss the shared archi-

tecture with respect to different fusion strategies that one

can take in the MTDTL context. Also, we introduce details

on the preprocessing related to the input data served into

networks.

3.1 Base architecture

As the deep base architecture for feature representation

learning, we choose a convolutional neural network (CNN)

architecture inspired by [21], as described in Fig. 4 and

Table 3.

CNN is one of the most popular architectures in many

music-related machine learning tasks [16, 17, 20, 25,

44–55]. Many of these works adopt an architecture having

cascading blocks of 2-dimensional filters and max-pooling,

derived from well-known works in image recognition

[21, 56]. Although variants of CNN using 1-dimensional

filters also were suggested by [12, 57–59] to learn features

directly from a raw audio signal in an end-to-end manner,

not many works managed to use them on music classifi-

cation tasks successfully [60].

The main difference between the base architecture and

[21] is the use of global average pooling (GAP) and the

Batch Normalization (BN) layers. BN is applied to accel-

erate the training and stabilize the internal covariate shift

for every convolution layer and the fc-feature layer

[61]. Also, global spatial pooling is adopted as the last

pooling layer of the cascading convolution blocks, which is

known to effectively summarize the spatial dimensions

both in the image [22] and music domain [20]. We also

applied the approach to ensure the fc-feature layer not

to have a huge number of parameters.

We applied the rectified linear unit (ReLU) [62] to all

convolution layers and the fc-feature layer. For the

fc-output layer, softmax activation is used. For each

convolution layer, we applied zero-padding such that the

input and the output have the same spatial shape. As for the

regularization, we choose to apply dropout [63] on the fc-

Neural Computing and Applications (2020) 32:1067–1093 1073

123

feature layer. We added L2 regularization across all the

parameters with the same weight k ¼ 10�6.

3.1.1 Audio preprocessing

We aim to learn a music representation from as-raw-as-

possible input data to fully leverage the capability of the

neural network. For this purpose, we use the dB-scale mel-

scale magnitude spectrum of an input audio fragment,

extracted by applying 128-band mel-filter banks on the

short-time Fourier transform (STFT). mel-spectrograms

have generally been a popular input representation choice

for CNN applied in music-related tasks

[16, 17, 20, 26, 41, 64]; besides, it also was reported

recently that their frequency-domain summarization, based

on psycho-acoustics, is efficient and not easily learnable

through data-driven approaches [65, 66]. We choose a

1024-sample window size and 256-sample hop size,

translating to about 46 ms and 11.6 ms, respectively, for a

sampling rate of 22 kHz. We also applied standardization

to each frequency band of the mel spectrum, making use of

the mean and variance of all individual mel spectra in the

training set.

3.1.2 Sampling

During the learning process, in each iteration, a random

batch of songs is selected. Audio corresponding to these

songs originally is 30 s in length; for computational effi-

ciency, we randomly crop 2.5 s out of each song each time.

Keeping stereo channels of the audio, the size of a single

input tensor X� we used for the experiment ended up with

2� 216� 128, where the first dimension indicates

the number of channels, and following dimensions mean

time steps and mel-bins, respectively. Along with the

computational efficiency, a number of previous works in

MIR field reported that using a small chunk of the input not

only inflates the dataset but also shows good performance

on the high-level tasks such as music auto-tagging

[20, 57, 60]. For the self case, we generate batches with

equal numbers of songs for both membership categories in

yself .

Sampling

Preprocessing

Representation
Network

FCSoftmax (50)FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

MaxPool1

Conv1 (16)

Conv62 (256)

Fig. 4 Default CNN architecture for supervised single-source repre-

sentation learning. Details of the representation network are presented

at the left of the global architecture diagram. The numbers inside the

parentheses indicate either the number of filters or the number of units

with respect to the type of layer

Table 2 Examples of latent

topics extracted with pLSA

from MSD social tags

Topic Strongest social tags

tag1 indie rock, indie, british, Scottish

tag2 pop, pop rock, dance, male vocalists

tag3 soul, rnb, funk, Neo-Soul

tag4 Melodic Death Metal, black metal, doom metal, Gothic Metal

tag5 fun, catchy, happy, Favorite

Table 1 Properties of learning

sources
Identifier Category Data Dimensionality Preprocessing

self Algorithm Self MSD—Track 1

bpm Feature MSD—BPM 1 GMM

year Annotation Metadata MSD—Year 1 GMM

tag Crowd MSD—Tag 174,156 pLSA

taste Crowd MSD—Taste 949,813 pLSA

cdr_tag Professional CDR—Tag 367 pLSA

lyrics Professional MSD—Lyrics 5000 pLSA, TF-IDF

artist Combination MSD—Artist and Tag 522,366 pLSA

1074 Neural Computing and Applications (2020) 32:1067–1093

123

3.2 Multi-source architectures with various
degrees of shared information

When learning a music representation based on various

available learning sources, different strategies can be taken

regarding the choice of architecture. We will investigate

the following setups:

• As a base case, a Single-Source Representation (SS-R)

can be learned for a single source only. As mentioned

earlier, this would be the typical strategy leading to pre-

trained networks, that later would be used in transfer

learning. In our case, our base architecture from

Sect. 3.1 and Fig. 4 will be used, for which the layers

in the representation network also are illustrated in

Fig. 5a. Out of the fc-feature layer, a d-dimen-

sional representation is obtained.

• If multiple perspectives on the same content, as

reflected by the multiple learning labels, should also

be reflected in the learned representation, one can learn

SS-R representations for each learning source and

simply concatenate them afterward. With d dimensions

per source and m sources, this leads to a d � mMultiple

Single-Source Concatenated Representation (MSS-

CR). In this case, independent networks are trained

for each of the sources, and no shared knowledge will

be transferred between sources. A layer setup of the

corresponding representation network is illustrated in

Fig. 5b.

• When applying MTL learning strategies, the deep

architecture should involve shared knowledge layers,

before branching out to various individual learning

sources, whose learned representations will be concate-

nated in the final d � m-dimensional representation. We

call these Multi-Source Concatenated Representations

(MS-CR). As the branching point can be chosen at

different stages, we will investigate the effect of various

prototypical branching point choices: at the second

convolution layer (MS-CR@2, Fig. 5c), the fourth

convolution layer (MS-CR@4, Fig. 5d), and the sixth

convolution layer (MS-CR@6, Fig. 5e). The later the

branching point occurs, the more shared knowledge the

network will employ.

• In the most extreme case, branching would only occur

at the very last fully connected layer, and a Multi-

Source Shared Representation (MS-SR) (or, more

specifically, MS-SR@FC) is learned, as illustrated in

Fig. 5f. As the representation is obtained from the fc-

feature layer, no concatenation takes place here, and

a d-dimensional representation is obtained.

A summary of these different representation learning

architectures is given in Table 4. Beyond the strategies we

choose, further approaches can be thought of to connect

Table 3 Configuration of the

base CNN
Layer Input shape Weight shape Sub-sampling Activation

conv1 2 9 216 9 128 2 9 16 9 5 9 5 2 9 1 ReLU

max-pool1 16 9 108 9 128 2 9 2

conv2 16 9 54 9 64 16 9 32 9 3 9 3 ReLU

max-pool2 32 9 54 9 64 2 9 2

conv3 32 9 27 9 32 32 9 64 9 3 9 3 ReLU

max-pool3 64 9 27 9 32 2 9 2

conv4 64 9 13 9 16 64 9 64 9 3 9 3 ReLU

max-pool4 64 9 13 9 16 2 9 2

conv5 64 9 6 9 8 64 9 128 9 3 9 3 ReLU

max-pool5 128 9 6 9 8 2 9 2

conv61 128 9 3 9 4 128 9 256 9 3 9 3 ReLU

conv62 256 9 3 9 4 256 9 256 9 1 9 1 ReLU

gap 256

fc-feature 256 256 9 256 ReLU

dropout 256

fc-output 256 Learning source specific Softmax

conv and max-pool indicate a 2-dimensional convolution and max-pooling layer, respectively. We set

the stride size with 2 on the time dimension of conv1, to compress dimensionality at the early stage.

Otherwise, all strides are set as 1 across all the convolution layers. gap corresponds to the global average

pooling used in [22], which averages out all the spatial dimensions of the filter responses. fc is an

abbreviation of a fully connected layer. We use dropout with p ¼ 0:5 only for the fc-feature layer,

where the intermediate latent representation is extracted and evaluated. For simplicity, we omit the batch-

size dimension of the input shape

Neural Computing and Applications (2020) 32:1067–1093 1075

123

representations learned for different learning sources in

neural network architectures. For example, for different

tasks, representations can be extracted from different

intermediate hidden layers, benefiting from the hierarchical

feature encoding capability of the deep network [26].

However, considering that learned representations are

usually taken from a specific fixed layer of the shared

architecture, we focus on the strategies as we outlined

above.

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

MaxPool1

Conv1 (16)

Conv62 (256)

FCSoftmax (50)

(a) SS-R: Base
setup.

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

MaxPool1

Conv1 (16)

Conv62 (256)

FCSoftmax (50)

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

MaxPool1

Conv1 (16)

Conv62 (256)

FCSoftmax (50)

(b) MSS-CR: Concatenation of
multiple independent SS-R net-
works.

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

MaxPool1

Conv1 (16)

Conv62 (256)

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

Conv62 (256)

FCSoftmax (50) FCSoftmax (50)

(c) MS-CR@2: network branches
to source-specific layers from 2nd
convolution layer.

GAP

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool1

Conv1 (16)

Conv62 (256)

FC (256)

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

Conv62 (256)

FCSoftmax (50) FCSoftmax (50)

GAP

(d) MS-CR@4: network branches
to source-specific layers from 4th
convolution layer.

FC (256)

GAP

Conv61 (256)

MaxPool1

Conv1 (16)

Conv62 (256)

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

Conv62 (256)

FCSoftmax (50) FCSoftmax (50)

(e) MS-CR@6: network branches
to source-specific layers from 6th
convolution layer.

MaxPool1

Conv1 (16)

FC (256)

GAP

Conv61 (256)

MaxPool5
Conv5 (128)

MaxPool4
Conv4 (64)

MaxPool3

Conv3 (64)

MaxPool2

Conv2 (32)

Conv62 (256)

FCSoftmax (50) FCSoftmax (50)

MS-SR@FC: heavily shared
network, source-specific branch-
ing only at final FC layer.

(f)

Fig. 5 The various model architectures considered in the current

work. Beyond single-source architectures, multi-source architectures

with various degrees of shared information are studied. For

simplification, multi-source cases are illustrated here for two sources.

The fc-feature layer from which representations will be

extracted is the FC(256) layer in the illustrations (see Table 3)

1076 Neural Computing and Applications (2020) 32:1067–1093

123

3.3 MTL training procedure

Algorithm 1: Training a Multi-Source CNN
1 Initialize Θ: {θt, θs} randomly;
2 for epoch in 1...N do
3 for iteration in 1...L do
4 Pick a learning source t randomly;
5 Pick batch of samples from learning source t;

(Xl, Xr) for self ;
X otherwise;

6 Derive learning label zt;
7 Sub-sample chunk X∗ from track X;
8 Forward-pass:;

L(yself , Θ, X∗
l , X∗

r) =Eq. 5 for self ;
L(zt, Θ, X∗) =Eq. 2 otherwise;

9 Backward-pass: ∇(Θ);
10 Update model: Θ ← Θ − ε∇(Θ);

Similar to [4, 11], we choose to train the MTL models

with a stochastic update scheme as described in Algo-

rithm 1. At every iteration, a learning source is selected

randomly. After the learning source is chosen, a batch of

observation-label pairs ðX; ztÞ is drawn. For the audio

previews belonging to the songs within this batch, an input

representation X� is cropped randomly from its super-

sample X. The updates of the parameters H are conducted

through back-propagation using the Adam algorithm [67].

For each neural network we train, we set L ¼ lm, where l is

the number of iterations needed to visit all the training

samples with fixed batch size b ¼ 128, and m is the number

of learning sources used in the training. Across the training,

we used a fixed learning rate � ¼ 0:00025. After a fixed

number of epochs N is reached, we stop the training.

3.4 Implementation details

We used PyTorch [68] to implement the CNN models and

parallel data serving. For the evaluation of models and

cross-validation, we made extensive use of functionality in

Scikit-Learn [69]. Furthermore, Librosa [70] was used to

process audio files and its raw features including mel-

spectrograms. The training is conducted with 8 Graphical

Processing Unit (GPU) computation nodes, composed of 2

NVIDIA GRID K2 GPUs and 6 NVIDIA GTX 1080Ti

GPUs.

4 Evaluation

So far, we discussed the details regarding the learning

phase of this work, which corresponds to the upper row of

Fig. 6. This included various choices of sources for the

representation learning, and various choices of architecture

and fusion strategies. In this section, we present the eval-

uation methodology we followed, as illustrated in the

second row of Fig. 6. First, we will discuss the chosen

target tasks and datasets in Sect. 4.1, followed in Sect. 4.2

by the baselines against which our representations will be

compared. Section 4.3 explains our experimental design,

and finally, we discuss the implementation of our evalua-

tion experiments in Sect. 4.4.

4.1 Target datasets

In order to gain insight into the effectiveness of learned

representations with respect to multiple potential future

tasks, we consider a range of target datasets. In this work,

our target datasets are chosen to reflect various semantic

properties of music, purposefully chosen semantic biases,

or popularity in the MIR literature. Furthermore, the rep-

resentation network should not be configured or learned to

explicitly solve the chosen target datasets.

While for the learning sources, we could provide cate-

gorizations on where and how the learning labels were

derived, and also consider algorithmic outcomes as labels,

the existing popular research datasets mostly fall in the

Professional or Crowd categories. In our work, we choose

7 evaluation datasets commonly used in MIR research,

which reflect three conventional types of MIR tasks,

namely classification, regression, and recommendation:

• Classification. Different types of classification tasks

exist in MIR. In our experiments, we consider several

datasets used for genre classification and instrument

classification.

For genre classification, we chose the GTZAN [72]

and FMA [71] datasets as main exemplars. Even though

GTZAN is known for its caveats [79], we deliberately

used it, because its popularity can be beneficial when

compared with previous and future work. We note

though that there may be some overlap between the

tracks of GTZAN and the subset of the MSD we use in

our experiments; the extent of this overlap is unknown,

Table 4 Properties of the

various categories of

representation learning

architectures

Multi-source Shared network Concatenation Dimensionality

SS-R No No No d

MSS-CR Yes No Yes d � m

MS-CR Yes Partial Yes d � m

MS-SR Yes Yes No d

Neural Computing and Applications (2020) 32:1067–1093 1077

123

due to the lack of a confirmed and exhaustive track

listing of the GTZAN dataset. We choose to use a fault-

filtered data split for the training and evaluation, which

is suggested in [73]. The split originally includes a

training, validation and evaluation split; in our case, we

also included the validation split as training data.

Among the various packages provided by the FMA,

we chose the top-genre classification task of FMA-

Medium [71]. This is a classification dataset with an

unbalanced genre distribution. We used the data split

provided by the dataset for our experiment, where the

training is validation set are combined as the training.

Considering another type of genre classification, we

selected the Extended Ballroom dataset [74, 75].

Because the classes in this dataset are highly separable

with regard to their BPM [80], we specifically included

this ‘purposefully biased’ dataset as an example of how

a learned representation may effectively capture tem-

poral dynamics properties present in a target dataset, as

long as learning sources also reflected these properties.

Since no pre-defined split is provided or suggested by

other literature, we used stratified random sampling

based on the genre label.

The last dataset we considered for classification is

the training set of the IRMAS dataset [76], which

consists of short music clips annotated with the pre-

dominant instruments present in the clip. Compared to

the genre classification task, instrument classification is

generally considered as less subjective, requiring fea-

tures to separate timbral characteristics of the music

signal as opposed to high-level semantics like the genre.

We split the dataset to make sure that observations from

the same music track are not split into training and test

sets.

As a performance metric for all these classification

tasks, we used classification accuracy.

• Regression. As exemplars of regression tasks, we

evaluate our proposed deep representations on the

dataset used in the MediaEval Music Emotion predic-

tion task [77]. It contains frame-level and song-level

labels of a two-dimensional representation of emotion,

with valence and arousal as dimensions [81]. Valence is

related to the positivity or negativity of the emotion,

and arousal is related to its intensity [77]. The song-

level annotation of the V-A coordinates was used as the

learning label. In similar fashion to the approach taken

in [26], we trained separate models for the two

emotional dimensions. As for the dataset split, we used

the split provided by the dataset, which is done by the

random split stratified by the genre distribution.

R
(d×m)

...

...

Representation(1)

Representation(3) Loss

2.
5s

Sl
id

in
g

W
in

do
w mean

sd

Mel-Spectrogram Representation Network

Shared Layers

Source Speci c
Layers (1)

Source Speci c
Layers (m)

Source Speci c
Factor Model (1)

Source Speci c
Factor Model (m)

KL

KL

N
oisy Learning D

ata

Representation
Network

Evaluation
Task Model

Clean Evaluation D
ata

Le
ar

ni
ng

Ev
al

ua
tio

n

Transfer
j=1

j=2

j=3
Representation(2)

ft(X) zt yt

Fig. 6 Overall system framework. The first row of the figure illustrates

the learning scheme, where the representation learning is happening

by minimizing the KL divergence between the network inference

ftðXÞ and the preprocessed learning label zt. The preprocessing is

conducted by the blue blocks which transform the original noisy

labels yt to zt , reducing noise and summarizing the high-dimensional

label space into a smaller latent space. The second row describes the

entire evaluation scenario. The representation is first extracted from

the representation network, which is transferred from the upper row.

The sequence of representation vectors is aggregated as the concate-

nation of their means and standard deviations. The purple block

indicates a machine learning model employed to evaluate the

representation’s effectiveness (color figure online)

1078 Neural Computing and Applications (2020) 32:1067–1093

123

As an evaluation metric, we measured the coefficient

of determination R2 of each model.

• Recommendation. Finally, we employed the ‘Last.fm -

1K users’ dataset [78] to evaluate our representations in

the context of a content-aware music recommendation

task (which will be denoted as Lastfm in the remaining

of the paper). This dataset contains 19 million records

of listening events across 961, 416 unique tracks

collected from 992 unique users. In our experiments,

we mimicked a cold-start recommendation problem, in

which items not seen before should be recommended to

the right users. For efficiency, we filtered out users who

listened to less than 5 tracks and tracks known to less

than 5 users.

As for the audio content of each track, we obtained

the mapping between the MusicBrainz Identifier

(MBID) with the Spotify identifier (SpotifyID) using

the MusicBrainz API.3 After cross-matching, we

collected 30 s previews of all track using the Spotify

API.4 We found that there is a substantial amount of

missing mapping information between the SpotifyID

and MBID in the MusicBrainz database, where only

approximately 30% of mappings are available. Also,

because of the substantial amount of inactive users and

unpopular tracks in the dataset, we ultimately acquired

a dataset of 985 unique users and 27, 093 unique tracks

with audio content.

Similar to [28], we considered the outer matrix

performance for un-introduced songs; in other words,

the model’s recommendation accuracy on the items

newly introduced to the system [28]. This was done by

holding out certain tracks when learning user models

and then predicting user preference scores based on all

tracks, including those that were held out, resulting in a

ranked track list per user. As an evaluation metric, we

consider Normalized Discounted Cumulative Gain

(nDCG@500), only treating held-out tracks that were

indeed liked by a user as relevant items. Further details

on how hold-out tracks were chosen are given in

Sect. 4.4.

A summary of all evaluation datasets, their origins, and

properties, can be found in Table 5.

4.2 Baselines

We examined three baselines to compare with our pro-

posed representations:

• Mel-Frequency Cepstral Coefficient (MFCC). These

are some of the most popular audio representations in

MIR research. In this work, we extract and aggregate

MFCC following the strategy in [26]. In particular, we

extracted 20 coefficients and also used their first- and

second-order derivatives. After obtaining the sequence

of MFCCs and its derivatives, we performed aggrega-

tion by taking the average and standard deviation over

the time dimension, resulting in 120-dimensional vector

representation.

• Random Network Feature (Rand). We extracted the

representation at the fc-feature layer without any

representation network training. With random initial-

ization, this representation, therefore, gives a random

baseline for a given CNN architecture. We refer to this

baseline as Rand.

• Latent Representation from Music Auto-Tagger

(Choi). The work in [26] focused on a music auto-

tagging task and can be considered as yielding a state-

of-the-art deep music representation for MIR. While the

model’s focus on learning a representation for music

auto-tagging can be considered as our SS-R case, there

are a number of issues that complicate direct compar-

isons between this work and ours. First, the network in

[26] is trained with about 4 times more data samples

than in our experiments. Second, it employed a much

smaller network than our architecture. Further, inter-

mediate representations were extracted, which is out of

the scope of our work, as we only consider represen-

tations at the fc-feature layer. Nevertheless,

despite these caveats, the work still is very much in

line with ours, making it a clear candidate for compar-

ison. Throughout the evaluation, we could not fully

reproduce the performance reported in the original

paper [26]. When reporting our results, we, therefore,

will report the performance we obtained with the

published model, referring to this as Choi.

4.3 Experimental design

In order to investigate our research questions, we carried

out an experiment to study the effect of the number and

type of learning sources on the effectiveness of deep rep-

resentations, as well as the effect of the various architec-

tural learning strategies described in Sect. 3.2. For the

experimental design, we consider the following factors:

• Representation strategy, with 6 levels: SS-R, MS-

SR@FC, MS-CR@6, MS-CR@4, MS-CR@2, and

MSS-CR).

• 8 2-level factors indicating the presence or not of each

of the 8 learning sources: self, year, bpm, taste, tag,

lyrics, cdr_tag, and artist.3 https://musicbrainz.org/.
4 https://developer.spotify.com/documentation/web-api/.

Neural Computing and Applications (2020) 32:1067–1093 1079

123

https://musicbrainz.org/
https://developer.spotify.com/documentation/web-api/

• Number of learning sources present in the learning

process (1 to 8). Note that this is actually calculated as

the sum of the eight factors above.

• Target dataset, with 7 levels: Ballroom, FMA, GTZAN,

IRMAS, Lastfm, Arousal, and Valence.

Given a learned representation, fitting dataset-specific

models is much more efficient than learning the represen-

tation, so we decided to evaluate each representation on all

7 target datasets. The experimental design is thus restricted

to combinations of representation and learning sources, and

for each such combination we will produce 7 observations.

However, given the constraint of SS-R relying on a single

learning source, that there is only one possible combination

for n = 8 sources, as well as the high unbalance in the

number of sources,5 we proceeded in three phases:

1. We first trained the SS-R representations for each of the

8 sources and repeated 6 times each. This resulted in 48

experimental runs.

2. We then proceeded to train all five multi-source

strategies with all sources, that is, n ¼ 8. We repeated

this 5 times, leading to 25 additional experimental runs.

3. Finally, we ran all five multi-source strategies with

n ¼ 2; . . .; 7. The full design matrix would contain 5

representations and 8 sources, for a total of 1230

possible runs. Such an experiment was unfortunately

infeasible to run exhaustively given available

resources, so we decided to follow a fractional design.

However, rather than using a pre-specified optimal

design with a fixed amount of runs [83], we decided to

run sequentially for as long as time would permit us,

generating at each step a new experimental run on

demand in a way that would maximize desired

properties of the design up to that point, such as

balance and orthogonality.6

We did this with the greedy Algorithm 2. From the

set of still remaining runs A, a subset O is selected

such that the expected unbalance in the augmented

design B [fog is minimal. In this case, the unbalance

of design is defined as the maximum unbalance found

between the levels of any factor, except for those

already exhausted.7 From O, a second subset P is

selected such that the expected aliasing in the aug-

mented design is minimal, here defined as the maxi-

mum absolute aliasing between main effects.8 Finally,

a run p is selected at random from P, the corresponding
representation is learned, and the algorithm iterates

again after updating A and B.
Following this on-demand methodology, we man-

aged to run another 352 experimental runs from all the

1230 possible.

Table 5 Properties of target datasets used in our experiments

Task Data #Tracks #Class Split method

Classification FMA [71] Genre 25,000 16 Artist Filtered [71]

Classification GTZAN [72] Genre 1000 10 Artist Filtered [73]

Classification Ext. Ballroom [74, 75] Genre 3390 13 N/A

Classification IRMAS [76] Instrument 6705 11 Song Filtered

Regression Music emotion [77] Arousal 744 Genre Stratified [77]

Regression Music emotion [77] Valence 744 Genre Stratified [77]

Recommendation Lastfm* [78] Listening count 27,093 (961,416) N/A

Because of time constraints, we sampled the Lastfm dataset as described in Sect. 4.1; the original size appears between parentheses. In case

particular data splits are defined by an original author or follow-up study, we apply the same split, including the reference in which the split is

introduced. Otherwise, we applied either a random split stratified by the label (Ballroom), or simple filtering based on reported faulty entries

(IRMAS)

5 For instance, from the 255 possible combinations of up to 8 sources,

there are 70 combinations of n ¼ 4 sources, but 28 with n ¼ 2, or only

8 for n ¼ 7. Simple random sampling from the 255 possible

combinations would lead to a very unbalanced design, that is, a

highly non-uniform distribution of observation counts across the

levels of the factor (n in this case). A balanced design is desired to

prevent aliasing and maximize statistical power. See section 15.2 in

[82] for details on unbalanced designs.

6 An experimental design is orthogonal if the effects of any factor

balance out across the effects of the other factors. In a non-orthogonal

design, effects may be aliased, meaning that the estimate of one effect

is partially biased with the effect of another, the extent of which

ranges from 0 (no aliasing) to 1 (full aliasing). Aliasing is sometimes

referred to as confounding. See sections 8.5 and 9.5 in [82] for details

on aliasing.
7 For instance, let a design have 20 runs for SS-R, 16 forMS-SR@FC,

and 18 for all other representations. The unbalance in the represen-

tation factor is thus 20� 16 ¼ 4. The total unbalance of the design is

defined as the maximum unbalance found across all factors.
8 See section 2.3.7 in [83] for details on how to compute an alias

matrix.

1080 Neural Computing and Applications (2020) 32:1067–1093

123

After going through the three phases above, the final

experiment contained 48þ 25þ 352 ¼ 425 experimental

runs, each producing a different deep music representation.

We further evaluated each representation on all 7 target

datasets, leading to a grand total of 42� 7 ¼ 2975 data

points. Figure 7 plots the alias matrix of the final experi-

mental design, showing that the aliasing among main fac-

tors is indeed minimal. The final experimental design

matrix can be downloaded along with the rest of the sup-

plemental material.

Each considered representation network was trained

using the CNN representation network model from Sect. 3,

based on the specific combination of learning sources and

deep architecture as indicated by the experimental run. In

order to reduce variance, we fixed the number of training

epochs to N ¼ 200 across all runs and applied the same

base architecture, except for the branching point. This

entire training procedure took approximately 5 weeks with

given computational hardware resources introduced in

Sect. 3.4.

4.4 Implementation details

In order to assess how our learned deep music represen-

tations perform on the various target datasets, transfer

learning will now be applied, to consider our representa-

tions in the context of these new target datasets.

As a consequence, new machine learning pipelines are

set up, focused on each of the target datasets. In all cases,

we applied the pre-defined split if it is feasible. Otherwise,

we randomly split the dataset into an 80% training set and

20% test set. For every dataset, we repeated the training

and evaluation for 5 times, using different train/test splits.

In most of our evaluation cases, validation will take place

on the test set; in case of the recommendation problem, the

test set represents a set of tracks to be held out from each

user during model training, and re-inserted for validation.

In all cases, we will extract representations from evaluation

dataset audio as detailed in Sect. 4.4.1, and then learn

relatively simple models based on them, as detailed in

Sect. 4.4.2. Employing the metrics as mentioned in the

previous section, we will then take average performance

scores over the 5 different train/test splits for final perfor-

mance reporting.

4.4.1 Feature extraction and preprocessing

Taking raw audio from the evaluation datasets as input, we

take non-overlapping slices out of this audio with a fixed

length of 2.5 s. Based on this, we apply the same prepro-

cessing transformations as discussed in Sect. 3.1.1. Then,

we extract a deep representation from this preprocessed

audio, employing the architecture as specified by the given

experimental run. As in the case of Sect. 3.2, representa-

tions are extracted from the fc-feature layer of each

trained CNN model. Depending on the choice of archi-

tecture, the final representation may consist of concatena-

tions of representations obtained by separate representation

networks.

Input audio may originally be (much) longer than 2.5 s;

therefore, we aggregate information in feature vectors over

multiple time slices by taking their mean and standard

deviation values. As a result, we get representation with

averages per learned feature dimension and another rep-

resentation with standard deviations per feature dimension.

These will be concatenated, as illustrated in Fig. 6.

4.4.2 Target dataset-specific models

As our goal is not to over-optimize dataset-specific per-

formance, but rather perform a comparative analysis

between different representations (resulting from different

learning strategies), we keep the model simple and use

fixed hyper-parameter values for each model across the

entire experiment.

To evaluate the trained representations, we used differ-

ent models according to the target dataset. For classifica-

tion and regression tasks, we used the multilayer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
lf

ye
ar

bp
m

ta
st

e
ta

g
ly

ric
s

cd
r_

ta
g

ar
tis

t
M

S
−S

R
@

FC
M

S
−C

R
@

6
M

S
−C

R
@

4
M

S
−C

R
@

2
M

S
S

−C
R

FM
A

G
TZ

A
N

IR
M

A
S

La
st

fm
A

ro
us

al
Va

le
nc

e

self
year
bpm
taste

tag
lyrics

cdr_tag
artist

MS−SR@FC
MS−CR@6
MS−CR@4
MS−CR@2

MSS−CR
FMA

GTZAN
IRMAS
Lastfm

Arousal
Valence

Fig. 7 Aliasing among main effects in the final experimental design

Algorithm 2: Sequential generation of experimental runs.
1 Initialize A with all possible 1,230 runs to execute;
2 Initialize B ← ∅ for the set of already executed runs;
3 while time allows do
4 Select O ⊆ A s.t. ∀o ∈ O, the unbalance in B ∪ {o} is minimal;
5 Select P ⊆ O s.t. ∀p ∈ P, the aliasing in B ∪ {p} is minimal;
6 Select p ∈ P at random;
7 Update A ← A − {p};
8 Update B ← B ∪ {p};
9 Learn the representation coded by p;

Neural Computing and Applications (2020) 32:1067–1093 1081

123

perceptron (MLP) model [84]. More specifically, the MLP

model has two hidden layers, whose dimensionality is 256.

As for the nonlinearity, we choose ReLU [62] for all nodes,

and the model is trained with ADAM optimization tech-

nique [67] for 200 iterations. In the evaluation, we used the

Scikit-Learn’s implementation for ease of distributed

computing on multiple CPU computation nodes.

For the recommendation task, we choose a similar

model as suggested in [28, 85], in which the learning

objective function L is defined as

Û; V̂; Ŵ ¼ argmin jjP� UVT jjC þ kV

2
jjV � XW jj

þ kU

2
jjUjj þ kW

2
jjW jj

ð7Þ

where P 2 Ru�i is a binary matrix indicating whether there

is interaction between users u and items i, U 2 Ru�r and

V 2 Ri�r are r dimensional user factors and item factors for

the low-rank approximation of P. P is derived from the

original interaction matrix R 2 Ru�i, which contains the

number of interaction from users u to items i, as follows:

Pu;i ¼
1; if Ru;i [0

0 otherwise

�
ð8Þ

W 2 Rd�r is a free parameter for the projection from d-

dimensional feature space to the factor space. X 2 Ri�d is

the feature matrix where each row corresponds to a track.

Finally, jj � jjC is the Frobenious norm weighted by the

confidence matrix C 2 Ru�i, which controls the credibility

of the model on the given interaction data, given as

follows:

C ¼ 1þ aR ð9Þ

where a controls credibility. As for hyper-parameters, we set

a ¼ 0:1, kV ¼ 0:00001, kU ¼ 0:00001, and kW ¼ 0:1,

respectively. For the number of factors we choose r ¼ 50 to

focus only on the relative impact of the representation over

the different conditions. We implemented an update rule

with the alternating least squares (ALS) algorithm similar to

[28], and updated parameters during 15 iterations.

5 Results and discussion

In this section, we present results and discussion related to

the proposed deep music representations. In Sect. 5.1, we

will first compare the performance across the SS-Rs, to

show how different individual learning sources work for

each target dataset. Then, we will present general experi-

mental results related to the performance of the multi-

source representations. In Sect. 5.2, we discuss the effect of

the number of learning sources exploited in the

representation learning, in terms of their general perfor-

mance, reliability, and model compactness. In Sect. 5.3, we

discuss the effectiveness of different representations in

MIR. Finally, we present some initial evidence for multi-

faceted semantic explainability of the proposed MTDTL in

Sect. 5.5.9

5.1 Single-source and multi-source
representation

Figure 8 presents the performance of SS-R representa-

tions on each of the 7 target datasets. We can see that all

sources tend to outperform the Rand baseline on all data-

sets, except for a handful cases involving sources self and

bpm. Looking at the top performing sources, we find that

tag, cdr_tag, and artist perform better or on-par with the

most sophisticated baseline, Choi, except for the IRMAS

dataset. The other sources are found somewhere between

these two baselines, except for datasets Lastfm and Arou-

sal, where they perform better than Choi as well. Finally,

the MFCC is generally outperformed in all cases, with the

notable exception of the IRMAS dataset, where only Choi

performs better.

Zooming in to dataset-specific observed trends, the bpm

learning source shows a highly skewed performance across

target datasets: it clearly outperforms all other learning

sources in the Ballroom dataset, but it achieves the worst or

second-worst performance in the other datasets. As shown

in [80], this confirms that the Ballroom dataset is well-

separable based on BPM information alone. Indeed, rep-

resentations trained on the bpm learning source seem to

contain a latent representation close to the BPM of an input

music signal. In contrast, we can see that the bpm repre-

sentation achieves the worst results in the Arousal dataset,

where both temporal dynamics and BPM are considered as

important factors determining the intensity of emotion.

On the IRMAS dataset, we see that all the SS-Rs per-

form worse than the MFCC and Choi baselines. Given that

they both take into account low-level features, either by

design or by exploiting low-level layers of the neural net-

work, this suggests that predominant instrument sounds are

harder to distinguish based solely on semantic features,

which is the case of the representations studied here.

Also, we find that there is small variability for each SS-R

run within the training setup we applied. Specifically, in

50% of cases, we have within-SS-R variability less than

15% of the within-dataset variability. 90% of the cases are

within 30% of the within-dataset variability.

9 For the reproducibility, we release all relevant materials including

code, models and extracted features at https://github.com/eldrin/

MTLMusicRepresentation-PyTorch.

1082 Neural Computing and Applications (2020) 32:1067–1093

123

https://github.com/eldrin/MTLMusicRepresentation-PyTorch
https://github.com/eldrin/MTLMusicRepresentation-PyTorch

We now consider how the various representations based

onmultiple learning sources perform, in comparison to those

based on single learning sources. The boxplots in Fig. 9

show the distributions of performance scores for each

architectural strategy and per target dataset. For comparison,

the gray boxes summarize the distributions depicted in

Fig. 8, based on the SS-R strategy. In general, we can see that

these SS-R obtain the lowest scores, followed by MS-

SR@FC, except for the IRMAS dataset. Given that these

representations have the same dimensionality, these results

suggest that adding a single-source-specific layer on top of a

heavily sharedmodelmay help to improve the adaptability of

the neural network models, especially when there is no prior

knowledge regarding the well-matching learning sources for

the target datasets. TheMS-CR andMSS-CR representations

obtain the best results in general, which is somewhat

expected because of their larger dimensionality.

5.2 Effect of number of learning sources
and fusion strategy

While the plots in Fig. 9 suggest that MSS-CR and MS-

CR are the best strategies, the high observed variability

makes this statement still rather unclear. In order to gain

a better insight of the effects of the dataset, architecture

strategies and number and type of learning sources, we

further analyzed the results using a hierarchical or multi-

level linear model on all observed scores [86]. The

advantage of such a model is essentially that it accounts for

the structure in our experiment, where observations nested

within datasets are not independent.

By Fig. 9, we can anticipate a very large dataset effect

because of the inherently different levels of difficulty, as

well as a high level of heteroskedasticity. We, therefore,

analyzed standardized performance scores rather than raw

scores. In particular, the i-th performance score yi is stan-

dardized with the within-dataset mean and standard devi-

ation scores, that is, y�i ¼ ðyi � �yd½i�Þ=sd½i�, where

d[i] denotes the dataset of the i-th observation. This way,

the dataset effect is effectively 0 and the variance is

homogeneous. In addition, this will allow us to compare

the relative differences across strategies and number of

sources using the same scale in all datasets.

We also transformed the variable n that refers to the

number of sources to n�, which is set to n� ¼ 0 for SS-Rs

and to n� ¼ n� 2 for the other strategies. This way, the

intercepts of the linear model will represent the average

Ballroom
A

cc
ur

ac
y

0.
5

0.
6

0.
7

0.
8

0.
9

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t
●●

●

●

●

●

●

●
●

FMA

A
cc

ur
ac

y
0.

50
0.

52
0.

54
0.

56
0.

58
0.

60
0.

62

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t

●

●

● ●

●

●

●

●

GTZAN

A
cc

ur
ac

y
0.

50
0.

55
0.

60
0.

65
0.

70
0.

75
0.

80

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t

●

●

●

●

●

●

●

●

IRMAS

A
cc

ur
ac

y
0.

25
0.

30
0.

35
0.

40
0.

45
0.

50
0.

55
0.

60

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t

●

●

●

●

●

●

●

●

Lastfm

nD
C

G

0.
03

0.
04

0.
05

0.
06

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t

●

●

●

●

●

●

●

●

Arousal

R
2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t
●

●

●

●

●

●
● ●

Valence

R
2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

se
lf

ye
ar

bp
m

ta
st

e

ta
g

ly
ric

s

cd
r_

ta
g

ar
tis

t

●

●

●

●

●

● ●

●

Choi
MFCC
Rand

Fig. 8 Performance of single-source representations. Each point indicates the performance of a representation learned from a single source. Solid

points indicate the average performance per source. The baselines are illustrated as horizontal lines

Neural Computing and Applications (2020) 32:1067–1093 1083

123

performance of each representation strategy in its simplest

case, that is, SS-R (n ¼ 1) or non-SS-R with n ¼ 2. We

fitted a first analysis model as follows:

y�i ¼ b0r½i�d½i� þ b1r½i�d½i� � n�i þ ei ei �Nð0; r2eÞ ð10Þ

b0rd ¼ b0r þ u0rd u0rd �Nð0; r20rÞ ð11Þ

b1rd ¼ b1r þ u1rd u1rd �Nð0; r21rÞ; ð12Þ

where b0r½i�d½i� is the intercept of the corresponding repre-

sentation strategy within the corresponding dataset. Each of

these coefficients is defined as the sum of a global fixed

effect b0r of the representation, and a random effect u0rd
which allows for random within-dataset variation.10 This

way, we separate the effects of interest (i.e., each b0r) from
the dataset-specific variations (i.e., each u0rd). The effect of

the number of sources is similarly defined as the sum of a

fixed representation-specific coefficient b1r and a random

dataset-specific coefficient u1rd. Because the slope depends

on the representation, we are thus implicitly modeling the

interaction between strategy and number of sources, which

can be appreciated in Fig. 10, especially with MS-SR@FC.

Figure 11 shows the estimated effects and bootstrap

95% confidence intervals. The left plot confirms the

observations in Fig. 9. In particular, they confirm that SS-R

performs significantly worse than MS-SR@FC, which is

similarly statistically worse than the others. When carrying

out pairwise comparisons, MSS-CR outperforms all other

strategies exceptMS-CR@2 (p ¼ 0:32), which outperforms

all others except MS-CR@6 (p ¼ 0:09). The right plot

confirms the qualitative observation from Fig. 10 by

showing a significantly positive effect of the number of

sources except for MS-SR@FC, where it is not statistically

different from 0. The intervals suggest a very similar effect

in the best representations, with average increments of

about 0.16 per additional source—recall that scores are

standardized.

To gain better insight into differences across represen-

tation strategies, we used a second hierarchical model

where the representation strategy was modeled as an

ordinal variable r� instead of the nominal variable r used in

the first model. In particular, r� represents the size of the

network, so we coded SS-R as 0, MS-SR@FC as 0.2, MS-

CR@6 as 0.4, MS-CR@4 as 0.6, MS-CR@2 as 0.8, and

MSS-CR as 1 (see Fig. 5). In detail, this second model is as

follows:

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
5

0.
6

0.
7

0.
8

0.
9

Ballroom
A

cc
ur

ac
y

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
50

0.
52

0.
54

0.
56

0.
58

0.
60

0.
62

FMA

A
cc

ur
ac

y

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

GTZAN

A
cc

ur
ac

y

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
25

0.
35

0.
45

0.
55

IRMAS

A
cc

ur
ac

y

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
03

0.
04

0.
05

0.
06

Lastfm

nD
C

G

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Arousal

R
2

S
S

−R

M
S

−S
R

@
FC

M
S

−C
R

@
6

M
S

−C
R

@
4

M
S

−C
R

@
2

M
S

S
−C

R

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Valence

R
2

Choi
MFCC
Rand

Fig. 9 Performance by representation strategy. Solid points represent the mean per representation. The baselines are illustrated as horizontal lines

10 We note that hierarchical models do not fit each of the individual

u0rd coefficients (a total of 42 in this model), but the amount of

variability they produce, that is, r20r (6 in total).

1084 Neural Computing and Applications (2020) 32:1067–1093

123

y�i ¼ b0 þ b1d½i� � r�i þ b2d½i� � n�i þ b3d½i� � r�i � n�i þ ei

ei �Nð0; r2eÞ
ð13Þ

b1d ¼ b10 þ u1d u1d �Nð0; r21Þ ð14Þ

b2d ¼ b20 þ u2d u2d �Nð0; r22Þ ð15Þ

b3d ¼ b30 þ u3d u3d �Nð0; r23Þ: ð16Þ

In contrast to the first model, there is no representation-

specific fixed intercept but an overall intercept b0. The
effect of the network size is similarly modeled as the sum

of an overall fixed slope b10 and a random dataset-specific

effect u1d. Likewise, this model includes the main effect of

the number of sources (fixed effect b20), as well as its

interaction with the network size (fixed effect b30). Fig-
ure 12 shows the fitted coefficients, confirming the statis-

tically positive effect of the size of the networks and, to a

smaller degree but still significant, of the number of

sources. The interaction term is not statistically significant,

probably because of the unclear benefit of the number of

sources in MS-SR@FC.

Overall, these analyses confirm that all multi-source

strategies outperform the single-source representations,

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2
Ballroom

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8
−4

−3
−2

−1
0

1
2

FMA

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

GTZAN

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

IRMAS

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Lastfm

Number of learning sources

nD
C

G

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Arousal

Number of learning sources

R
2

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Valence

Number of learning sources

R
2

SS−R

MS−SR@FC

MS−CR@6

MS−CR@4

MS−CR@2

MSS−CR

Fig. 10 (Standardized) performance by the number of learning sources. Solid points represent the mean per architecture and number of sources.

The black horizontal line marks the mean performance of the SS-R representations. The colored lines show linear fits (color figure online)

Fixed intercepts: β0r

Effect

●

−1.0 −0.5 0.0

SS−R

MS−SR@FC

MS−CR@6

MS−CR@4

MS−CR@2

MSS−CR

Fixed slopes: β1r

Effect

−0.05 0.00 0.05 0.10 0.15 0.20

SS−R

MS−SR@FC

MS−CR@6

MS−CR@4

MS−CR@2

MSS−CR

Fig. 11 Fixed effects and

bootstrap 95% confidence

intervals estimated for the first

analysis model. The left plot

depicts the effects of the

representation strategy (b0r
intercepts), and the right plot

shows the effects of the number

of sources (b1r slopes)

Neural Computing and Applications (2020) 32:1067–1093 1085

123

with a direct relation to the number of parameters in the

network. In addition, there is a clearly positive effect of the

number of sources, with a minor interaction between both

factors.

Figure 10 also suggests that the variability of perfor-

mance scores decreases with the number of learning

sources used. This implies that if there are more learning

sources available, one can expect less variability across

instantiations of the network. Most importantly, variability

obtained for a single learning source (n ¼ 1) is always

larger than the variability with 2 or more sources. The

Ballroom dataset shows much smaller variability when

BPM is included in the combination. For this specific

dataset, this indicates that once bpm is used to learn the

representation, the expected performance is stable and does

not vary much, even if we keep including more sources.

Section 5.3 provides more insight in this regard.

5.3 Single source versus multi-source

The evidence so far tells us that, on average, learning

from multiple sources leads to better performance than

learning from a single source. However, it could be pos-

sible that the SS-R representation with the best learning

source for the given target dataset still performs better than

a multi-source alternative. In fact, in Fig. 10 there are

many cases where the best SS-R representation (black cir-

cles at n ¼ 1) already perform quite well compared to the

more sophisticated alternatives. Figure 13 presents similar

Fixed effects

Effect

●

−1.0 −0.5 0.0 0.5 1.0 1.5

β0 (intercept)

β10 (r*)

β20 (n*)

β30 (r*n*)

Fig. 12 Fixed effects and bootstrap 95% confidence intervals

estimated for the second analysis model, depicting the overall

intercept (b0), the slope of the network size (b10), the slope of the

number of sources (b20), and their interaction (b30)

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Ballroom

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

FMA

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

GTZAN

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

IRMAS

Number of learning sources

A
cc

ur
ac

y

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Lastfm

Number of learning sources

nD
C

G

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Arousal

Number of learning sources

R
2

1 2 3 4 5 6 7 8

−4
−3

−2
−1

0
1

2

Valence

Number of learning sources

R
2

SS−R w/ best source
SS−R w/o best source
Non−SS−R w/ best source
Non−SS−R w/o best source

Fig. 13 (Standardized) performance by number of learning sources.

Solid points mark representations including the source performing

best with SS-R in the dataset; empty points mark representations

without it. Solid and dashed lines represent linear fits, respectively;

dashed areas represent 95% confidence intervals (color figure online)

1086 Neural Computing and Applications (2020) 32:1067–1093

123

scatter plots, but now explicitly differentiating between

representations using the single best source (filled circles,

solid lines) and not using it (empty circles, dashed lines).

The results suggest that even if the strongest learning

source for the specific dataset is not used, the others largely

compensate for it in the multi-source representations,

catching up and even surpassing the best SS-R represen-

tations. The exception to this rule is again bpm in the

Ballroom dataset, where it definitely makes a difference.

As the plots shows, the variability for low numbers of

learning sources is larger when not using the strongest

source, but as more sources are added, this variability

reduces.

To further investigate this issue, for each target dataset,

we also computed the variance component due to each of

the learning sources, excluding SS-R representations [87].

A large variance due to one of the sources means that, on

average and for that specific dataset, there is a large dif-

ference in performance between having that source or not.

Table 6 shows all variance components, highlighting the

per-dataset largest. Apart from bpm in the Ballroom data-

set, there is no clear evidence that one single source is

specially good in all datasets, which suggests that in gen-

eral there is not a single source that one would use by

default. Notably though, sources artist, tag and self tend to

have large variance components.

In addition, we observe that the sources with the largest

variance are not necessarily the sources that obtain the best

results by themselves in an SS-R representation (see Fig. 8).

We examined this relationship further by calculating the

correlation between variance components and (standard-

ized) performance of the corresponding SS-Rs. The Pearson

correlation is 0.38, meaning that there is a mild association.

Figure 14 further shows this with a scatterplot, with a clear

distinction between poorly-performing sources (year, taste

and lyrics at the bottom) and well-performing sources (tag,

cdr_tag, and artist at the right).

This result implies that even if some SS-R is particularly

strong for a given dataset, when considering more complex

fusion architectures, the presence of that one source is not

necessarily required because the other sources make up for

its absence. This is especially important in practical terms,

because different tasks generally have different best sour-

ces, and practitioners rarely have sufficient domain

knowledge to select them up front. Also, and unlike the

Ballroom dataset, many real-world problems are not easily

solved with a single feature. Therefore, choosing a more

general representation based on multiple sources is a much

simpler way to proceed, which still yields comparable or

better results.

In other words, if ‘‘a single deep representation to rule

them all’’ is pre-trained, it is advisable to base this repre-

sentation on multiple learning sources. At the same time,

given that MSS-CR representations also generally show

strong performance (albeit that they will bring high

dimensionality), and that they will come ‘for free’ as soon

as SS-R networks are trained, alternatively, we could

imagine an ecosystem in which the community could pre-

train and release many SS-R networks for different indi-

vidual sources in a distributed way, and practitioners can

then collect these into MSS-CR representations, without the

need for retraining.

Table 6 Variance components

(as percent of total) of the

learning sources, within each of

the target datasets, and for non-

SS-R representations

Ballroom FMA GTZAN IRMAS Lastfm Arousal Valence

self 2 32 39 18 29 6 10

year \ 1 6 \ 1 1 2 2 \ 1

bpm 96 3 \ 1 8 16 \ 1 42

taste \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 6

tag 1 17 21 16 20 33 14

lyrics \ 1 \ 1 \ 1 3 \ 1 11 \ 1

cdr_tag \ 1 9 12 16 2 16 14

artist 1 32 28 37 32 31 15

Largest per-dataset in bold face

●

●

●

●

●

●

●

●

Standardized performance (y*)

W
ith

in
−d

at
as

et
 v

ar
ia

nc
e

co
m

po
ne

nt
 (%

)

0
1

2
5

10
20

50
10

0

−4 −3 −2 −1 0 1

self
year
bpm
taste
tag
lyrics
cdr_tag
artist

● Ballroom
FMA
GTZAN
IRMAS
Lastfm
Arousal
Valence

Fig. 14 Correlation between (standardized) SS-R performance and

variance component (color figure online)

Neural Computing and Applications (2020) 32:1067–1093 1087

123

5.4 Compactness

Under an MTDTL setup with branching (the MS-CR archi-

tectures), as more learning sources are used, not only the

representation will grow larger, but so will the necessary

deep network to learn it: see Fig. 15 for an overview of

necessary model parameters for the different architectures.

When using all the learning sources,MS-CR@6, which for a

considerable part encompasses a shared network architec-

ture and branches out relatively late, has an around 6.3 times

larger network size compared to the network size needed for

SS-R. In contrast, MS-SR@FC, which is the most heavily

shared MTDTL case, uses a network that is only 1.2 times

larger than the network needed for SS-R.

Also, while the representations resulting from the MSS-

CR and variousMS-CR architectures linearly depend on the

chosen number of learning sources m (see Table 4), for

MS-SR@FC, which has a fixed dimensionality of d inde-

pendent of m, we do notice increasing performance as more

learning sources are used, except IRMAS dataset. This

implies that under MTDTL setups, the network does learn

as much as possible from the multiple sources, even in case

of fixed network capacity.

5.5 Multiple explanatory factors

By training representation models on multiple learning

sources in the way we did, our hope is that the represen-

tation will reflect latent semantic facets that will ultimately

allow for semantic explainability. In Fig. 16, we show a

visualization that suggests this indeed may be possible.

More specifically, we consider one of our MS-CR models

trained on 5 learning sources. For each learning source-

specific block of the representation, using the learning

source-specific fc-out layers, we can predict a factor

distribution zt for each of the learning sources. Then, from

the predicted zt, one can either map this back on the

original learning labels yt, or simply consider the strongest

predicted topics (which we visualized in Fig. 16), to relate

the representation to human-understandable facets or

descriptions.11

6 Conclusion

In this paper, we have investigated the effect of different

strategies to learn music representations with deep net-

works, considering multiple learning sources and different

network architectures with varying degrees of shared

information. Our main research questions are how the

number and combination of learning sources (RQ1), and

different configurations of the shared architecture (RQ2)

affect the effectiveness of the learned deep music repre-

sentation. As a consequence, we conducted an experiment

training 425 neural network models with different combi-

nations of learning sources and architectures.

After an extensive empirical analysis, we can summa-

rize our findings as follows:

• RQ1 The number of learning sources positively affects

the effectiveness of a learned deep music

Fig. 15 Number of network

parameters by number of

learning sources

11 Note that as soon as a pre-trained representation network model

will be adapted to an new dataset through transfer learning, the fc-
out layer cannot be used to obtain such explanations from the

learning sources used in the representation learning, since the layers

will then be fine-tuned to another dataset. However, we hypothesize it

may be possible that the semantic explainability can still be

preserved, if fine-tuning is jointly conducted with the original

learning sources used during the pre-training time in the multi-

objective strategy.

1088 Neural Computing and Applications (2020) 32:1067–1093

123

representation, although representations based on a

single learning source will already be effective in

specialized cases (e.g., BPM and the Ballroom dataset).

• RQ2 In terms of architecture, the amount of shared

information has a negative effect on performance:

larger models with less shared information (e.g., MS-

CR@2, MSS-CR) tend to outperform models where

sharing is higher (e.g., MS-CR@6, MS-SR@FC), all of

which outperform the base model (SS-R).

Our findings give various pointers to useful future work.

First of all, ‘generality’ is difficult to define in the music

domain, maybe more so than in CV or NLP, in which

Fig. 16 Potential semantic explainability of DTMTL music repre-

sentations. Here, we provide a visualization using t-SNE [88], plotting

2-dimensional coordinates of each sample from the GTZAN dataset,

as resulting from anMS-CR representation trained on 5 sources. In the

zoomed-in panes, we overlay the strongest topic model terms in zt, for

various types of learning sources. The specific model used in the

visualization is the 232th model from the experimental design we

introduce in Sect. 4.3, which is performing better than 95% of other

models on GTZAN target dataset

Neural Computing and Applications (2020) 32:1067–1093 1089

123

lower-level information atoms may be less multifaceted in

nature (e.g., lower-level representations of visual objects

naturally extend to many vision tasks, while an equivalent

in music is harder to pinpoint). In case of clear task-specific

data skews, practitioners should be pragmatic about this.

Also, we only investigated one special case of transfer

learning, which might not be generalized well if one con-

siders the adaptation of the pre-trained network for further

fine-tuning with respect to their target dataset. Since there

are various choices to make, which will bring a substantial

amount of variability, we decided to leave the aspects for

further future works. We believe open-sourcing the models

we trained throughout this work will be helpful for such

follow-up works. Another limitation of current work is the

selective set of label types in the learning sources. For

instance, there are also a number of MIR-related tasks that

are using time-variant labels such as automatic music

transcription, segmentation, beat tracking and chord esti-

mation. We believe that such tasks should be investigated

as well in the future to build a more complete overview of

MTDTL problem.

Finally, in our current work, we still largely considered

MTDTL as a ‘black box’ operation, trying to learn how

MTDTL can be effective. However, the original reason for

starting this work was not only to yield an effective gen-

eral-purpose representation, but one that also would be

semantically interpretable according to different semantic

facets. We showed some early evidence our representation

networks may be capable of picking up such facets; how-

ever, considerable future work will be needed into more in-

depth analysis techniques of what the deep representations

actually learned.

Acknowledgements This work was carried out on the Dutch national

e-infrastructure with the support of SURF Cooperative. We further

thank the CDR for having provided their album-level genre annota-

tions for our experiments. We thank Keunwoo Choi for the discussion

and all the help regarding the implementation of his work. We also

thank David Tax for the valuable inputs and discussion. Finally, we

thank editors and reviewers for their effort and constructive help to

improve this work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Casey MA, Veltkamp RC, Goto M, Leman M, Rhodes C, Slaney

M (2008) Content-based music information retrieval: current

directions and future challenges. Proc IEEE 96(4):668–696.

https://doi.org/10.1109/JPROC.2008.916370

2. Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75.

https://doi.org/10.1023/A:1007379606734. ISSN: 1573-0565

3. Bengio Y, Courville AC, Vincent P (2013) Representation

learning: a review and new perspectives. IEEE Trans Pattern

Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/

TPAMI.2013.50. ISSN: 0162-8828

4. Liu W, Mei T, Zhang Y, Che C, Luo J (2015) Multi-task deep

visual-semantic embedding for video thumbnail selection. In:

IEEE conference on computer vision and pattern recognition

CVPR, Boston, MA, USA, pp 3707–3715. https://doi.org/10.

1109/CVPR.2015.7298994

5. Bingel J, Søgaard A (2017) Identifying beneficial task relations

for multi-task learning in deep neural networks. In: Proceedings

of the 15th conference of the European chapter of the association

for computational linguistics, vol 2. Association for Computa-

tional Linguistics, Valencia, Spain, pp 164–169

6. Li S, Liu Z-Q, Chan AB (2015) Heterogeneous multi-task

learning for human pose estimation with deep convolutional

neural network. Int J Comput Vis 113(1):19–36. https://doi.org/

10.1007/s11263-014-0767-8. ISSN: 1573-1405

7. Zhang W, Li R, Zeng T, Sun Q, Kumar S, Ye J, Ji S (2015) Deep

model based transfer and multi-task learning for biological image

analysis. In: Proceedings of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining KDD,

Sydney. ACM, NSW, Australia, pp 1475–1484. https://doi.org/

10.1145/2783258.2783304. ISBN: 978-1-4503-3664-2

8. Zhang Z, Luo Z, Loy CC, Tang X (2014) Facial landmark

detection by deep multi-task learning. In: Computer vision—

ECCV 13th European conference, proceedings, part VI. Springer,

Zurich, Switzerland, pp 94–108. https://doi.org/10.1007/978-3-

319-10599-4_7

9. Kaiser L, Gomez AN, Shazeer N, Vaswani A, Parmar N, Jones L,

Uszkoreit J (2017) One model to learn them all. arXiv:abs/1706.

05137

10. Rick Chang J-H, Li C-L, Póczos B, Vijaya Kumar BVK (2017)

One network to solve them all—solving linear inverse problems

using deep projection models. In: IEEE international conference

on computer vision, ICCV. IEEE Computer Society, Venice,

Italy, pp 5889–5898. https://doi.org/10.1109/ICCV.2017.627

11. Weston J, Bengio S, Hamel P (2011) Multi-tasking with joint

semantic spaces for large-scale music annotation and retrieval.

J New Music Res 40(4):337–348. https://doi.org/10.1080/

09298215.2011.603834

12. Aytar Y, Vondrick C, Torralba A (2016) Soundnet: Learning

sound representations from unlabeled video. In: Advances in

neural information processing systems 29: annual conference on

neural information processing systems. Barcelona, Spain,

pp 892–900

13. Hamel P, Eck D (2010) Learning features from music audio with

deep belief networks. In: Proceedings of the 11th international

society for music information retrieval conference, ISMIR.

Utrecht, Netherlands, pp 339–344

14. Boulanger-Lewandowski N, Bengio Y, Vincent P (2012)

Modeling temporal dependencies in high-dimensional sequences:

application to polyphonic music generation and transcription. In:

Proceedings of the 29th international conference on machine

learning, ICML. Omnipress, Edinburgh, Scotland, UK

15. Schlüter J, Böck S (2014) Improved musical onset detection with

convolutional neural networks. In: IEEE international conference

1090 Neural Computing and Applications (2020) 32:1067–1093

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JPROC.2008.916370
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/CVPR.2015.7298994
https://doi.org/10.1109/CVPR.2015.7298994
https://doi.org/10.1007/s11263-014-0767-8
https://doi.org/10.1007/s11263-014-0767-8
https://doi.org/10.1145/2783258.2783304
https://doi.org/10.1145/2783258.2783304
https://doi.org/10.1007/978-3-319-10599-4_7
https://doi.org/10.1007/978-3-319-10599-4_7
http://arxiv.org/abs/abs/1706.05137
http://arxiv.org/abs/abs/1706.05137
https://doi.org/10.1109/ICCV.2017.627
https://doi.org/10.1080/09298215.2011.603834
https://doi.org/10.1080/09298215.2011.603834

on acoustics, speech and signal processing, ICASSP. IEEE,

Florence, Italy, pp 6979–6983. https://doi.org/10.1109/ICASSP.

2014.6854953

16. Choi K, Fazekas G, Sandler MB (2016) Automatic tagging using

deep convolutional neural networks. In: Proceedings of the 17th

international society for music information retrieval conference,

ISMIR. New York City, USA, pp 805–811

17. van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-

based music recommendation. In: Advances in neural informa-

tion processing systems 26 NIPS. Lake Tahoe, NV, USA,

pp 2643–2651

18. Chandna P, Miron M, Janer J, Gómez E (2017) Monoaural audio

source separation using deep convolutional neural networks. In:

Latent variable analysis and signal separation—13th international

conference, LVA/ICA, Proceedings. Grenoble, France,

pp 258–266. https://doi.org/10.1007/978-3-319-53547-0_25.

ISBN: 978-3-319-53547-0

19. Jeong I-Y, Lee K (2016) Learning temporal features using a deep

neural network and its application to music genre classification.

In: Proceedings of the 17th international society for music

information retrieval conference, ISMIR. New York City, USA,

pp 434–440

20. Han Y, Kim J-H, Lee K (2017) Deep convolutional neural net-

works for predominant instrument recognition in polyphonic

music. IEEE/ACM Trans Audio Speech Lang Process

25(1):208–221. https://doi.org/10.1109/TASLP.2016.2632307.

ISSN: 2329-9290

21. Simonyan K, Zisserman A (2015) Very deep convolutional net-

works for large-scale image recognition. In: 3th international

conference on learning representations, ICLR, San Diego, CA,

USA

22. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: IEEE conference on computer vision and

pattern recognition, CVPR. IEEE Computer Society, Las Vegas,

NV, USA, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

23. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

convolutions. In: IEEE conference on computer vision and pat-

tern recognition, CVPR. IEEE Computer Society, Boston, MA,

USA, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

24. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013)

Distributed representations of words and phrases and their com-

positionality. In: Advances in neural information processing

systems 26 NIPS. Lake Tahoe, NV, USA, pp 3111–3119

25. Dieleman S, Brakel P, Schrauwen B (2011) Audio-based music

classification with a pretrained convolutional network. In: Pro-

ceedings of the 12th international society for music information

retrieval conference, ISMIR. University of Miami, Miami, FL,

USA. pp 669–674. ISBN: 9780615548654

26. Choi K, Fazekas G, Sandler MB, Cho K (2017) Transfer learning

for music classification and regression tasks. In: Proceedings of

the 18th international society for music information retrieval

conference, ISMIR. Suzhou, China, pp 141–149

27. van den Oord A, Dieleman S, Schrauwen B (2014) Transfer

learning by supervised pre-training for audio-based music clas-

sification. In: Proceedings of the 15th international society for

music information retrieval conference, ISMIR. Taipei, Taiwan,

pp 29–34

28. Liang D, Zhan M, Ellis DPW (2015) Content-aware collaborative

music recommendation using pre-trained neural networks. In:

Proceedings of the 16th international society for music infor-

mation retrieval conference, ISMIR. Málaga, Spain, pp 295–301

29. Misra I, Shrivastava A, Gupta A, Hebert M (2016) Cross-stitch

networks for multi-task learning. In: IEEE conference on com-

puter vision and pattern recognition. CVPR. IEEE Computer

Society, Las Vegas, NV, USA, pp 3994–4003

30. Bertin-Mahieux T, Ellis DPW, Whitman B, Lamere P (2011) The

million song dataset. In: Proceedings of the 12th international

society for music information retrieval conference, ISMIR.

University of Miami, Miami, FL, USA. pp 591–596

31. Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy

layer-wise training of deep networks. In: Advances in neural

information processing systems 19. NIPS. MIT Press, Vancouver,

BC, Canada, pp 153–160

32. Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008)

Extracting and composing robust features with denoising

autoencoders. In: Proceedings of the 25th international confer-

ence on machine learning ICML. ACM, Helsinki, Finland,

pp 1096–1103. https://doi.org/10.1145/1390156.1390294

33. Smolensky P (1986) Information processing in dynamical sys-

tems: Foundations of harmony theory. Technical report,

University of Colorado, Boulder, Department of Computer

Science

34. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algo-

rithm for deep belief nets. Neural Comput 18(7):1527–1554.

https://doi.org/10.1162/neco.2006.18.7.1527

35. Goodfellow I, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley

D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. In: Advances in neural information processing systems 27.

NIPS. Curran Associates Inc., Montreal, QC, Canada,

pp 2672–2680

36. Han X, Leung T, Jia Y, Sukthankar R, Berg AC (2015) Matchnet:

unifying feature and metric learning for patch-based matching.

In: IEEE conference on computer vision and pattern recognition,

CVPR. IEEE Computer Society, Boston, MA, USA,

pp 3279–3286. https://doi.org/10.1109/CVPR.2015.7298948

37. Arandjelovic R, Zisserman A (2017) Look, listen and learn. In:

IEEE international conference on computer vision, ICCV. IEEE

Computer Society, Venice, Italy, pp 609–617. https://doi.org/10.

1109/ICCV.2017.73

38. Huang Y-S, Chou S-Y, Yang Y-H (2018) Generating music

medleys via playing music puzzle games. In: Proceedings of the

thirty-second conference on artificial intelligence, AAAI. AAAI

Press, New Orleans, LA, USA, pp 2281–2288

39. Salton G, McGill M (1984) Introduction to modern information

retrieval. McGraw-Hill Book Company, New York City. ISBN:

0-07-054484-0

40. Lamere P (2008) Social tagging and music information retrieval.

J New Music Res 37(2):101–114. https://doi.org/10.1080/

09298210802479284. ISSN: 0929-8215

41. Hamel P, Davies MEP, Yoshii K, Goto M (2013) Transfer
learning in MIR: sharing learned latent representations for music

audio classification and similarity. In: Proceedings of the 14th

international society for music information retrieval conference,

ISMIR. Curitiba, Brazil, pp 9–14

42. Law E, Settles B, Mitchell TM (2010) Learning to tag from open

vocabulary labels. In: Machine learning and knowledge discovery

in databases, European conference, ECML PKDD, Proceedings.

Part II. Springer, Barcelona, Spain, pp 211–226

43. Hofmann T (1999) Probabilistic latent semantic analysis. In:

UAI: proceedings of the fifteenth conference on uncertainty in

artificial intelligence. Morgan Kaufmann, Stockholm, Sweden,

pp 289–296

44. Schlüter J (2016) Learning to pinpoint singing voice from weakly

labeled examples. In: Proceedings of the 17th international

society for music information retrieval conference, ISMIR. New

York City, USA, pp 44–50

45. Hershey S, Chaudhuri S, Ellis DPW, Gemmeke JF, Jansen A,

Moore RC, Plakal M, Platt D, Saurous RA, Seybold B, Slaney M,

Weiss RJ, Wilson KW (2017) CNN architectures for large-scale

audio classification. In: IEEE international conference on

acoustics, speech and signal processing, ICASSP. IEEE, New

Neural Computing and Applications (2020) 32:1067–1093 1091

123

https://doi.org/10.1109/ICASSP.2014.6854953
https://doi.org/10.1109/ICASSP.2014.6854953
https://doi.org/10.1007/978-3-319-53547-0_25
https://doi.org/10.1109/TASLP.2016.2632307
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/CVPR.2015.7298948
https://doi.org/10.1109/ICCV.2017.73
https://doi.org/10.1109/ICCV.2017.73
https://doi.org/10.1080/09298210802479284
https://doi.org/10.1080/09298210802479284

Orleans, LA, USA, pp 131–135. https://doi.org/10.1109/ICASSP.

2017.7952132

46. Lee H, Pham PT, Largman Y, Ng AY (2009) Unsupervised

feature learning for audio classification using convolutional deep

belief networks. In: Advances in neural information processing

systems 22. NIPS. Curran Associates Inc, Vancouver, BC,

Canada, pp 1096–1104

47. Humphrey EJ, Bello JP (2012) Rethinking automatic chord

recognition with convolutional neural networks. In: 11th inter-

national conference on machine learning and applications,

ICMLA. IEEE, Boca Raton, FL, USA, pp 357–362. https://doi.

org/10.1109/ICMLA.2012.220

48. Nakashika T, Garcia C, Takiguchi T (2012) Local-feature-map

integration using convolutional neural networks for music genre

classification. In: INTERSPEECH, 13th annual conference of the

international speech communication association. ISCA, Portland,

OR, USA, pp 1752–1755

49. Ullrich K, Schlüter J, Grill T (2015) Boundary detection in music

structure analysis using convolutional neural networks. In: Pro-

ceedings of the 16th international society for music information

retrieval conference, ISMIR. Málaga, Spain, pp 417–422

50. Piczak KJ (2015) Environmental sound classification with con-

volutional neural networks. In: 25th IEEE international workshop

on machine learning for signal processing, MLSP. IEEE, Boston,

MA, USA, pp 1–6. https://doi.org/10.1109/MLSP.2015.7324337

51. Simpson AJR, Roma G, Plumbley MD (2015) Deep karaoke:

extracting vocals from musical mixtures using a convolutional

deep neural network. In: Latent variable analysis and signal

separation—12th international conference, LVA/ICA, Proceed-

ings. Springer, Liberec, Czech Republic, pp 429–436. https://doi.

org/10.1007/978-3-319-22482-4_50. ISBN: 978-3-319-22482-4

52. Phan H, Hertel L, Maaß M, Mertins A (2016) Robust audio event

recognition with 1-max pooling convolutional neural networks.

In: INTERSPEECH 17th annual conference of the international

speech communication association. ISCA, San Francisco, CA,

USA, pp 3653–3657. https://doi.org/10.21437/Interspeech.2016-

123

53. Pons J, Lidy T, Serra X (2016) Experimenting with musically

motivated convolutional neural networks. In: 14th international

workshop on content-based multimedia indexing, CBMI. IEEE,

Bucharest, Romania, pp 1–6. https://doi.org/10.1109/CBMI.2016.

7500246

54. Stasiak B, Monko J (2016) Analysis of time-frequency repre-

sentations for musical onset detection with convolutional neural

network. In: Proceedings of the federated conference on com-

puter science and information systems, FedCSIS. Gdańsk,

Poland, pp 147–152. https://doi.org/10.15439/2016F558

55. Su H, Zhang H, Zhang X, Gao G (2016) Convolutional neural

network for robust pitch determination. In: IEEE international

conference on acoustics, speech and signal processing, ICASSP.

IEEE, Shanghai, China. pp 579–583. https://doi.org/10.1109/

ICASSP.2016.7471741

56. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classi-

fication with deep convolutional neural networks. Commun ACM

60(6):84–90. https://doi.org/10.1145/3065386

57. Dieleman S, Schrauwen B (2014) End-to-end learning for music

audio. In: IEEE international conference on acoustics, speech and

signal processing, ICASSP. IEEE, Florence, Italy, pp 6964–6968.

https://doi.org/10.1109/ICASSP.2014.6854950

58. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O,

Graves A, Kalchbrenner N, Senior AW, Kavukcuoglu K (2016)

Wavenet: a generative model for raw audio. In: The 9th ISCA

speech synthesis workshop, SSW. ISCA, Sunnyvale, CA, USA,

p 125

59. Jaitly N, Hinton GE (2011) Learning a better representation of

speech soundwaves using restricted boltzmann machines. In:

IEEE international conference on acoustics, speech, and signal

processing, ICASSP. IEEE, Prague, Czech Republic,

pp 5884–5887. https://doi.org/10.1109/ICASSP.2011.5947700

60. Lee J, Park J, Kim KL, Nam J (2017) Sample-level deep con-

volutional neural networks for music auto-tagging using raw

waveforms. In: 14th sound and music computing conference,

SMC, Espoo, Finland

61. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep

network training by reducing internal covariate shift. In: Pro-

ceedings of the 32nd international conference on machine

learning, ICML. JMLR, Inc, Lille, France, pp 448–456

62. Nair V, Hinton GE (2010) Rectified linear units improve

restricted boltzmann machines. In: Proceedings of the 27th

international conference on machine learning ICML. Omnipress,

Haifa, Israel, pp 807–814

63. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhut-

dinov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

64. Nam J, Herrera J, Slaney M, Smith JO (2012) Learning sparse

feature representations for music annotation and retrieval. In:

Proceedings of the 13th international society for music infor-

mation retrieval conference, ISMIR. FEUP Edições, Porto, Por-

tugal, pp 565–570

65. Choi K, Fazekas G, Sandler MB, Cho K (2018) A comparison of

audio signal preprocessing methods for deep neural networks on

music tagging. In: 26th European signal processing conference.

EUSIPCO. IEEE, Roma, Italy, pp 1870–1874

66. Dörfler M, Grill T, Bammer R, Flexer A (2018) Basic filters for

convolutional neural networks applied to music: training or

design? Neural Comput Appl https://doi.org/10.1007/s00521-
018-3704-x. ISSN: 1433-3058

67. Kingma DP, Ba J (2015) Adam: a method for stochastic opti-

mization. In: 3th International conference on learning represen-

tations, ICLR, San Diego, CA, USA

68. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin

Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differen-

tiation in PyTorch. In: NIPS-W

69. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,

Duchesnay D (2012) Scikit-learn: machine learning in python.

J Mach Learn Res 12:2825–2830. https://doi.org/10.1007/

s13398-014-0173-7.2. ISSN: 15324435

70. McFee B, Raffel C, Liang D, Ellis DPW, McVicar M, Battenberg

M, Nieto O (2015) librosa: audio and music signal analysis in

python. In: Kathryn H, James B (eds) Proceedings of the 14th

python in science conference SciPy. Austin, TX, USA, pp 18 –

24. https://doi.org/10.25080/Majora-7b98e3ed-003

71. Defferrard M, Benzi K, Vandergheynst P, Bresson X (2017)

FMA: a dataset for music analysis. In: Proceedings of the 18th

international society for music information retrieval conference,

ISMIR. Suzhou, China, pp 316–323

72. Tzanetakis G, Cook PR (2002) Musical genre classification of

audio signals. IEEE Trans Speech Audio Process 10(5):293–302.

https://doi.org/10.1109/TSA.2002.800560. ISSN: 1063-6676

73. Kereliuk C, Sturm BL, Larsen J (2015) Deep learning and music

adversaries. IEEE Trans Multimed 17(11):2059–2071. https://doi.

org/10.1109/TMM.2015.2478068. ISSN: 1520-9210

74. Fabien G, Anssi K, Simon D, Alonso M, George T, Uhle C, Pedro

C (2006) An experimental comparison of audio tempo induction

algorithms. IEEE Trans Audio Speech Lang Process

14(5):1832–1844. https://doi.org/10.1109/TSA.2005.858509.

ISSN: 1558-7916

75. Marchand U, Peeters G (2016) Scale and shift invariant time/

frequency representation using auditory statistics: application to

rhythm description. In: 26th IEEE international workshop on

1092 Neural Computing and Applications (2020) 32:1067–1093

123

https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/ICMLA.2012.220
https://doi.org/10.1109/ICMLA.2012.220
https://doi.org/10.1109/MLSP.2015.7324337
https://doi.org/10.1007/978-3-319-22482-4_50
https://doi.org/10.1007/978-3-319-22482-4_50
https://doi.org/10.21437/Interspeech.2016-123
https://doi.org/10.21437/Interspeech.2016-123
https://doi.org/10.1109/CBMI.2016.7500246
https://doi.org/10.1109/CBMI.2016.7500246
https://doi.org/10.15439/2016F558
https://doi.org/10.1109/ICASSP.2016.7471741
https://doi.org/10.1109/ICASSP.2016.7471741
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICASSP.2014.6854950
https://doi.org/10.1109/ICASSP.2011.5947700
https://doi.org/10.1007/s00521-018-3704-x
https://doi.org/10.1007/s00521-018-3704-x
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.1109/TSA.2002.800560
https://doi.org/10.1109/TMM.2015.2478068
https://doi.org/10.1109/TMM.2015.2478068
https://doi.org/10.1109/TSA.2005.858509

machine learning for signal processing, MLSP. IEEE, Salerno,

Italy, pp 1–6. https://doi.org/10.1109/MLSP.2016.7738904

76. Bosch JJ, Janer J, Fuhrmann F, Herrera P (2012) A comparison of

sound segregation techniques for predominant instrument

recognition in musical audio signals. In: Proceedings of the 13th

international society for music information retrieval conference,

ISMIR. FEUP Edições, Porto, Portugal, pp 559–564

77. Soleymani M, Caro MN, Schmidt EM, Sha C-Y, Yang Y-H

(2013) 1000 songs for emotional analysis of music. In: Pro-

ceedings of the 2nd ACM international workshop on crowd-

sourcing for multimedia CrowdMM@ACM multimedia. ACM,

Barcelona, Spain, pp 1–6. https://doi.org/10.1145/2506364.

2506365. ISBN: 978-1-4503-2396-3

78. Òscar C (2010) Music recommendation and discovery–the long

tail, long fail, and long play in the digital music space. Springer,

Berlin. https://doi.org/10.1007/978-3-642-13287-2. ISBN: 978-3-

642-13286-5

79. Sturm BL (2014) The state of the art ten years after a state of the

art: future research in music information retrieval. J New Music

Res 43(2):147–172. https://doi.org/10.1080/09298215.2014.

894533

80. Sturm BL (2016) The ‘‘Horse’’ inside: seeking causes behind the

behaviors of music content analysis systems. Comput Entertain

14(2):3:1–3:32. https://doi.org/10.1145/2967507

81. Jonathan P, Russell James A, Peterson Bradley S (2005) The

circumplex model of affect: an integrative approach to affective

neuroscience, cognitive development, and psychopathology. Dev

Psychopathol 17(3):715734. https://doi.org/10.1017/

S0954579405050340. ISSN: 1469-2198

82. Montgomery DC (2012) Design and analysis of experiments, 8th

edn. Wiley, Hoboken

83. Goos P, Jones B (2011) Optimal design of experiments: a case

study approach, 1st edn. Wiley, Hoboken

84. Hinton GE (1989) Connectionist learning procedures. Artif Intell

40(1):185–234. https://doi.org/10.1016/0004-3702(89)90049-0.

ISSN: 0004-3702

85. Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for

implicit feedback datasets. In: Proceedings of the 8th IEEE

international conference on data mining (ICDM). IEEE Computer

Society, Pisa, Italy, pp 263–272. https://doi.org/10.1109/ICDM.

2008.22

86. Gelman A, Hill J (2006) Data analysis using regression and

multilevel/hierarchical models. Cambridge University Press,

Cambridge

87. Searle SR, Casella G, McCulloch CE (2006) Variance compo-

nents. Wiley, Hoboken

88. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE.

J Mach Learn Res 9(November):2579–2605

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:1067–1093 1093

123

https://doi.org/10.1109/MLSP.2016.7738904
https://doi.org/10.1145/2506364.2506365
https://doi.org/10.1145/2506364.2506365
https://doi.org/10.1007/978-3-642-13287-2
https://doi.org/10.1080/09298215.2014.894533
https://doi.org/10.1080/09298215.2014.894533
https://doi.org/10.1145/2967507
https://doi.org/10.1017/S0954579405050340
https://doi.org/10.1017/S0954579405050340
https://doi.org/10.1016/0004-3702(89)90049-0
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22

	One deep music representation to rule them all? A comparative analysis of different representation learning strategies
	Abstract
	Introduction
	Framework for deep representation learning
	Problem definition
	Learning sources
	Algorithm
	Annotation

	Latent factor preprocessing

	Representation network architectures
	Base architecture
	Audio preprocessing
	Sampling

	Multi-source architectures with various degrees of shared information
	MTL training procedure
	Implementation details

	Evaluation
	Target datasets
	Baselines
	Experimental design
	Implementation details
	Feature extraction and preprocessing
	Target dataset-specific models

	Results and discussion
	Single-source and multi-source representation
	Effect of number of learning sources and fusion strategy
	Single source versus multi-source
	Compactness
	Multiple explanatory factors

	Conclusion
	Acknowledgements
	References

