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Abstract 

 

Generative adversarial networks have received a remarkable success in many computer vision 

applications for their ability to learn from complex data distribution. In particular, they are capable 

to generate realistic images from latent space with a simple and intuitive structure. The main focus 

of existing models has been on improving the performance, however there is a little attention to 

make a robust model. In this paper, we investigate solutions to the super resolution problems- in 

particular perceptual quality - by proposing a robust GAN. The proposed model unlike the standard 

GAN employs two generators and two discriminators in which, a discriminator determines the 

samples are from real data or generated one, while another discriminator acts as classifier to return 

the wrong samples to its corresponding generators. Generators learn a mixture of many distribution 

from prior to the complex distribution. This new methodology is trained with the Feature Matching 

loss and allows us to return the wrong samples to the corresponding generators, in order to 

regenerated the real-look samples. Experimental results in various datasets show the superiority of 

the proposed model compared to the state of the art methods.  

Keywords: Image processing, Perceptual quality, Data distribution, Generative adversarial 

network, Classification.   

      1. Introduction 

Image super-resolution is a technique that attracts much attention and progress in recent years. 

Despite the great progress and achievements but still there is no unique solution exists, in particular 

for high magnification ratios. Each pixel loss which used by the existence approaches do not 

properly capture perceptual variances between output and input images [5][35]. Thus, for the high 

upscaling factor (i.e. scale factor 4 or more), it is difficult to recover the high frequencies details in 

the images. Generative adversarial network (GANs) is a conglomerate of deep learning and 

generative model that is proposed by Goodfellow et al. [15]. GANs models are known to produce 

realistic samples from latent space in a simple manner. In their original setting, they employ two 

neural networks based on adversarial training in a minimax game. Generator G is trained to 

produce fake samples from a noise space, whereas the discriminator learns how to make difference 

between fake (generated samples) and real (true data) samples. Since the advent of GANs, many 



works have been appeared which using GANs in different computer vision applications in 

particular, simulating complex data distributions such as images, videos and texts [11][20][22]. 

However, they suffer from a major problem of perceptual quality and also are extremely difficult to 

train. Given this, limits the GANs applicability, and recently some attempts have been appeared 

based on joint supports of the data distribution and using hierarchical models in contrast to the 

original GAN which is a direct model. In this paper, we propose a novel model that generalizing 

the GAN framework to multiple generators and discriminators, in terms of stabilizing the training 

process as well as improving sample diversity. Borrowing from GMAN [8] and [33], we propose to 

employ two generators with two discriminators, which are based on an image-to-image model. The 

proposed architecture termed as DualGAN, as shown in Figure 1. Similar to the regular GAN, the 

objective of the generators, are to increase the mistake of the discriminator. Moreover, unlike the 

other GAN variations that using multi generators in their structure, our proposed model 

simultaneously trains both the generators and the data distribution will be obtained from the 

mixture of their induced distributions. In terms of the fact, multiple generators may affect the trivial 

solution, in which all the generators attempt to generate similar sample images. Based on this 

observation we address this problem by designing two discriminators in our architecture; such that, 

one of them determines the real or fake samples; while another one, act as classifier in order to 

identify the related generators that generated the wrong samples. We prove that, our model is able 

to effectively learn complex data distribution, in order to generate real-look samples and could 

significantly improve the image’s quality even at the highest scale factor   . The main objective 

of this paper lies on: (i) propose a new variation generative adversarial model to train a couple of 

generators and discriminators with enforcing a better-Jensen-Shannon-JS divergence among the 

generators; (ii) optimizing objective function towards minimizing the JS divergence between the 

mixture of data distributions and the real data distribution by using Feature matching loss; (iii) a 

comprehensive evaluation on real-world datasets in order to prove the effectiveness of our model 

with respect to other variation of GANs. The paper including introduction consists of six main 

sections. In next section we review and summarize the GAN based models. Section 3 and 4, 

presents the proposed architecture with the mixture generator-discriminator extension to the GAN 

framework. Section 5 contains the experimental results and related discussions. Finally, Section 6 

concludes the paper. It’s worth to mention that, throughout the paper, we use the following 

notations for sake of brevity;     (low-resolution image), and      (super-resolution image).  

 

2. Related works 

There was a drastic growth for generative models in the last few years. Substantial methods have 

been proposed to address the image super-resolution problems [1][3][4][6][16]. The main concept 

of Generator adversarial network (GAN) [15] states an adversarial game between two networks; D-

discriminator network and G-generator network. The generator draws the synthetic images from 

the noise input and the discriminator receives input from the real and the synthetic samples, 

determines whether is it fake (generated by generator) or from the real image. 
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Figure 1: DualGAN consists of a pairs of generators and discriminators;       and      . The generative model with a couple 
generators trains for generating realistic artificial images and the discriminative model with a couple discriminators, along with 

determing whether an image is real or fake, it also identify the realted generators that generated the wrong samples. We use the weight-

sharing constraint for all layers of the generative models,         . We also use the weights-sharing constraint for the last layer of the 

discriminative model,         . The “weight-sharing constraint” permits the proposed model how to learn a joint data distribution of 
images, and also reduce the model parameters at the optimal level.  

 

Moreover, GAN alternatively optimizes the generator and discriminator using stochastic gradient-

based learning. However, training of GAN suffers from the main problems, as mode collapse, and 

difficulties in the implementation and unstable results [6][11][29]. In the standard GAN, there is no 

way to control what to be generated, since there is no information for the learning generators. 

However, [2] proposed a new method in order to define more condition for the generator so that the 

generated image can be designed with desired target. Most GAN-based methods follow same 

structure and using a generator and a discriminator in their model with a minor variation. Some of 

the most realist GAN variations in this categories are; InfoGAN [7], DCGAN [16], WGAN [13], 

ImprovedGAN [29] and DGAN [33]. These methods in fact are straight-forward to design and 

implementation. Recent attempts to improve the GANs results and solve the training issues by 

training additional generators and discriminators. D2GAN [17] is a new approach which using two 

discriminator in its architecture to find a rational distribution across the data by minimizing the KL 

(Kullback-Leibler) and the reverse KL divergence. Another framework is proposed by Durugkar et 

al. [8], which uses several discriminators to improve the generator learning. Recently, Arora et al. 

[14] proposed MIX+GAN approach which is another direction of GAN. The method is based on 

training several generators and discriminators with different parameters. However, this method is 

computationally expensive to train, due to lack of parameter sharing and there is no mechanism to 

enforce the divergence between generators. Tolstikhin et al. [19] proposed a new variation of GAN, 

termed as AdaGAN, to introduce a robust reweighting scheme for preparing a training data for 

GAN. Another model in what we follow is MAD-GAN that proposed by Ghosh et al. [25]. It trains 

multiple generators with a multi-class discriminator. Their model designed to improve the objective 

function of discriminator to push multiple generators towards generating diverse modes. Reed et al. 

[20] also proposed a GAN-based method which is able to generate 64
2
 images and can barely 

generate intense object details. Accordingly, StackGAN [22] is proposed to stack two GANs in 

order to improve the [20] by generating 256
2
 images. SS-GAN [26] is another method which 

comprises two GANs that, one is used for generating a surface normal map, and another GAN, 

takes input from the generated samples and noise z then produce an output image. In [34], the 

author present LR-GAN method which learns to generate image foreground and background by 



using different generators and a single discriminator. The authors experimentally proved that by 

separating the generation of foreground and background image content, they can produce sharper 

images. Some other researchers believe that, instead of using different generators that perform 

separately to produce different task, the models can use multiple generators with similar structures 

wherein each generators refining the details of the results from the previous generator. Then the 

last generator will be generating the final result. When using this strategy the model can share the 

weights and parameters among generators, and it helps to smooth the training process. LAPGAN 

[23] is another method that uses multiple generators to generate images from coarse to fine using 

Laplacian pyramid [27]. Both generators have the same structure; each generator takes a noise 

vector as input, and then output will be a generated image. The only difference in the structures of 

these generators is the size of input and output dimension. With respect to the existing GAN-based 

image super resolution techniques, that have achieved a successful progress, however there are still 

some unsolved problems such as training instability and high-resolution generation [33][46]. In 

term of the fact, in this paper we want to introduce a new mode of GANs to significantly use the 

potentioal advantages of generators and discriminators. The motivation of the proposed model is to 

jointly produces multiple samples and it would increase the chance of sharing more details with 

model distribuations. Multiple generators focus to completing the missing details for producing the 

higher resolution images. Multiple discriminators allows the model to accurately classify the 

generated samples, and stablize the model training in the best possible way. In addition, it is easy to 

see that the training difficulty will be decreased in the proposed methodology.  

 

3. Dual Generative Advesarial Network 

The standard GAN involves two networks in its structure; G-generative and D-discriminative; 

which are simultaneously trained. Let X and Z be the true variable and latent variables. The 

generative model uses data distribution;   (   )    ( )  ( | ) to generate samples. If *      +, 

where   is a function, the generator defines a distribution    from Gaussian distribution and 

generate h, then apply the   on the generated h and achieve     ( ). Similarly, for the 

discriminator model *      ́+, where   is a function from binary space [0, 1]. Training the 

discriminator enforce the output to get high value 1 when x is from distribution       and a low 

value 0 when x is from the distribution    . The GAN framework with a G and a D can be jointly 

trained as [15]: 

                                          (   )          ,     ( )-       ,    .   ( ( ))/-              (1) 

Practically the above equation will be solved by the following material. 
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where   ,   are the discriminator and generator parameters,   indicates the learning rate and t is 

number of iteration. The Proposed DualGAN is illustrated in Figure 1; our contribution in 

generative model is to use mixture of many distributions which is available in the training space, 

instead of one. The proposed model consists of two generators       and two discriminators 

      such as, one of the discriminator acts as multi-class classifier. A high resolution image 
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       is downsampled to a low resolution image by:      ̂(   )  ,   -

     , 

based on, the width, height and color channel, (     ).  

3.1. Generative models 

Let        be the generated images from   and    by using       ,       distribution, 

respectively. We denote the distribution of the generators as,        and both the generators using 

multilayer perceptrons [36]: 
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 (  

   (   
 (  
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   (   
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where m and n indicates the number of layers in two generators       with the condition    

    . Each generator has a single distribution and two generators together induce a mixture 

distribution from both, we term it as      and its corresponding coefficient can be as   ,     -. 

As the objective of generator, is to minimize the JS divergence between the mixtures of generated 

data distribution and true data distribution, and maximize the JS divergence among two generators. 

The generative models gradually decode information from more abstract to more complex details. 

Note that, this learning process is opposed to the discriminator. In this process        , that 

means, we force the generators to have identical structures and share the weights. However, in the 

discriminative network, only the last layers of discriminators sharing the weights. In fact, the 

generators use the shared high-level representation for fooling the discriminator. Salimans et al. 

[29] proposed an approach for semi-supervised classification by using GAN model, termed as SSL-

GAN. In their work, the discriminator is considered as multi-class classifier, and improved the 

GAN convergence by optimizing the generator using Feature Matching loss. Here, inspired from 

the same work [29], we used Feature matching loss in order to train the mixture data distribution in 

the generators.   

                                   ( )            ‖        ( ), ( )-      ( ), ( (    ))-‖                           (4) 

The Feature matching loss function is used to allow the generators to control the mixture data 

distribution which on one hand has support which does not overlap with high density areas of the 

real data, but still close to the data distribution [47]. Experimentally, we observed that, when the 

generative model is trained with a Feature matching loss Eq. 4, is able to generate samples from 

mixture data distribution that fall onto the data manifold, and has an impressive ability to generate 

high quality samples.  

3.2. Discriminative model 

Let      be the discriminators of our proposed model, in which   determine the real or fake 

samples, and another one acts as classifier to classify that, the samples are form which generators. 

Two discriminators will be defined as:  
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 (  

   (   
 (  

 (  )))) and   (  )    
 
(  
   
(   

 (  
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where t, q is the number of layers in the   and   discriminators.   Maps the input to a probability 

scores and then estimate the output as, fake or real samples. In the next step, the output will be 

transferred to the    in order to find the related generators and return the wrong samples to its 

corresponding. We force both he discriminators have the same layers in their architecture to 



prevent the mode collapse problem, and this is achieved by sharing the weights at the last layers 

as:       . Moreover, this weight sharing helps to reduce the number of parameters in the 

discriminative models. Therefore, the proposed framework will be formulated as: 

                 (           ) for both the generators        and similarly, for the 

discriminators     
     

  which is having shared weights in the last layers, and then the function V 

(.) will be as:  

           ,      (  )-       ,    (    (  ( )))- 

                                                  ,      (  )-       ,     (    (  ( )))-                                 (6) 

The generative models G, with two generators work for synthesizing images with a mixture 

distribution for confusing the discriminative models. Accordingly, the discriminative model D, 

receive the input from G and real data distribution, tries to classify them as the training data 

distribution or generated data distribution, also, identify the generators that generated the wrong 

images. The collaboration between the generators in the generative model and discriminators in the 

discriminative models is based on the weight-sharing constraint. Our proposed model will be 

trained by backpropagation [15] with alternating gradient update steps [29].  

 

4. Model training  

 

Learning proposed model relies on samples which are trained from the joint data distributions. 

Weight sharing constraints are an important factor in our contribution, which can enable the 

networks to control their common information and improve the training performance. Moreover, 

the sharing weight constraint allows the model to minimize the number of parameters and degrade 

the complexity to the original GAN. In our proposed model, all the generators are part of deep 

convolutional neural networks which can share the weights in all layers excluding the input layer. 

The input layer maps the noise z to the first hidden layer activation h. In the otherside, the 

discriminators also employ a convolutional neural network, and shares parameters in all layers 

except for the last layer. The generators used a sequence of upsampling layers which let us to add 

more details to generate a high resolution image. However, only downsampling block is used for 

the discriminators. For generators       with their mixture weights        ( ), the optimal 

discriminators  ̂   ̂  yields the following equations:  

             ̂    
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  (   )
  ;     ̂    

  (   )

∑     
(    
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                         (7) 

In fact, it can be seen that,  ̂  is a general case of  ̂ which classify the wrong samples into their 

corresponding generators. Based on these observations, we reformulate the objective function for 

the generative model as: 
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As the original GAN, the objective of generators are to minimize JS divergence between the data 

distributions while Maximize it between the generators [29]. We verify the maximal loss function 

by setting          
           ( )

  
   ( )   and   

   ( )

  
           ( )   . Note that, the 



discriminator d1 takes input from G and determine whether the samples are fake or real data. Next, 

the fake samples take as input by discriminator d2 in order to indicate the corresponding generator 

that generated the fake samples. The first discriminator is binary valued, however, the second 

discriminator acts as multiclass-classifier (depends on the number of generators, i.e. in this paper, 

both the discriminator have binary values, since we have only two generators in our model).  

 

4.1. Implementation details 

In the proposed model, to design the generators we followed [36] and use the fractional length 

convolutional (FL-CONV) instead of standard CONV layer. Each FCONV layer, followed by 

batch normalization and the Parameterized rectified linear unit (PReLU) process [38], except the 

output layer, which uses Feature matching loss (Eq. 4) in order to generate a desired pixel range 

values. However, the discriminators of our model are based on standard convolutional layer 

(CONV) except the last layers which are based on fully connection layers (FC). We observed that 

Leaky rectified linear unit (LReLU) [31] works better rather than ReLU, especially for the diverse 

samples which is produced by multiple generators. We also applied batch normalization in every 

layer, except the output layer of the discriminators which uses Sigmoid units. The generators 

consists of “six” fractional convolutional layers while the discriminators have six convolutional 

layer plus two fully connection layers. The generators and discriminators are parameterized 

by     respectively. The input layer for generator Gk is parameterized by the mapping    ( )that 

maps the sampled noise z to the first hidden layer activation h. TensorFlow [39] is used to 

implement our model, Adam optimizer [12] and Momentum set to 0.0002 [12] and 0.5 

respectively,  also weights initialized from an isotropic Gaussian, µ (0, 0.01) and zero biases. The 

details of the networks are given in Table 1 and Table 2. In addition, it’s worth to mention that, we 

implemented the proposed model in a system with following features; Intel i7-6850K CPU with a 

64 GB Ram and an NVIDIA GTX Geforce 1080 Ti GPU and the operating system is Ubuntu 

16.04. 

 
Table 1. Designed generative model in DualGAN. FL-CONV, indicates the fractional length convolutional, BN is the batch 

normalization and PReLU represent the parametric rectified linear units.  

Layer       

   
1 FL-CONV, (1024,K4x4,S1), BN, PReLU FL-CONV, (1024,K4x4,S1), BN, PReLU  

   
2 FL-CONV ,(512,K3x3,S2), BN, PReLU FL-CONV, (512,K3x3,S2), BN, PReLU 

   
3 FL-CONV ,(256,K3x3,S2), BN, PReLU FL-CONV, (256,K3x3,S2), BN, PReLU  

   
4 FL-CONV ,(128,K3x3,S2), BN, PReLU FL-CONV, (128,K3x3,S2), BN, PReLU 

   
5 FL-CONV ,(64,K3x3,S2), BN, PReLU FL-CONV, (64,K3x3,S2), BN, PReLU  

   
6 FL-CONV ,(32,K3x3,S2), BN, PReLU FL-CONV, (32,K3x3,S2), BN, PReLU 

   
7 FL-CONV ,(3 ,K3x3,S1), LF    FL-CONV, (3,K3x3,S1), LF 

 

5. Experimental evaluation  

We conduct a series of experiments to evaluate the proposed model and compare it with other 

realted approaches. In fact, we want to visualize and evaluate the learning behavior of our model 

using two generators and demonstrate its stability and efficacy based on different datasets. The 



experiments are conducted on three widely used datasets; BSD-100, DIV2K and CIFAR. Results 

and evaluations on these dataset show that, our model is able to generate more faithful and more 

diverse samples than the baselines. We compared our proposed DualGAN with some alternative 

approaches. We select the baselines from CNN-based methods such as, SRCNN [4], VDSR [24], 

LapSRN [30], and also several known variation of GAN including, DCGAN [16], ProGAN [40], 

BEGAN [32], GOGAN [10], Unrolled GAN [21], GMAN [8], MAGAN [28], ACGAN [2], 

COGAN [36], D2GAN [17] and InfoGAN [7]. 

 
Table 2. Designed discriminative model in DualGAN. Conv, indicates the convolutional layer, BN is the batch normalization and 
LReLU represents the leaky rectified linear units.   

Layer       

   1 CONV,(32,K5x5,S2), BN, LReLU CONV,(32,K5x5,S2), BN, LReLU 

   2 CONV,(64,K5x5,S2), BN, LReLU CONV,(64,K5x5,S2), BN, LReLU  

   3 CONV,(128,K5x5,S2), BN, LReLU CONV,(128,K5x5,S2), BN, LReLU 

   4 CONV,(256,K3x3,S2), BN, LReLU CONV,(256,K3x3,S2), BN, LReLU 

   5 CONV,(512,K3x3,S2), BN, LReLU CONV,(512,K3x3,S2), BN, LReLU 

   6 CONV,(1024,K3x3,S2), BN, LReLU CONV,(1024,K3x3,S2), BN, LReLU 

   7 FC, Sigmoid FC, Sigmoid 

 

For re-implementing the baselines we followed their source codes with the same setting as ours. 

From results it is observed that, the CNN based methods despite of preserving sharp edges, but 

they produces blurry textures, and the perceptual quality of GAN based methods is better, even 

they could improve the high frequency details. In addition, we used two well-known image quality 

metrics; peak signal-to-noise ratio (PSNR), and structural similarity values (SSIM) [46]. The 

results are given in Table 3, Table 4, Table 5, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6.   

5.1. Results and Comparisons  

In order to demonstrate the effectiveness of our model extensive qualitative and quantitative 

performance is prepared. We also train our model with different scaling 

factors;  *  + *  +     *  + between low and high resolution images. We used the source 

codes of various algorithms to evaluate the runtime on the same machine which is used to 

implement our model. Figure 2 shows an overview of twelve methods including the current 

prominent works in GAN and CNN in term of PSNR on DIV2K datasets which is well-suited for 

visual comparison and it contains the images with sharps edges and textured regions. From the 

results it observes that, the GAN based methods have a good performance on edge reconstruction, 

however, they suffers from blur region. Even the state of the art D2GAN [17], GoGAN [10] and 

DCGAN [16] doesn’t provide clean and sharp details at the high scaling factors. While, the 

proposed model with respect to the baselines is able to produce the sharper edges and exhibit an 

acceptable results at the high scaling factors. The second best results if for ACGAN [2] and 

BEGAN [32], while, the worse visualization results is for DCGAN and [37]. Note that, the results 

of Figure 2 is evaluated at 8 × scaling factor. Similarly, we show visual comparison of GAN 

variations for 4× in Figure 3. It clearly observes that, our method accurately reconstructs the fine 

lines and grid patterns.  
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Figure 2. Visual comparison of SR results at scaling factor 8. The top images are the Ground truth images. We used several baselines as D2GAN 

[17], ProGAN [40], UR-DGAN [21], DCGAN [16], CoGAN [36], InfoGAN [7], BEGAN [32], GMAN [8], ACGAN [2], GoGAN [10], Johnson 
et al. [37], MAGAN [28] and our DualGAN. However, D2GAN and SFT-GAN are capable of generating richer and visual texture in comparing 

to other methods. Our model yields the better results comparing others. (Zoom in for best review). 

 

 

Next, we show the quantitative results in Table 3-5, on 4 × and 8 × factors. We compared our 

model to several GAN and CNN based models, such as; SRDenseNet [18], VDSR [24], LapSR 

[30], DRNN [43], DCGAN [16], GP-GAN [9], D2GAN [17], SRGAN [11]. We evaluated the 

results on three datasets; BSD-100, CIFAR-10 and DIV2K. The evaluation metrics are, PSNR and 

SSIM. Our model performs favorably against the current approaches, and having comparable 

results with GMAN [8] and StackGAN [22]. Based on BSD-100 dataset, the best results belong to 

GP-GAN, D2GAN, and ours, at 8 scaling factor. For the CIFAR-10 dataset, at 4 scaling factor, the 

best results corresponds to GP-GAN and DCGAN, while at the 8 scaling factor, D2GAN performs 

better than other baselines. Similarly, the results based on DIV2K dataset imply that, at 4 scaling 

factor, SRGAN and SRDenseNet, performs better than other baselines in terms of PSNR and 

SSIM, while, at the 8 scaling factor, only SRGAN have a pleasant result. In sum, the methods 

based on GAN outpace CNN based methods. Therefore we can conclude that GAN based methods 

are well-suited methods in image super-resolution.  

 

 
 

Figure 3. Visual comparison for 4× SR, based on different GAN structure. 

In addition, to validate the effectiveness of our model comparing to other approaches, we plot the 

convergence curve in term of PSNR and SSIM on the CIFAR-10 dataset. The results are given in 



Figure 4. The results convey that, our model requires less iteration to achieve a good result, also 

have a robust performance comparing to the DCGAN and D2GAN. However, state of the art 

D2GAN [17] does not provide a stable performance and needs more iteration to achieve 

comparable performance with DCGAN [16]. 
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Figure 4. Comparison of PSNR and SSIM values on the CIFAR-10 dataset using three different network structures. DCGAN [16], 
D2GAN [17], and our proposed DualGAN. The result is evaluated at 4×.  

Execution time; we evaluated the trade-offs between the runtime and performance of PSNR on the 

CIFAR-10 dataset for different Scaling factors. Results are plotted in Figure 5. We evaluated the 

results with the same machine which we tested our model. Figure 5.a, shows the performance of 

PSNR versus runtime for 4 scaling factors. The CNN based methods are drawn with the blue color 

and the GNN based methods are presented with the red color (in order to make it clearer). Figure 

5. b, shows the performance of PSNR with different scaling factors. From the results it observes 

that, the speed of our model is faster than all the existing methods and have a competitive 

performance with SFT-GAN [41], GMAN [8] and InfoGAN [7].  

 

 

 

Figure 5. (Left), Convergence of different methods for 4× super resolutions. We set the size of input images to 128 × 128 for all 

methods and the results evaluated on CIFAR-10 dataset. The baselines are; SRCNN [4], FSRCNN [42], VDSR [24], DRNN [43], SFT-

GAN [41], RDN [44], SRDenseNet [18], SCN [3] MemNet [45], LapSRN [30], GAN [15], SRGAN [11], ProGAN [40], DCGAN [16], 
GP-GAN [9], InfroGAN [7], Johnson et al. [37], D2GAN [17], and proposed DualGAN. The GAN based methods indicates by red, 

while, CNN-based methods indicated by blue. (Right), the trade-off between runtime and upscaling scales.  

 



Quality of the generated images; another experiments is designed to show the quality of the 

generated images by our model against state of the art methods in Figure 6. We selected two 

practically well-suited images from DIV2K dataset for a visual comparison since they contain 

sharp and smooth edges. The results convey that, the proposed model clearly provide better results 

in comparison with the others and is able to correctly reconstruct the fine structures, grid patterns, 

and the dark spots in the image backgrounds. The experiments proved our claim regarding the 

performance of the proposed DualGAN model. 

 
Table 3: Average PSNR/SSIM for BSD-100 dataset. The baselines are selected from GAN and CNN based methods such as; 
SRDenseNet [18], VDSR [24], LapSR [30], DRNN [43], DCGAN [16], GP-GAN [9], D2GAN [17], SRGAN [11] and our DualGAN 

model. The highest measures are (PSNR [dB], SSIM) in bold and blue, the second highest in green. [6× and 8× scale factor].   

Methods 
PSNR 
(6 ×) 

SSIM 
(6 ×) 

PSNR 
(8 ×) 

SSIM 
(8 ×) 

     SRDenseNet 27.17 0.7851 26.03 0.7843 

VDSR  28.49 0.8358 25.11 0.8097 

LapSRN 23.42 0.6957 22.10 0.6701 

DRNN 19.98 0.7791 18.52 0.6128 

DCGAN 25.71 0.8529 24.09 0.8619 

GP-GAN 29.98 0.8917 27.06 0.8595 

D2GAN 29.06 0.9096 27.17 0.8876 

SRGAN 27.81 0.8852 21.07 0.8067 

DualGAN  29.62 0.9107 27.85 0.8911 

 

Table 4: Average PSNR/SSIM for CIFAR-10 dataset. The highest measures are (PSNR [dB], SSIM) in bold and blue, the second 

highest in green. [6× and 8× scale factor].    

Methods 
PSNR 

(6 x) 

SSIM 

(6 x) 

PSNR 

(8 x) 

SSIM  

(8 x) 

     SRDenseNet  24.97 0.7160 20.11 0.7002 

VDSR  27.34 0.8123 25.53 0.7891 

LapSRN  23.99 0.7604 20.49 0.6326 

DRNN 20.81 0.6129 19.63 0.6892 

DCGAN 29.52 0.8699 24.65 0.8384 

GP-GAN 28.83 0.8709 20.06 0.8295 

D2GAN 26.96 0.8546 25.03 0.8576 

SRGAN        26.39    0.7961 23.87         0.7249 

DualGAN 30.17 0.9044 25.87 0.8611 

 

Table 5: Average PSNR/SSIM for DIV2K dataset. The highest measures are (PSNR [dB], SSIM) in bold and blue, the second highest in 

green. [6× and 8× scale factor].  

Methods 
PSNR  

(6 x) 

SSIM 

(6 x) 

PSNR 

(8 x) 

SSIM 

(8 x) 

     SRDenseNet 28.93 0.8913 25.43 0.7976 

VDSR  26.23 0.8502 24.59 0.8004 

LapSRN 23.42 0.6957 22.10 0.6701 

DRNN 21.56 0.6735 21.09 0.6537 

DCGAN 27.09 0.8627 25.64 0.7789 

GP-GAN  25.83 0.7981 25.06 0.8495 

D2GAN  27.96 0.8707 24.17 0.7876 

SRGAN 29.18 0.8835 26.09 0.8596 

DualGAN 29.34 0.8901 26.85 0.8711 



 

Figure 6. Image quality improvement and comparing with other techniques at 4× SR. The first image in both the samples is the ground 
truth data; next is the proposed DualGAN. The baselines are DCGAN [16], Johnson et al. [37], LapSRN [30], MemNet [45], Original 

GAN [15], SRGAN [11] and ProGAN [40]. The results convey that, our model is able to generate the sharper images with respect to the 

other baselines. However, LapSRN have a worse performance and couldn’t discover the high frequencies details properly. ProGAN and 
DCGAN are the second best results in order to generating the sharper and clean images.   

 

6. Conclusion  

In this paper, we propose a simple and effective framework, DualGAN, for fast and accurate image 

super resolution. The proposed model consists of two generators and discriminators which 

additionally extended to the GAN framework. The generators used mixture data distribution in 

order to generate a realistic image and the discriminators designed to accurately classify the inputs 

and also identify the generators that generated the wrong samples. We showed the effectiveness of 

our proposed model in comparison with the other variation of GAN based methods. Our model not 

only have a simple implemenation but also presents superior results. Using multi- generators with a 

mixture data distribution optimizes the networks and helps to smooth the training process. The 

main aspects of this work is to balance the network with a couple of generators-discriminators; 

proposing mixture data distribution and also train the generators with Feature matching loss, which 

can reduce the network parameters and speed up the training. With this proposed methodology we 

believe, the results are more stable and efficient rather than other popular generative models. In 

addition, for the future direction, we would like to estimate the number of generators and 

discriminators needed for a particular dataset.  
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