Skip to main content
Log in

Empirical approach for bearing capacity prediction of geogrid-reinforced sand over vertically encased stone columns floating in soft clay using support vector regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Due to the complex, elaborate and expensive estimation of bearing capacity (qrs) of geogrid-reinforced sand bed resting over a group of vertically encased stone columns floating in soft clay, it is required to develop a precise empirical model, which is supposed to be nonlinear. To date, there is no established bearing capacity equation available on this topic. The aim of this work is to develop a precise qrs prediction model using support vector regression (SVR) technique. A total of 245 experimental datasets were collected and used to train and test the SVM models estimating the qrs. Three SVR models were developed based on three different kernel functions, namely exponential radial basis kernel function (ERBF), radial basis kernel function (RBF) and polynomial kernel function (POLY), and their performances were examined. Out of the three SVR models, one with ERBF was found to be the best one, having the lowest statistical error and maximum generalization ability of the training and testing data. The performance of SVR-ERBF model was compared with adaptive neuro-fuzzy inference system (ANFIS) model, and it was observed that SVR-ERBF model outperforms ANFIS model to predict qrs. A sensitivity analysis was also conducted to identify the relative importance and contribution of each input variable on output (qrs) prediction. Finally, using the SVR-ERBF model, an empirical equation is proposed to predict qrs for practical application purposes. Obtained results approve that the SVR-ERBF model can be used as a powerful and reliable alternative to solve highly nonlinear problems such as indirect estimation of qrs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bergado DT, Alfaro MC, Chai JC (1991) The granular pile: its present state and future prospects for improvement of soft Bangkok clay. Geotech Eng J Southeast Asian Geotech Soc 22(2):143–173

    Google Scholar 

  2. Raithel M, Kempfert HG, Kirchner A (2002) Geotextile-encased columns (GEC) for foundation of a dike on very soft soils. In: Proceedings of the seventh international conference on geosynthetics, Nice, France, pp 1025–1028

  3. Murugesan S, Rajagopal K (2006) Geosynthetic-encased stone columns: numerical evaluation. Geotext Geomembr 24(6):349–358. https://doi.org/10.1016/j.geotexmem.2006.05.001

    Article  Google Scholar 

  4. Murugesan S, Rajagopal K (2007) Model tests on geosynthetics-encased stone column. Geosynth Int 14(6):346–354. https://doi.org/10.1680/gein.2007.14.6.346

    Article  Google Scholar 

  5. Zhang Y, Li T, Wang Y (2011) Theoretical elastic solutions for foundations improved by geosynthetic-encased columns. Geosynth Int 18(1):12–20. https://doi.org/10.1680/gein.2011.18.1.12

    Article  Google Scholar 

  6. Ali K, Shahu JT, Sharma KG (2012) Model tests on geosynthetic-reinforced stone columns: a comparative study. Geosynth Int 19(4):292–305. https://doi.org/10.1680/gein.12.00016

    Article  Google Scholar 

  7. Almeida MSS, Hosseinpour I, Riccio M (2013) Performance of a geosynthetic encased column (GEC) in soft ground: numerical and analytical studies. Geosynth Int 20(4):252–262. https://doi.org/10.1680/gein.13.00015

    Article  Google Scholar 

  8. Ghazavi M, Afshar JN (2013) Bearing capacity of geosynthetic encased stone columns. Geotext. Geomembr. 38:26–36. https://doi.org/10.1016/j.geotexmem.2013.04.003

    Article  Google Scholar 

  9. Hosseinpour I, Almeida MSS, Riccio M (2015) Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns. Geosynth Int 22(6):428–438. https://doi.org/10.1680/gein.15.00023

    Article  Google Scholar 

  10. Miranda M, Costa AD (2016) Laboratory analysis of encased stone columns. Geotext Geomembr 44(3):269–277. https://doi.org/10.1016/j.geotexmem.2015.12.001

    Article  Google Scholar 

  11. Gu M, Zhao M, Zhang L, Han J (2016) Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests. Geosynth Int 23(2):100–112. https://doi.org/10.1680/jgein.15.00035

    Article  Google Scholar 

  12. Fattah MY, Zabar BS, Hassan HA (2016) Experimental analysis of embankment on ordinary and encased stone columns. Int J Geomech 16(4):04015102. https://doi.org/10.1061/(asce)gm.1943-5622.0000579

    Article  Google Scholar 

  13. Geng L, Tang L, Cong SY, Ling XZ, Lu J (2016) Three-dimensional analysis of geosynthetic-encased granular columns for liquefaction mitigation. Geosynth Int 24(1):45–59. https://doi.org/10.1680/jgein.16.00014

    Article  Google Scholar 

  14. Nazir R, Moayedi H, Subramaniam P, Ghareh S (2017) Ground improvement using SPVD and RPE. Arab J Geosci 10:515. https://doi.org/10.1007/s12517-017-3284-6

    Article  Google Scholar 

  15. Murugesan S, Rajagopal K (2010) Studies on the behavior of single and group of geosynthetic encased stone columns. J Geotech Geoenviron Eng 136(1):129–139. https://doi.org/10.1061/(asce)gt.1943-5606.0000187

    Article  Google Scholar 

  16. Mitchell JK (1981) Soil improvement- state of the art report. In: Proceedings of 10th ICSMFE, vol. 4, Balkema, Rotterdam, Netherlands, pp 509–565

  17. Abdullah CH, Edil TB (2007) Behaviour of geogrid-reinforced load transfer platforms for embankment on rammed aggregate piers. Geosynth Int 14(3):141–153. https://doi.org/10.1680/gein.2007.14.3.141

    Article  Google Scholar 

  18. Deb K, Samadhiya NK, Namdeo JB (2011) Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay. Geotext Geomembr 29(2):190–196. https://doi.org/10.1016/j.geotexmem.2010.06.004

    Article  Google Scholar 

  19. Arulrajah A, Abdullah A, Bouzza A (2009) Ground improvement technique for railway embankments. Ground Improv 162(1):3–14. https://doi.org/10.1680/grim.2009.162.1.3

    Article  Google Scholar 

  20. Han J, Gabr MA (2002) Numerical analysis of geosynthetic-reinforced and pile supported earth platform over soft soil. J Geotech Geoenviron Eng 128(1):44–53. https://doi.org/10.1061/(asce)1090-0241(2002)128:1(44)

    Article  Google Scholar 

  21. Yilmaz I, Kaynar O (2011) Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl 38(5):5958–5966. https://doi.org/10.1016/j.eswa.2010.11.027

    Article  Google Scholar 

  22. Moayedi H, Rezaei A (2017) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2990-z

    Article  Google Scholar 

  23. Moayedi H, Hayati S (2018) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech 18(6):06018009. https://doi.org/10.1061/(asce)gm.1943-5622.0001125

    Article  Google Scholar 

  24. Mosallanezhad M, Moayedi H (2017) Developing hybrid artificial neural network model for predicting uplift resistance of screw piles. Arab J Geosci. https://doi.org/10.1007/s12517-017-3285-5

    Article  Google Scholar 

  25. Padmini D, Ilamparuthi K, Sudheer KP (2008) Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput Geotech 35(1):33–46. https://doi.org/10.1016/j.compgeo.2007.03.001

    Article  Google Scholar 

  26. Armaghani DJ, Mohamad ET, Momeni E, Narayanasamy MS, Amin MFM (2015) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ 74(4):1301–1319. https://doi.org/10.1007/s10064-014-0687-4

    Article  Google Scholar 

  27. Sadrossadat E, Heidaripanah A, Osouli S (2016) Prediction of the resilient modulus of flexible pavement subgrade soils using adaptive neuro-fuzzy inference systems. Constr Build Mater 123(1):235–247. https://doi.org/10.1016/j.conbuildmat.2016.07.008

    Article  Google Scholar 

  28. Kaya Z (2016) Predicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniques. Int J Geomech 16(4):04015095. https://doi.org/10.1061/(asce)gm.1943-5622.0000607

    Article  Google Scholar 

  29. Emamgholizadeh S, Bahman K, Bateni SM, Ghorbani H, Marofpoor I, Nielson JR (2017) Estimation of soil dispersivity using soft computing approaches. Neural Comput Appl 28(1):207–216. https://doi.org/10.1007/s00521-016-2320-x

    Article  Google Scholar 

  30. Tekin E, Akbas SO (2017) Predicting groutability of granular soils using adaptive neuro-fuzzy inference system. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3140-3

    Article  Google Scholar 

  31. Moayedi H, Hayati S (2018) Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3555-5

    Article  Google Scholar 

  32. Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. The MIT press, Cambridge

    MATH  Google Scholar 

  33. Lu M, Abourizk SM, Hermann UH (2001) Sensitivity analysis of neural networks in spool fabrication productivity studies. J Comput Civ Eng 15(4):299–308. https://doi.org/10.1061/(asce)0887-3801(2001)15:4(299)

    Article  Google Scholar 

  34. Samui P (2008) Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput Geotech 35(3):419–427. https://doi.org/10.1016/j.compgeo.2007.06.014

    Article  MATH  Google Scholar 

  35. Vapnik VN, Golowich SE, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processing systems. Morgan Kaufmann, San Mateo

    Google Scholar 

  36. Pal M, Deswal S (2008) Modeling pile capacity using support vector machines and generalized regression neural network. J Geotech Geoenviron Eng 134(7):1021–1024. https://doi.org/10.1061/(asce)1090-0241(2008)134:7(1021)

    Article  Google Scholar 

  37. Kordjazi A, Pooya Nejad F, Jaksa MB (2014) Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 55:91–102. https://doi.org/10.1016/j.compgeo.2013.08.001

    Article  Google Scholar 

  38. Kohestani VR, Hassanlourad M (2016) Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines. Int J Geomech 16(1):04015038. https://doi.org/10.1061/(asce)gm.1943-5622.0000509

    Article  Google Scholar 

  39. Aljanabi QA, Chik Z, Allawi MF, El-Shafie AH, Ahmed AN, El-Shafie A (2017) Support vector regression-based model for prediction of behavior stone column parameters in soft clay under highway embankment. Neural Comput Appl. 1:1–9. https://doi.org/10.1007/s00521-016-2807-5

    Article  Google Scholar 

  40. Sreedhara BM, Rao M, Mandal S (2018) Application of an evolutionary technique (PSO–SVM) and ANFIS in clear-water scour depth prediction around bridge piers. Neural Comput Appl 1:1–9. https://doi.org/10.1007/s00521-018-3570-6

    Article  Google Scholar 

  41. Debnath P, Dey AK (2018) Prediction of bearing capacity of geogrid-reinforced stone columns using support vector regression. Int J Geomech 18(2):04017147. https://doi.org/10.1061/(asce)gm.1943-5622.0001067

    Article  Google Scholar 

  42. Moayedi H, Hayati S (2018) Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput 66:208–219. https://doi.org/10.1016/j.asoc.2018.02.027

    Article  Google Scholar 

  43. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  44. Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems, MIT Press, Cambridge, pp 281–287

  45. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, London

    Book  MATH  Google Scholar 

  46. Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model induction with support vector machines: Introduction and applications. J Comput Civil Eng 15(3):208–216. https://doi.org/10.1061/(asce)0887-3801(2001)15:3(208)

    Article  Google Scholar 

  47. Goh AT, Goh S (2007) Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34(5):410–421. https://doi.org/10.1016/j.compgeo.2007.06.001

    Article  Google Scholar 

  48. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of 5th annual workshop on computational learning theory. ACM Press, New York, pp 144–152

    Google Scholar 

  49. Smola AJ, Scholkopf B (1998) A tutorial on support vector regression. In: NeuroCOLT2 technical report series. Report No. NC2- TR-1998-030

  50. Samui P, Sitharam TG, Kurup PU (2008) OCR prediction using support vector machine based on piezocone data. J Geotech Geoenviron Eng 134(6):894–898. https://doi.org/10.1061/(asce)1090-0241(2008)134:6(894)

    Article  Google Scholar 

  51. Debnath P, Dey AK (2017) Bearing capacity of geogrid reinforced sand over encased stone columns in soft clay. Geotext Geomembr 45(6):653–664. https://doi.org/10.1016/j.geotexmem.2017.08.006

    Article  Google Scholar 

  52. Debnath P, Dey AK (2016) Prediction of laboratory peak shear stress along the cohesive soil–geosynthetic interface using artificial neural network. Geotech Geol Eng 35(1):445–461. https://doi.org/10.1007/s10706-016-0119-2

    Article  Google Scholar 

  53. Al-Anazi AF, Gates ID (2012) Support vector regression to predict porosity and permeability: effect of sample size. Comput Geosci 39:64–76. https://doi.org/10.1016/j.cageo.2011.06.011

    Article  Google Scholar 

  54. Gunn SR (2001) Support vector machines for classification and regression. In: Technical report. University of Southampton, Southampton. http://www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip. Accessed 16 May 2018

  55. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans, Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  56. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. pp 73–91

  57. Zadeh L (1984) Making computers think like people: the term fuzzy thinking is pejorative when applied to humans, but fuzzy logic is an asset to machines in applications from expert systems to process control. Spectrum IEEE 21(8):26–32. https://doi.org/10.1109/mspec.1984.6370431

    Article  Google Scholar 

  58. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  59. Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing. Commun ACM 37:77–84

    Article  Google Scholar 

  60. Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proc IEEE 83:345–377

    Article  Google Scholar 

  61. Kasabov NK (1998) Foundations of neural networks, fuzzy systems, and knowledge engineering. A Bradford book. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  62. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7:1–13

    Article  MATH  Google Scholar 

  63. Tsukamoto Y (1979) An approach to fuzzy reasoning method. In: Gupta MM, Ragade RK, Yager RR (eds) Advances in fuzzy set theory and applications. North Holland, Amsterdam, pp 137–149

    Google Scholar 

  64. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans, Syst Man Cybern 15(1):116–132. https://doi.org/10.1109/tsmc.1985.6313399

    Article  MATH  Google Scholar 

  65. Sugeno M, Kang G (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28(1):15–33. https://doi.org/10.1016/0165-0114(88)90113-3

    Article  MathSciNet  MATH  Google Scholar 

  66. Jalalifar H, Mojedifar S, Sahebi A, Nezamabadi-Pour H (2011) Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system. Comput Geotech 38(6):783–790. https://doi.org/10.1016/j.compgeo.2011.04.005

    Article  Google Scholar 

  67. Van LW, Kerre EE (1999) Defuzzification: criteria and classification. Fuzzy Sets Syst 108:159–178

    Article  MathSciNet  MATH  Google Scholar 

  68. Oltean M, Grosan C (2003) A comparison of several linear genetic programming techniques. Complex Syst 14:285–314

    MathSciNet  MATH  Google Scholar 

  69. Nedushan BA (2012) Prediction of elastic modulus of normal and high strength concrete using ANFIS and optimal nonlinear regression models. Constr Build Mater 36:665–673. https://doi.org/10.1016/j.conbuildmat.2012.06.002

    Article  Google Scholar 

  70. Singh R, Kainthola A, Singh TN (2012) Estimation of elastic constant of rocks using an ANFIS approach. Appl Soft Comput 12(1):40–45. https://doi.org/10.1016/j.asoc.2011.09.010

    Article  Google Scholar 

  71. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller II. IEEE Trans Syst Man Cybern 20:419–435

    Article  MathSciNet  MATH  Google Scholar 

  72. Verschuuren G (2007) Excel 2007 for scientists and engineers. Holy Macro! Books, Uniontown

  73. Tajeri S, Sadrossadat E, Bazaz JB (2015) Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses. Int J Rock Mech Min Sci 80:107–117. https://doi.org/10.1016/j.ijrmms.2015.09.015

    Article  Google Scholar 

  74. Alavi AH, Sadrossadat E (2016) New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses. Geosci Front 7(1):91–99. https://doi.org/10.1016/j.gsf.2014.12.005

    Article  Google Scholar 

  75. Monjezi M, Ghafurikalajahi M, Bahrami A (2011) Prediction of blast-induced ground vibration using artificial neural networks. Tunn Undergr Spa Tech 26(1):46–50. https://doi.org/10.1016/j.tust.2010.05.002

    Article  Google Scholar 

  76. Majdi A, Rezaei M (2013) Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural Comput Appl 23(2):381–389. https://doi.org/10.1007/s00521-012-0925-2

    Article  Google Scholar 

  77. Leung CKY, Mandy YM, Herman CY (2006) Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams. J Compos Constr 10(2):125–138. https://doi.org/10.1061/(asce)1090-0268(2006)10:2(125)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Debnath.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in presenting this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Table 7.

Table 7 Experimental datasets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A.K., Debnath, P. Empirical approach for bearing capacity prediction of geogrid-reinforced sand over vertically encased stone columns floating in soft clay using support vector regression. Neural Comput & Applic 32, 6055–6074 (2020). https://doi.org/10.1007/s00521-019-04092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04092-1

Keywords

Navigation