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Abstract 

The emerging complex circumstances caused by economy, technology, and government 
policy and the requirement of low-carbon development of power grid lead to many challenges 
in the power system coordination and operation. However, the real-time scheduling of 
electricity generation needs accurate modeling of electricity demand forecasting for a range of 
lead times. In order to better capture the non-linear and non-stationary characteristics and the 
seasonal cycles of future electricity demand data, a new concept of the integrated model is 
developed and successfully applied to research the forecast of electricity demand in this paper. 
The proposed model combines adaptive Fourier decomposition method, a new signal 
pre-processing technology, for extracting useful element from the original electricity demand 
series through filtering the noise factors. Considering the seasonal term existing in the 
decomposed series, it should be eliminated through the seasonal adjustment method, in which 
the seasonal indexes is calculated and should multiply the forecasts back to restore the final 
forecast. Besides, a newly proposed moth-flame optimization algorithm is used to ensure the 
suitable parameters of the least square support vector machine which can generate the 
forecasts. Finally, the case studies of Australia demonstrated the efficacy and feasibility of the 
proposed integrated model. Simultaneously, It can provide a better concept of modeling for 
electricity demand prediction over different forecasting horizons. 
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1. Introduction 

Electricity demand forecasting is a strategic and momentous technology and it can 
provide many operating decisions, such as energy transactions in competitive electric power 
markets [1-2]. Alternatively, producers and consumers can adjust their production schedule 
and select the best bidding strategy based on the forecasting information. Inaccurate demand 
forecasting may raise the operating cost of a utility company, which means considerable 
money cannot be saved. For example, the operating cost will increase by 10 million pounds 
every year for every 1% forecasting error increases [3]. It is effective early warning 
information of electricity demand that ensures the balance between supply and demand. 
Therefore, precise electricity demand forecasting is of great importance for society and 
economic development. 

Electricity demand series usually display several significant characteristics such as 
highly volatility and seasonality. Modeling electricity demand is complicated by the nonlinear 
and seasonal link to various factors. It is of importance to obtain and analyze the inner 
patterns and variation for the electricity demand forecasting. Furthermore, reliability and 
quality of the modeling should be enhanced significantly with the credibility of forecast. 
Based on the accurate information of demand forecasting, the power generation can be 
scheduled timely, thus unexpected and precarious load shedding events would be avoided. 

The objectives of this work are to model the electricity demand and then use the 
proposed model to address the limitation of the baseline models thus improving the forecast 
performance. More specifically, this paper makes a fourfold contribution in the literature as 
follows. 

(1) A new concept of the integrated model is introduced for electricity demand prediction 
over different forecasting horizons. It can provide insight for forecasting electricity demand 
with noise information and seasonal cycles to include in a method. 

(2) Considering removing the noise information in electricity demand data, an efficient 
method-based adaptive Fourier decomposition technology is first conducted to extract the 
useful element through cutting the noise part of time series. 

(3) There is no guarantee that the seasonal cycles in a electricity demand data would 
improve the forecasting accuracy. So an important method in pre-processing input variable is 
seasonal adjustment, which can eliminate the seasonal factor in the decomposed series. 

(4) In order to ensure the accuracy and robustness, the moth-flame optimization 
algorithm is used to tune the parameters of forecast engine, i.e. regularization parameter γ  

and kernel parameter 2σ . Through the experimental design and simulation, it proves that the 
proposed integrated model can guarantee the high accuracy of electricity demand forecasting. 

After first reviewing a comprehensive literature (Section 2), the methodology supported 
in this paper is presented in Section 3. Then the proposed integrated model is introduced in 
Section 4. Section 5 illustrates the data preparation and analysis. The results of the proposed 
model and baseline models are provided in Section 6. And Section 7 gives conclusions and 
future advances. 



 
 

2. Literature review 

In the literature, several researchers have studies around the theme of forecasting of 
electricity demand/load, and numerous methods have been used for short timeframes. These 
methods can be categorized as traditional models and artificial intelligence models. 

Traditionally, these methods are based on statistical theory, including, Box–Jenkins 
method, regression analysis, exponential smoothing, grey forecast model, etc. Box-Jenkins 
method has been widely used in the short-term electricity demand forecasting [4-5]. But this 
model requests that the time series satisfy stationary condition; otherwise it may generate 
poor electric power forecasting accuracy in variation [6]. Although the grey forecast model 
does not need statistical assumption, its forecasting accuracy is proportional to the degree of 
dispersion of the raw time series [7]. In the past few years, some methods based on artificial 
intelligence techniques, such as support vector regression (SVR), artificial neural network 
(ANN), fuzzy system, knowledge-based expert systems and other methods have been 
implemented for electricity demand forecasting. And there are many studies mentioned about 
next hour load forecasting. With the deepening of research and complexity, the accuracy of 
the forecasting methods based on artificial intelligence model has markedly improved. For 
example, Wang et al. [8] applied SARIMA, seasonal exponential smoothing model and SVM 
to combine for electricity demand forecasting and its results are promising. Xia et al. [9] used 
radial basis function neural networks for short-term load forecasting, and the accuracy and 
stability of the developed verified by experimental results. Bercu et al. [10] proposed the 
properties of a dynamic coupled modeling to the intraday prediction of energy consumption 
and illustrated on a real individual load curve. Hsu and Chen [11] employed back propagation 
neural network (BPNN) to forecast Taiwan’s annual regional peak load and the forecast 
results of the proposed model are promising. However, the BPNN method has several 
drawbacks, such as slow convergence and often being trapped in a local minimum [11]. 
Zhang et al. [13] embed a Recurrent Neural Network into an encoder-decoder framework, 
which can provide some ideas for Sequence-to-Sequence Learning in electricity forecasting. 
Besides, the forecast performance is mainly influenced by the approximation degree of it 
parameter values for the forecast engines. Inappropriate parameter values of forecast engines 
may lead to over-fitting or under-fitting, thus a main process to improve the forecasting 
accuracy is how to choose the proper parameter values of forecast engines. However, there is 
still not a general principle for choosing the best parameter values of forecast engine models 
[14]. 

Over the past few years, all kinds of intelligent optimization algorithms have already 
been developed rapidly. Meta-heuristics algorithms can be classified into individual-based 
and population-based algorithms, which have achieved competitive contributions when 
solving optimization problems including parameter optimization problem. Some intelligent 
algorithms are based on the animals foraging behavior, such as particle swarm optimization 
algorithm (PSO) [15-16], genetic algorithm (GA) [17-18] and ant colony optimization 
algorithm [19-20], which are not only applied to solve the optimization problems, but also 
used to tune the parameter values of forecasting engine models. Recently, many human based 
intelligence algorithms have been developed to efficiently resolve the complex optimization 



 
 

problems [21-23]. The popular approaches-human-based include teaching learning based 
approach (TLBA), tabu search algorithm (TSA) [24], imperialist competitive algorithm (ICA) 
[25], simulated annealing (SA) [26], etc. These intelligent optimization algorithms can 
perform the parameter optimization problems through maintaining proper balance between 
exploitation and exploration processes. For instance, Piltan et al. [27] applied PSO and GA to 
attain parameters of the models in order to forecast and analyze energy in the Iranian metal 
industry and the results indicate significant improvement. Barman et al. [28] introduced a new 
technique, called grasshopper optimization algorithm (GOA) to tune suitable parameters of 
Support Vector Machine (SVM), and the results can indicate the superiority of the proposed 
model. Zhang et al. [29] designed a deep Convolutional Neural Network (CNN) for 
object-level video advertising, which demonstrate the effectiveness of the proposed model. 

A key point in electricity demand/load forecasting is the appropriate treatment of 
seasonal behavior of the time series [30-35]. Since seasonality is a major feature of electricity 
demand, it should not be ignored in the process of modeling. Therefore, the methods for 
processing seasonal elements have been a non-negligible issue in electricity demand analysis. 
According to Zhang et al. [36], deseasonalization can dramatically reduce forecasting errors 
in many seasonal time series forecasting. It suggests that more attention should be focused on 
the estimation of current and current trend levels. The method used for removing the seasonal 
elements is generally the simple moving average. However, these methods have often been 
criticized when they are utilized alone due to lacking an explicit model concerning the 
decomposition of the original series [37]. Besides, their estimates for observations in the most 
recent seasonal patterns do not always keep the same degree of reliability as those of central 
observations. In reality, the seasonal component adjustment method can be used to eliminate 
the seasonal factor through separating the seasonal variable and trend variable from the time 
series, which can make short-term forecasting more efficient. Therefore, the seasonal 
component adjustment method is considered to preprocess the seasonal electricity demand 
data and then the data eliminated seasonal component is used for forecasting in this paper. 

The seasonal component prediction can be carried out by the seasonal patterns 
adjustment method. In addition, the electricity demand is always influenced by various factors, 
such as social and economic environments, electrical power unit, dynamic electricity prices, 
etc. While abovementioned approaches improve the forecasting accuracy to some extent, they 
use the original electricity demand series directly to model without considering the inherent 
characteristics of the data. It can increase the convergence difficulty due to noise component 
cased by unstable factors, which lead to bad forecasting accuracy. The recent tools in signal 
analysis seem promising, such as Ensemble Mode Decomposition (EMD) family. They can be 
applied to non-stationary time series of electricity demand, but the disadvantage of EMD is 
that the number of Intrinsic Mode Functions can be changed according to harmonic content of 
signals [38]. And the tool based on Wavelet Transform suffers from the problems of different 
mother wavelets and the required number of decomposition levels. In order to overcome the 
drawbacks of EMD family, this study applied Adaptive Fourier Decomposition (AFD) 
technique for electricity demand data-preprocessing. 



 
 

3. Methodology 

In this section, we introduce the detailed methodologies applied for electricity demand 
forecasting.  

3.1. Adaptive Fourier Decomposition 

As a generalization of the conventional Fourier decomposition method combined with 
the greedy algorithm, Adaptive Fourier Decomposition (AFD) is suitable for separating a 
signal with noise by overlapping frequency ranges [39]. The AFD method contains the 
adaptive decomposition of a given analytic signal ( )G t  that is 2H  space into a series of 

mono-components, ( )ns t  and a standard remainder ( )NR t , which can be shown as 
follows. 
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The characteristics of ( )jtenB  are only depended on the array of na . The main 

procedure of the AFD is to find suitable na  array which can get high energy convergence 
rate. 

The AFD extracts sequentially mono-components from high-energy components to 
low-energy components. In order to find the energy relationship easily, the reduced 
remainders nG  can be defined by: 
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where 1nR −  is the standard remainders of nG . 
Using the reduced remainders nG , Eq (1) can be calculated as follows. 
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Based on Eq (4), the energy of ( )G t  is expressed by: 
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To realize a high energy convergence rate, it should be kept the energy of the standard 

remainder ( ) 2

1
jt

NG e+  at minimum. Thus, the maximal projection principle is used to find 

an as follows. 
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AFD decomposes signals based on their energy distribution instead of frequency 
analysis. 

Before decomposing, the mean value of the measured noisy signal s(t) is removed to 
prevent the DC offset effect. The noisy signal can be projected to H2 space through the Hilbert 
transform [40]. 
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Considering the analytic signal, the analytic representation of the noisy signal can be 
shown in Eq (9), which is regarded as the input of the AFD. 

( ) ( ) ( ){ }s t jH s t= +G t                                                    (9) 

In the AFD technique, a stop rule for the iterative decomposition process is based on the 
estimated signal-to-noise ratio (SNR) of the noisy signal. The aim of denoising is to make the 
mean square error (MSE) as small as possible. 

2
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where L is the number of total data. The reconstructed signal should be minimized as follows. 
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where SNRe is the estimated signal-to-noise ratio of the noisy signal, which can be defined by 
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3.2. Seasonal component adjustment 

Generally, electricity demand datasets is more influenced by the seasonal factors. For 
seasonal electricity demand, some methods should be applied to identify the window of 
seasonal components and eliminate the seasonal components. Based on the window of 
seasonal components, season adjustment method is used to address the seasonality that 
existed in the original data. 

A set of data ( )1 2, , Ty y y T ms=  is expressed as y11, y 12, ..., y1s; y21, y22, ..., y2s; …; 



 
 

ym1, ym2, ..., yms, where m and s are the number of cycles and data items in each cycle, 
respectively. Then the average value can be calculated as: 

( )1 2+ / 1,2, ,k k ksy y y s k m= + + = ky                                    (13) 

Normalize the data items msy , and the specific form is defined as: 
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                                        (14) 

Then, the i-th seasonal index values can be calculated as follows. 
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Using the seasonal indexes, the series without the seasonal effect can be calculated based 
on Eq. (15) as follow. 
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Finally, a new data without the seasonal effect is realized through rearranging the data 
items 11 11 1, , sy y y′ ′ ′ , 21 22 2, , sy y y′ ′ ′ ,… 1 2, ,m m msy y y′ ′ ′  to 1 2 , Ty y y′ ′ ′， ， . 

3.3. Moth-flame optimization technique 

Inspired by the transverse orientation navigation behaviors of moths, MFO could be 
utilized to solve optimization problems with constrained and unknown search spaces [41]. 
Similar to other optimization algorithms, MFO possesses local and global search capabilities. 
In MFO algorithm, the key components are moths and flames where both of them are carried 
out to represent solutions. But they differ in the way of their treatment and their updating each 
iteration. The moths are actual search agents that move around the search space. And flames 
are the best position of moths which have been obtained so far [42]. 

Since the MFO algorithm is a population-based algorithm, the set of moths could be 
represented in a matrix as follows: 
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where n is the number of moths and d is the number of variables or dimension. 
For all the moths, the corresponding fitness function values can be stored in an array as 

follows: 

( )1 2
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where n is the number of moths. The Eq (18) is the fitness function value for each moth. And 
the position vector (e.g. the first row in Eq (17)) of each moth is passed to the fitness function 
and the output of the objective function is assigned to the corresponding moth as its objective 
value (e.g. OM1 in Eq (18)). 

Hence, the flames could be represented a matrix similar to Eq (17) as follow: 
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So there is also an array for storing the corresponding fitness function values as follows: 

( )1 2
T

nOF OF OF OF=                                               (20) 

where n is the number of moths. 
The MFO generally contains three-tuple approximation functions that can be defined as 

follows: 

( ), ,MFO I P T=                                                          (21) 

where I is a initialization function that creates a random population of moths and their 
correspond fitness values is defined as follows: 

( ) ( ) ( ) ( )( ), * +M i j ub i lb i rand lb i= −                                       (22) 

( )OM FitnessFunction M=                                                (23) 

where ub and lb represent the upper and lower bounds of the variables, respectively. 
Then, a logarithmic spiral function is employed to update the position of a moth, which 

is defined as follows. 

( ) ( ), 2bt
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where S is the spiral function, iM  represents the i-th moth, and jF  indicates the j-th flame. 

i j iD F M= −  is the distance between the i-th moth and the j-the flame while b is a constant 
and t is a random number in [r, 1]. The spiral equation allows a moth to explore around a 
flame and not necessarily in the space between them. In addition, each moth updates its 
position with respect to a specific flame to avoid local optimum and increase global 
exploration. So the positions of the moths are updated by the updated flames, thus exploring 
the search space more effectively. 

To balance between the global exploration and local exploitation of the moth and flame, 
the number of flames is adaptively decreased as follows. 

1Nflame NO round N l
T
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where N and T indicate the maximum number of flames and iterations, respectively, while l is 
the current number of iteration. 

Overall, the logarithmic spiral search is employed in MFO. In Eq. (25), the flame 
decrement strategy is carried out to balance between exploration and exploitation to achieve 
global optimality. Fig. 1 shows the flowchart of the Moth-flame optimization technique. The 
MFO shows superior capabilities of solving the optimization problems like multimodal and 
unimodal optimization functions [43]. And the pseudo-code of the MFO algorithm is depicted 
in Appendix A. 



 
 

 
Fig. 1. The flowchart figure of the Moth-flame optimization technique. 

3.4. Least squares support vector machine 

LSSVM, a modification of standard SVM, overcomes the shortcomings of time 
consuming when analyzing huge data, which uses the least square linear system at the loss 
function and the equality constraints [44].  

Definite that there is a given training set { } 1
, n

i i i
x y

=
, where ix  is the input data, and iy  

is the output data. In the modeling of LSSVM, the approximation error iξ  is taken as the 
loss function. The optimization problem of LSSVM can be defined as follows. 
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Subject to 
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LSSVM model can be denoted as follow: 

( ) ( )Tx xϕ= +f ω b                                                       (28) 

Different from the standard SVM, the optimization problem in the LSSVM is introduced 
as follows: 
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where iα  is the Lagrange multiplier.  
Through the Karush-Kuhn-Tucker (KKT) conditions, the solutions could be acquired by 

partially differentiating with respect to w , b, ie  and iα : 
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When the variables w and e are removed, it can be described as a linear system [45-46]. 
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where [ ]1, , T
nα α α=  and the Mercer’s condition ( ) ( ) ( ), = T

i j i jK x x x xϕ ϕ  is called 
kernel function. Therefore, the function estimation the LSSVM model becomes 
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where ,i bα  are the solutions of Eq. (30), and ( ), iK x x  is the kernel function. 

In general, kernel function of SVM could be divided into the whole kernel function and 
the local kernel function [47]. Besides abovementioned two functions, there are some other 
ones as 

(1) The linear kernel: ( ), Tx y x y=K  

(2) The poly kernel: ( ) ( )2, 1 /
dTx y x y σ= +K  

(3) The radial basis function (RBF): ( ) ( )2, / 2x y exp x y= − − 2K σ  

The RBF kernel used in this paper is frequently used for various problems for its high 
resolution power [48]. A major advantage of LSSVM approach lies in the capacity of 
capturing the nonlinear patterns hidden in the power load demand [49]. 



 
 

4. The new concept of the integrated model 

In this paper, the proposed integrated model (AFD-S-OLSSVM) is developed to forecast 
the electricity demand. The flowchart of the proposed model is shown in Fig. 2, which is 
composed of data preprocessing module, seasonality adjustment module, parameters 
optimization module, forecast module, and restore and evaluation module. The detailed 
physical interpretations of each module can be presented as follows: 

 

 
Fig. 2. The flowchart of the proposed integrated model. 
 
Step 1: Data preprocessing module. Due to the high noise and fluctuation, it is not easy to 
achieve the forecast of electric power curve accurately. In this study, the electricity demand 
time series is decomposed through the adaptive Fourier decomposition technology. The 
objective of this step is to filter the inherent noise factor and extract the useful component 
from the original electricity demand series in order to improve the effectiveness and accuracy. 
Step 2: Seasonality adjustment module. Electricity demand data is usually influenced by 
various factors, thus it often presents periodicity and seasonal characteristic. The reason why 
data preprocessing module is the first step is that forecasting the electricity demand directly 
may lead to poor forecasting accuracy. After eliminating the noise signal, the seasonal aspects 
of the electricity demand data should be considered. Seasonal adjustment method is used to 
eliminate the seasonal components, after which the seasonal indexes can be calculated. 
Step 3: Parameters optimization module. In an effort to achieve a high level of the accuracy 
and stability of prediction, the MFO algorithm is utilized to determine the optimal parameters 
of forecast engine in this section because the initial values are random. Through the 
optimization, the values of the regularization parameter γ  and kernel parameter 2σ  can be 



 
 

confirmed as 160.3516 and 1.9101, respectively. 
Step 4: Forecast module. The forecast values of the electricity demand can be obtained 
through the least squares support vector machine method optimized by the optimization 
algorithm. It should be noted that the forecast performance depends on the parameters of the 
forecast engine, so it is key to carry out the parameters optimization module. 
Step 5: Restore and evaluation module. In order to obtain the ultimate forecasts, it is essential 
to multiply the seasonal index to the forecasting value of the trend component. And the 
performance of the proposed integrated model can be evaluated quantitatively by the test 
criteria. 

5. Data illustration and analysis 

This section presents the data sources in this research and the pre-processing of 
variables. 

5.1. Data preparation 

Three historic electricity demand time series are collected from New South Wales (NSW) 
and Queensland (QLD) over February 1st to February 28th, 2014, and from South Australia 
(SA) over August 1st to August 31st, 2013 in Australia's market (www.aemo.com.au). Thus, 
three simulation experiments were used to evaluate the effectiveness and universality of the 
proposed model. 

The time gap of observation series is half-hourly which means one day have 48 
observation values. To further confirm the forecasting performance of the proposed model 
under different data types, electricity time series is also divided into two sets: the training data 
sampling including 1104/1104/1248 data points and the testing data sampling including 240 
data points. And statistical measures (i.e., mean, median value, maximum (Max), minimum 
(Min), median (Med), standard deviation (SD), skewness (Skew.) and kurtosis (Kurt.)) of the 
datasets are calculated and shown in Table 1. 

 
Table 1. Statistical indicators of the electricity demand samples in NSW, QLD and SA 
markets 

Calendar mode 
of markets Data set Numbers Statistical indicator (* units: MW) 

Mean* Max* Min* Med* SD Skew Kurt 

NSW 
All samples 1344 8121.61 11095.83 5730.32 8276.46 1182.87 -0.17 2.07 

Training 1104 8093.51 11095.83 5730.32 8233.21 1187.90 -0.11 2.10 
Testing 240 8250.88 10113.55 5954.51 8567.08 1153.09 -0.48 2.05 

QLD 
All samples 1344 6012.26 8077.46 4520.73 6118.91 855.55 0.13 2.24 

Training 1104 6013.79 8077.46 4520.73 6077.94 875.52 0.23 2.25 
Testing 240 6005.23 7197.43 4627.38 6308.41 758.55 -0.55 1.85 

SA 
All samples 1488 1416.15 2178.98 891.94 1415.78 257.25 0.20 2.46 

Training 1248 1434.05 2178.98 891.94 1435.75 261.65 0.18 2.37 
Testing 240 1323.08 1734.40 936.01 1367.93 210.18 -0.20 2.04 

 



 
 

5.2. Input variable pre-processing 

In the proposed model, the adaptive Fourier decomposition technology is used to 
decompose the original electricity demand series. The detailed mechanism for the 
decomposition process in the adaptive Fourier decomposition method has been presented in 
Section 3.1. The raw electricity demand signal is decomposed to series mono-components in 
view of the energy distribution. And the desired signal and the noise factors are separated by 
the adaptive Fourier decomposition technology. In order to illustrate the process of 
decomposition, the noise factors were extracted from the raw electricity demand. Taken NSW 
electricity market as an example, Fig. 3 shows the raw electricity demand and the noise 
factors produced by the data decomposition. From the curve of noise factors, it presents the 
noise information which is redundant for the time series. In order to avoid the poor 
forecasting accuracy, the noise information should be eliminated. 



 
 

 

Fig. 3. The electricity demand curve of after the process of filtering noise and eliminating 
seasonality. 
 

After the process of filtering noise, the seasonal components are significant. Thus, the 
seasonal tendency should be extracted from the filtering signal through the abovementioned 



 
 

seasonal adjustment method. Form the view of each half-hour period in load data, the 
seasonal coefficients should belong to half an hour period. In the theory of seasonal 
adjustment method, the seasonal index values can be obtained and final forecast should be 
achieved by multiplying the seasonal indexes to restore because the forecasting results are 
carried out by the trend components. Through the seasonal adjustment method, their 
corresponding seasonal indexes in different markets can be calculated, as shown in Table 2. 
And the curve after eliminating the seasonal factor is presented also shown in Fig. 3 and it can 
be shown that there is no obvious seasonal tendency. 

 
Table 2. The seasonal factors for each NSW QLD and SA markets 

 Seasonal Index  Seasonal Index 
Time NSW QLD SA Time NSW QLD SA 
0:00 0.895484 0.906666 1.114292 12:00 1.107111 1.066699 0.962568 
0:30 0.869996 0.876789 1.10565 12:30 1.111022 1.072146 0.952094 
1:00 0.839876 0.848804 1.04682 13:00 1.115473 1.076969 0.942523 
1:30 0.808679 0.823991 0.96882 13:30 1.119231 1.082671 0.935992 
2:00 0.782584 0.813215 0.896507 14:00 1.122058 1.089487 0.933938 
2:30 0.765491 0.804425 0.840525 14:30 1.125567 1.099475 0.934728 
3:00 0.757736 0.800652 0.80205 15:00 1.131484 1.103399 0.937315 
3:30 0.758034 0.796042 0.777879 15:30 1.138838 1.109115 0.944052 
4:00 0.766568 0.79697 0.763525 16:00 1.144118 1.117291 0.958841 
4:30 0.785927 0.80473 0.755645 16:30 1.14369 1.129437 0.98538 
5:00 0.818268 0.816076 0.754069 17:00 1.135592 1.141108 1.026871 
5:30 0.86121 0.835355 0.761976 17:30 1.120086 1.139047 1.084919 
6:00 0.908242 0.858764 0.784948 18:00 1.101156 1.137996 1.154785 
6:30 0.953166 0.899075 0.828071 18:30 1.085323 1.134978 1.222282 
7:00 0.991835 0.943639 0.890306 19:00 1.076455 1.144978 1.267858 
7:30 1.022573 0.986127 0.959519 19:30 1.070476 1.144101 1.279339 
8:00 1.046745 1.00998 1.019418 20:00 1.058438 1.126943 1.263221 
8:30 1.066588 1.024524 1.058412 20:30 1.036908 1.104211 1.235331 
9:00 1.082489 1.034609 1.073407 21:00 1.011488 1.080254 1.204007 
9:30 1.093547 1.043593 1.068007 21:30 0.98882 1.06229 1.166652 
10:00 1.099608 1.048157 1.04827 22:00 0.970127 1.026862 1.120193 
10:30 1.102317 1.048215 1.021245 22:30 0.952732 0.990555 1.072474 
11:00 1.103549 1.052244 0.99519 23:00 0.934272 0.95733 1.045296 
11:30 1.10474 1.056942 0.975703 23:30 0.91428 0.933071 1.059089 

 

6. Case studies and discussion 

This section presents the performance of the proposed integrated model for electricity 
demand forecasting. And the simulation results and analysis is implemented in MATLAB 
2014a, LS-SVM lab v1.8 toolbox, Photoshop, self-written Matlab programs, and a computer 
with an Inter(R) Core(TM) i5-4590 CPU @3.30GHz and windows 7 professional operating 
system. 



 
 

6.1. Model performance evaluation 

Several validation criteria are used to establish comprehensively the accuracy of the 
proposed integrated model and the benchmark models. These error measure indexes include 
the mean absolute error (MAE), the root mean square error (RMSE), the mean absolute 
percentage error (MAPE), the standard deviation error (SDE), the Theil Inequality Coefficient 
(THI) and the directional symmetry (DS). And the definition is described in Table 3. 

 
Table 3 Descriptions related to the validation criteria. 
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where ˆty  and ty  are the forecast and the true time series value of t times, respectively. T is 
the number of forecasting sample. 

6.2. Case 1: NSW market 

In this case study, the electricity demand data collected from NSW market sampled per 
thirty minutes from February 1st to February 28th, 2014 were carried out to perform multi-step 
forecasting (+1, +2, +3 point forecast). It should be noted that the +2, +3 point is forecasted 
independently using the values of previous +1, +2 point cumulative forecast. In order to 
evaluate the performance of the proposed AFD-S-OLSSVM model, seven benchmark models 
are used for validation purpose. The benchmark models include BPNN (back propagation 
neural network) model, LSSVM model, OLSSVM (LSSVM model optimized by the 
Moth-flame optimization algorithm) model, AFD-OLSSVM (OLSSVM model pre-processed 
by the adaptive Fourier decomposition technology) model, S-OLSSVM (OLSSVM model 
pre-processed by seasonal adjustment method) model, EEMD-OLSSVM (OLSSVM 



 
 

pre-processed by Ensemble Empirical Mode Decomposition) model and EEMD-S-OLSSVM 
model. The multi-step forecasting results of the proposed integrated model and the 
abovementioned benchmark models are summarized in Table 4. Fig 4 visualizes the absolute 
forecasted error comparison of different prediction methods. 

It can be seen from Table 4 that the proposed AFD-S-OLSSVM model has the best 
forecasting performance with the minimum value of MAE as 26.998, RMSE as 35.28, MAPE 
as 0.333 and SDE as 35.28 over one-step forecast, the minimum value of MAE as 37.343, 
RMSE as 49.374, MAPE as 0.463 and SDE as 49.368 over two-step forecast, and the 
minimum value of MAE as 50.542, RMSE as 70.385, MAPE as 0.621 and SDE as 70.358. 
The best one of the compared benchmark models is AFD-OLSSVM model with the MAPE 
value of one-step forecast, two-step forecast and three-step forecast as 0.353, 0.48 and 0.811, 
respectively, while the worst on is BPNN model with the MAPE value of one-step forecast, 
two-step forecast and three-step forecast as 0.788, 1.092 and 1.162, respectively. Through 
comparing the AFD-OLSSVM model with AFD-S-OLSSVM model, S-OLSSVM model with 
OLSSVM model, and EEMD-OLSSVM model with EEMD-S-OLSSVM model, is can be 
seen that the method of seasonal adjustment is necessary and significant. For the electricity 
demand data with clear seasonal trend, the seasonal adjustment is an essential method to 
improve the forecasting performance. As a result that the seasonal adjustment method makes 
the overestimated and underestimated forecast ones to be much closer to the actual. 

 
Table 4. Performance evaluation of forecasting models using electricity demand data in NSW 
market. 
Forecasting models Step MAE RMSE MAPE SDE THI DS 

BPNN 
1 63.801 82.148 0.788 82.070 1.18E-06 0.779 
2 88.686 117.320 1.092 116.768 1.69E-06 0.763 
3 93.986 123.886 1.162 123.234 1.78E-06 0.788 

LSSVM 
1 56.025 76.340 0.695 76.328 1.10E-06 0.783 
2 78.386 106.109 0.971 104.913 1.53E-06 0.742 
3 90.770 125.465 1.138 125.363 1.81E-06 0.788 

OLSSVM 
1 55.634 74.776 0.689 74.726 1.08E-06 0.775 
2 74.016 98.647 0.916 98.304 1.42E-06 0.771 
3 89.294 123.126 1.118 122.933 1.77E-06 0.783 

AFD-OLSSVM 
1 28.643 36.908 0.353 36.743 5.32E-07 0.875 
2 38.658 50.439 0.480 50.356 7.27E-07 0.863 
3 66.350 98.465 0.811 98.169 1.42E-06 0.808 

AFD-S-OLSSVM 
1 26.998 35.280 0.333 35.280 5.08E-07 0.883 
2 37.343 49.374 0.463 49.368 7.11E-07 0.825 
3 50.542 70.385 0.621 70.358 1.01E-06 0.829 

S-OLSSVM 
1 45.676 65.207 0.561 65.200 9.39E-07 0.808 
2 63.784 93.760 0.781 93.595 1.35E-06 0.779 
3 78.638 110.195 0.970 110.191 1.59E-06 0.821 

EEMD-OLSSVM 
1 45.990 61.882 0.574 61.792 8.92E-07 0.850 
2 70.837 96.745 0.875 96.737 1.39E-06 0.783 
3 77.201 105.424 0.960 105.038 1.52E-06 0.825 

EEMD-S-OLSSVM 
1 38.765 54.052 0.485 54.037 7.79E-07 0.858 
2 60.177 88.217 0.742 88.056 1.27E-06 0.796 
3 76.858 105.045 0.942 105.0282 1.51E-06 0.817 

 



 
 

As shown in Table 4, OLSSVM model performs better than LSSVM model, it can be 
seen that the value of improvement MAPE percentages from one-step, two-step and three-step 
of LSSVM model by OLSSVM model are up to 2.10%, 6.30% and 1.94%, respectively. 
Obviously, the MFO algorithm can make contribution to the forecasting performance. In 
order to show the forecasting effectiveness, the absolute errors of different models are vividly 
depicted in Fig. 4. From Fig. 4, we can conduct a conclusion that the proposed model has 
better accuracy than other models. So it indicates that the proposed model can beat the 
benchmark models in terms of performance. 



 
 

 

Fig 4. Boxplots of the absolute forecasted error over the testing period in NSW market. 



 
 

6.3. Case 2: QLD market 

In an effort to evaluate comprehensively the proposed integrated model, the electricity 
demand data collected from QLD market is applied in this sub-section to make comparisons. 
Moreover, the abovementioned benchmark models are used to highlight the effectiveness and 
applicability of the proposed model. And the corresponding forecasting results of these 
models over one-step forecast, two-step and three-step forecast are provided in Table 5. The 
values of MAPE are combined visually in the bottom of Fig. 5. Besides, the curve of forecast 
and the scatter diagram given by the proposed model and benchmark models have also 
presented in Fig. 5. 

 
Table 5. Performance evaluation of forecasting models using electricity demand data in QLD 
market. 

Forecasting models Step MAE RMSE MAPE SDE THI DS 

BPNN 
1 46.500 59.179 0.766 58.978 1.62E-06 0.804 
2 60.243 82.501 0.987 81.958 2.25E-06 0.733 
3 63.808 86.366 1.067 85.586 2.36E-06 0.779 

LSSVM 
1 44.648 59.098 0.742 59.058 1.61E-06 0.829 
2 57.270 80.061 0.947 80.051 2.18E-06 0.758 
3 63.451 91.902 1.043 91.828 2.51E-06 0.804 

OLSSVM 
1 42.927 57.230 0.712 57.223 1.56E-06 0.821 
2 56.452 79.040 0.932 79.039 2.16E-06 0.767 
3 63.412 91.498 1.042 91.450 2.50E-06 0.800 

AFD-OLSSVM 
1 27.787 35.077 0.464 35.006 9.57E-07 0.888 
2 40.593 53.951 0.672 53.771 1.47E-06 0.821 
3 48.809 71.298 0.802 71.298 1.95E-06 0.808 

AFD-S-OLSSVM 
1 21.235 25.864 0.360 25.725 7.06E-07 0.875 
2 27.381 35.973 0.465 35.592 9.82E-07 0.842 
3 37.125 52.239 0.618 52.188 1.43E-06 0.838 

S-OLSSVM 
1 36.388 47.001 0.618 46.449 1.28E-06 0.838 
2 47.116 61.393 0.799 60.106 1.68E-06 0.838 
3 58.756 80.090 0.995 78.862 2.19E-06 0.842 

EEMD-OLSSVM 
1 24.141 31.307 0.403 31.271 8.54E-07 0.850 
2 27.332 37.892 0.465 37.852 1.03E-06 0.821 
3 41.662 58.533 0.691 58.451 1.60E-06 0.825 

EEMD-S-OLSSVM 
1 22.526 29.956 0.373 29.950 8.18E-07 0.838 
2 34.941 49.394 0.578 49.137 1.35E-06 0.829 
3 53.101 76.474 0.881 75.897 2.09E-06 0.821 

 



 
 

 
Fig. 5. Measured vs. predicted electricity demand output at 1st, 2nd and 3rd forecast step. 

 
The ensemble forecasting results of each model present that the proposed integrated 

model (AFD-S-OLSSVM) can improve the forecasting accuracy significantly based on a 
comparison with BPNN, LSSVM, OLSSVM, AFD-OLSSVM, S-OLSSVM, 
EEMD-OLSSVM and EEMD-S-OLSSVM models according to six evaluation criteria. 
Particularly, the MAPE values of the proposed model are 0.618, 0.799, 0.995 over one-step, 
two-step and three-step forecast, respectively. From Table 5, the proposed 
decomposition-ensemble model shows the significant improvement through comparing the 
AFD-OLSSVM model with OLSSVM model and the AFD-S-OLSSVM model with 
AFD-OLSSVM model. In addition, the ensemble model based on AFD technology obtains 
higher performance metrics than that of based on EEMD technology. So the proposed 
integrated model obviously outperforms all the benchmark models. 

To vividly express the forecasting effectiveness, the statistical histograms of MAPE 
values are shown in Fig. 5, which indicates that the proposed integrated model superior and 
robust for electricity demand forecasting. From Fig. 5, the proposed model shows apparently 



 
 

a better curve fitting of the actual electricity demand over one-step and multi-step forecast and 
the scatter plots of measured and predicted electricity demand for the one-step, two-step and 
three-step forecasting horizons using the proposed integrated model are also depicted in Fig. 5. 
R value represents the relationship between the forecasted and observed data. Although the R 
value is generally goes down as more forecasting steps, it is clear that the proposed model can 
yield high forecasting accuracy. 

6.4. Case 3: SA market 

This sub-section also focuses on the effectiveness of the proposed integrated model. And 
the electricity demand data collected from SA market in August 1st to August 31st, 2013 were 
used. Table 6 displays the forecasting results of the proposed model and the benchmark 
model. From the results of Table 6, it shows that the proposed model also ranks first for 
one-step and multi-step electricity demand forecasting with the minimum value of the 
forecasting performance indices, such as MAE, RMSE, MAPE and SDE. Besides, the Theil 
inequality (THI) coefficient of the AFD-S-OLSSVM model is 1.46E-05, 2.09E-05 and 
2.66E-05 for one-step, two-step and three-step forecast. The THI index is a relative quantity, 
which indicates that the closer is closed to 0, the smaller the error is. Generally, the range of 
the THI coefficient is [0, 1]. And the values of the DS index are also presented in Table 6. 
Table 6. Performance evaluation of forecasting models using electricity demand data in SA 
market. 

Forecasting models Step MAE RMSE MAPE SDE THI DS 

BPNN 
1 28.808 42.689 2.165 42.335 2.38E-05 0.779 
2 36.746 53.005 2.779 52.938 2.95E-05 0.733 
3 53.641 73.811 4.046 71.573 4.11E-05 0.738 

LSSVM 
1 27.355 39.930 2.046 39.434 2.22E-05 0.792 
2 38.023 52.163 2.841 51.233 2.90E-05 0.750 
3 46.356 64.111 3.476 62.196 3.57E-05 0.763 

OLSSVM 
1 27.224 39.693 2.034 39.178 2.21E-05 0.792 
2 37.601 52.020 2.812 51.074 2.90E-05 0.754 
3 46.153 63.888 3.452 62.141 3.56E-05 0.783 

AFD-OLSSVM 
1 13.392 21.404 1.013 21.340 1.19E-05 0.871 
2 19.876 28.760 1.523 27.790 1.60E-05 0.808 
3 29.459 42.291 2.228 41.321 2.35E-05 0.783 

AFD-S-OLSSVM 
1 12.338 18.989 0.926 18.875 1.06E-05 0.904 
2 17.774 25.149 1.354 24.561 1.40E-05 0.833 
3 24.763 34.649 1.907 33.674 1.93E-05 0.821 

S-OLSSVM 
1 20.727 26.182 1.608 25.480 1.46E-05 0.850 
2 27.778 37.481 2.144 36.238 2.09E-05 0.792 
3 35.734 47.748 2.757 46.465 2.66E-05 0.800 

EEMD-OLSSVM 
1 25.737 33.201 1.987 32.994 1.85E-05 0.825 
2 35.562 49.568 2.650 48.723 2.76E-05 0.717 
3 45.878 63.590 3.470 63.053 3.54E-05 0.733 

EEMD-S-OLSSVM 
1 20.727 26.182 1.608 25.480 1.46E-05 0.850 
2 27.778 37.481 2.144 36.238 2.09E-05 0.792 
3 35.734 47.748 2.757 46.465 2.66E-05 0.800 

 
In addition, Fig. 6 shows the performance comparison of different models in terms of 



 
 

MAPE. As shown in Fig. 6, among the error bars of all the models, the proposed model has 
the lowest forecasting value over different horizon forecasting. Meanwhile, the MAPE values 
of the proposed model are the lowest value as 1.608, 2.144 and 2.757. 
Remark The forecasting results made by the models with adaptive Fourier decomposition are 
superior to those from the other models without the decomposition process. Besides, the 
results of the models with seasonal adjustment method have the great accuracy than those 
models without seasonal adjustment method. That is to say, the adaptive Fourier 
decomposition and seasonal adjustment method play an important role in improve the 
forecasting performance for the data with complex nonlinear characteristic and an obvious 
seasonal tendency. Besides, the proposed model takes obvious advantage in one-step, 
two-step and three-step forecasting horizons. It should be noted that the optimization 
algorithm can provide the suitable parameters for forecast engine. 

 



 
 

 
Fig. 6. Performance comparison of different models in terms of MAPE in SA market. 

 



 
 

7. Conclusions and future advances 

Forecasting of electricity demand is of crucial importance for daily operation and 
management of the power system. In recent years, the accuracy and effectiveness of 
electricity forecasting technology have been considered in order to capture the non-linear and 
non-stationary characteristics of electricity demand. Accurate electricity demand forecasting 
plays a significant role in demand-side for optimal economic dispatch to maximize renewable 
and minimize the operational cost. With respect to the forecast model, it may fail to produce 
day-to-day forecast if the necessary factors are not considered. 

In this research study, a new concept of the integrated model is developed for electricity 
demand forecasting. The non-linear and non-stationary characteristics and the seasonal cycles 
in electricity demand data can be captured by input variable pre-processing method. The 
adaptive Fourier decomposition technology is firstly applied to process the electricity demand 
data, after which the seasonality in the processing series is removed by the seasonal 
adjustment method before conducting prediction. In addition, moth-flame optimization 
algorithm is used to tune the parameters of the forecast engine. Through the experimental 
results of the three markets of Australia, it shows that the proposed integrated model 
outperforms the benchmark model. Meanwhile, based on the adaptive Fourier decomposition 
method and seasonal adjustment method, the results indicate that this input variable 
pre-processing strategy can significantly improve the accuracy of electricity demand 
forecasting. Thus, the proposed model can provide an effective and powerful mining tool to 
support forecasting of electricity demand. 

However, the challenges in Smart Grids from a stochastic and data-driven point of view 
are processing continually. Precise electricity demand forecasts are potential for demand 
management to balance power supply in the grid. Demand side is a key component toward 
sustainability and efficiency in smart grid because the ultimate goal of smart grid is to energy 
supply and balance effectively. Importantly, smart grid enables the participants and decision 
maker of electricity market to adjust and make their bidding strategies. In this regard, the 
accurate forecast of electricity demand in smart grids is an unavoidable problem as growing 
recognition of electricity grid modernization. Besides, with the change of inherent the 
character of data in power engineering, prediction in smart grid environment becomes more 
complex than the conventional energy market. 

This paper main focuses on an efficient approach for short-term electricity demand 
forecast. Besides, long-term prediction for the electricity demand is also very useful for power 
scheduling. The most important factors in long-term prediction are the predictor variables and 
vanishing gradient problem. When using the developed model to perform long-term demand 
forecasting, the results may be sensitive to the initial value and the model may lead to poor 
adaptability for emergencies. When dealing with long-term problems, the hidden 
dependencies/patterns existing in electricity demand should be fully considered in the 
forecasting system, so the accuracy and stability of the demand forecasting improved. In 
addition, long-term electricity demand forecasting can rely on the combination of social 
economic development, econometric and artificial intelligence methods. 

From the perspective of superior performance, some sequential modeling methods would 



 
 

be widely used, such as Recurrent Neural Network, long short-term memory units. In the 
power system coordination and operation, the factors that exert an impact on electricity 
demand forecasting are diversifying. It is potential to develop an ideal deep learning method 
for electricity demand forecasting. One future challenge will be the relevance between precise 
measurement of electricity and appropriate learning framework. It would be also be 
interesting to extend our work to deep learning methods. 
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