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Abstract The problem of autonomous transportation in industrial scenarios is receiving
a renewed interest due to the way it can revolutionise internal logistics, especially in un-
structured environments. This paper presents a novel architecture allowing a robot to detect,
localise, and track (possibly multiple) pallets using machine learning techniques based on
an on-board 2D laser rangefinder only. The architecture is composed of two main compo-
nents: the first stage is a pallet detector employing a Faster Region-based Convolutional
Neural Network (Faster R-CNN) detector cascaded with a CNN-based classifier; the second
stage is a Kalman filter for localising and tracking detected pallets, which we also use to
defer commitment to a pallet detected in the first stage until sufficient confidence has been
acquired via a sequential data acquisition process. For fine-tuning the CNNs, the architec-
ture has been systematically evaluated using a real-world dataset containing 340 labeled 2D
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scans, which have been made freely available in an online repository. Detection performance
has been assessed on the basis of the average accuracy over k-fold cross-validation, and it
scored 99.58% in our tests. Concerning pallet localisation and tracking, experiments have
been performed in a scenario where the robot is approaching the pallet to fork. Although
data have been originally acquired by considering only one pallet as per specification of the
use case we consider, artificial data have been generated as well to mimic the presence of
multiple pallets in the robot workspace. Our experimental results confirm that the system is
capable of identifying, localising and tracking pallets with a high success rate while being
robust to false positives.

Keywords Pallet detection · Automated guided vehicle · 2D laser rangefinder · Faster
R-CNN · Computer vision

1 Introduction

The adoption of the Industry 4.0 paradigm is thought to intrinsically change the nature of
shop-floor and warehouse environments along many dimensions, and the use of autonomous
mobile robots for inbound freight transportation and delivery is no exception [17]. Tradition-
ally, automated guided vehicles (AGVs) have been adopted in industrial environments for
freight transportation and delivery under a number of assumptions, namely:

1. a well-defined, structured, and obstacle free workspace for robot navigation, and
2. unambiguous robot sensing and perception capabilities as far as their interaction with

the environment is concerned.

Nowadays, in spite of high levels in shop-floor and warehouse automation, such assump-
tions largely still hold, even in case of novel solutions proposed by the start-up ecosystem,
with a few notable exceptions such as the one commercialised by Otto Motors1 and Fetch
Robotics2. However, the tenets of the Industry 4.0 paradigm are expected to require relaxing
such assumptions. Given the goal of providing customers with personalised and just-in-
time delivery of products, it is foreseen that warehouse environments will become more
dynamic and human-friendly, and will host human-robot collaborative processes to a great
extent [18,27,31]. As far as AGVs are concerned, such directives imply higher standards in
autonomy, as well as more robust perception and decision making capabilities.

Notwithstanding such ferment, pallets are still considered of the utmost importance in
warehouses. According to a survey by Peerless Research Group3, pallets are preferred over
novel automated logistics systems for a number of reasons: purchase price (60.9% of the
qualified responses), strength (55.6%), durability (54.3%), and reusability (44.4%), just to
name a few. Among the various materials employed for pallet design and manufacturing,
wood pallets are the preferred ones. When asked how many pallets survey respondents are
using with respect to what they did one year before, 46% of them declare using approxi-
mately the same number of pallets, 42% more pallets, and only 12% are using fewer pallets.
These data suggest a positive trend in pallets usage.

Given all considerations above, the need arises to (i) provide standard AGVs with the ca-
pability of detecting, localising and tracking standard pallets (ii) when the location of pallets
cannot be assumed to be precisely known in advance, and (iii) in environments where human

1 Web: www.ottomotors.com.
2 Web: fetchrobotics.com/.
3 Web: www.peerlessresearch.com/.

www.ottomotors.com
fetchrobotics.com/
www.peerlessresearch.com/
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Fig. 1: The target experimental scenario: an autonomous forklift designed to approach, fork, transport and
place pallets in a warehouse environment in Tortona, Italy.

co-workers operate and other objects are present. So far, pallet detection, localisation and
tracking have received much attention both in scientific literature and in industry-oriented
research. A huge number of studies have been presented, which discuss model-based ap-
proaches either adopting computer vision or using 2D laser rangefinder data, and the most
relevant ones for this work are discussed in Section 2.1. When compared to approaches
based on computer vision, 2D rangefinders have the advantages of generating reliable data
with a well-characterised statistical sensor noise [42, 51], being more accurate for long dis-
tances, and not being influenced by light conditions. However, since laser rangefinders can
provide only contour information, they are often coupled with cameras when unique pallet
identification is needed [55]. As a consequence, the objective of the work described in this
paper is two-fold:

– developing an architecture for commercially available AGVs, in particular forklifts,
which has the capability of detecting, localising and tracking (possibly multiple) pallets,
using 2D laser rangefinder information; as a target scenario, we refer to the automation
of a warehouse located in Tortona, Italy, where a purposely modified commercial forklift
has been put in operation, as shown in Figure 1;

– providing an open, freely available, dataset4 to the community for further research ac-
tivities, comprising a collection of 340 labelled 2D scans related to pallets located in
real-world environments [45].

The major contribution of the paper is an architecture made up of two components: (i)
a pallet detector module employing a Faster Region-based Convolutional Neural Network
(Faster R-CNN) detector [23,54] coupled with a CNN-based classifier for classification pur-
poses operating on a bitmap-like representation of 2D range scans; (ii) a Kalman filter based
module for localising and tracking the detected pallets, as well as increasing the confidence
associated with their detection on-line. In particular, the proposed architecture:

4 Web: https://github.com/EMAROLab/PDT.

https://github.com/EMAROLab/PDT


4 Ihab S. Mohamed et al.

– to the best of our knowledge, is the first framework for pallet detection, localisation and
tracking using machine learning approaches based on 2D range data exclusively;

– is designed to detect, localise and track multiple pallets at the same time;
– exhibits independence from a possible a priori knowledge about a pallet’s location;
– is a data-driven rather than model-based method, in addition to pallets it can be adapted

to detect other objects with comparable size and with a similarly fixed geometry;
– does not require any modifications to existing standard pallets, as done in other well-

known approaches in the literature, for example in [33];
– does not require information about the forklift’s pose either in absolute terms or relative

to the target pallet;
– to the best of our knowledge, this is the first attempt to perform object detection, classi-

fication and tracking using a 2D laser rangefinder in conjunction with machine learning
methods, instead of the more common model-based approaches. Due to the limited and
sparse nature of the data provided by this sensor, this poses different challanges com-
pared to apporaches based on 3D LiDAR, cameras, or both [5, 19, 35, 53, 68].

The paper is organised as follows. Section 2 discusses related work and introduces the
reference scenario. Section 3 describes the methods to pallet detection, localisation and
tracking employed in the proposed architecture. The overall data flow pipeline as well as
the pallet tracking algorithm are described in Section 4. Implementation details and the ex-
perimental evaluation are discussed in Section 5. Conclusions follow.

2 Background

2.1 Related Work

The problem of designing an autonomous forklift able to fork, transport and place pallets
is not new, likewise the problem of pallet detection, localisation and tracking. Given the
geometric shape of a pallet’s structure, a number of model-based solutions have been pro-
posed in the literature, which make use of either vision or 2D range information, or both.
Surprisingly few of them are based on learning to recognize the shape of the target object,
as opposed to recognizing a known geometrical pattern.

Vision-based systems. A number of vision-based approaches making use of different
features extracted from images to detect and track pallets have been presented, and examples
include the work described in [11, 13, 29, 49, 57, 62].

One of the first approaches to pallet detection and pose estimation has been discussed
in [21]. Soon afterwards, an image segmentation method based on pallet’s colour and ge-
ometric characteristics has been presented in [50]. However, these approaches require very
stable illumination conditions and a very precise camera calibration, which is quite a strong
assumption in real-world settings. The method proposed in [48] attempts to estimate a pal-
let’s pose using a structured light method, which is based on a combination of range and
video information. The main problem associated with such an approach is that its accuracy
quickly decreases with distance. Being able to detect a pallet when it is still distant is a
nice-to-have feature in all those cases where pallets are located in a certain load/unload area
without a specific arrangement. The estimate of a pallet’s pose has been attempted also us-
ing artificial visual features in the form of markers placed on the pallets to detect [3, 56].
While such approaches do not rely on well-defined illumination conditions, nor they as-
sume a precise camera calibration, it is often difficult to place fiducial markers in real-world
environments, because such a process increases setup times to a great extent.
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A model-based algorithm using visual information without any fiducial markers or spe-
cific illumination conditions has been presented in [20]. This algorithm exploits the identi-
fication of a pallet’s central cavities to identify two pallet slots and estimate their geometric
centre in calibrated images. However, such a system requires an accurate a priori knowl-
edge of a pallet’s pose, which (as described above) is not realistic in real-world settings. A
retrofitted autonomous forklift with the capability of stacking racks and fork pallets placed
within a certain area with uncertainty was presented in [30]. The docking method for pallet
forking is based on the detection of specific reference lines for concurrent camera calibra-
tion and pallet identification, and it allows for the stacking of well-illuminated racks and
the localisation of pallets in front of the vehicle. Unfortunately, such a solution proves to be
limited to the stacking task only. The approach described in [14] is based on a more com-
plex visual processing pipeline, which employs a number of hierarchical visual features like
regions, lines and corners using both raw data and template-based detection. In [66], the au-
thors present an autonomous pallet handling method based on a line-structured light sensor,
where the design of such a sensor is based on an embedded image processing board con-
taining an FPGA and a DSP. This approach can identify and localise pallets using their ge-
ometrical structure based on a model-matching algorithm, and uses a position-based visual
servoing method to drive the vehicle while it approaches the pallet to fork. Unfortunately, it
also requires the development of custom hardware.

An approach for the automated pallet detection combining stereo reconstruction and ob-
ject detection from monocular images has been presented in [61]. Improvements and exten-
sions for a stereo camera system responsible for autonomous load handling were presented,
by the same authors, in [60]. However, the use of stereovision and structure-from-motion
algorithms can hardly fit with real-time requirements typically needed when autonomous
vehicles are present. The work described in [16] introduces a method to identify pallets us-
ing color segmentation in real time. However, such a method is prone to the presence of
false positives, unless assumptions about pallets colour are posed. A comparison between
two common 3D vision technologies, namely the photonic mixer device (PMD) and typical
stereo camera systems, was presented in [8]. The authors conclude that the PMD system
is characterised by a greater accuracy than a typical stereo camera system. On the basis of
such an insight, a solution for pallet loading and de-palletising detection employing a PMD
camera has been introduced in [67]. Again, such approach requires the introduction of ad
hoc hardware, at the expense of cost and maintenance.

Overall, vision-based systems are characterised by a number of drawbacks, which make
their use still limited to specific conditions, including: (i) the need for fiducial markers or
similar mechanism to reduce false positives; (ii) the need for stable environmental condi-
tions; (iii) computational load of the associated computer vision algorithms; (iv) the need
for custom hardware solutions to enable real-time operations.

Rangefinder-based systems. Traditionally, 2D laser rangefinders have been extensively
employed for robot localisation and mapping, and such techniques have been also success-
fully applied to environments characterised by a high degree of human presence [12,38,39].
In the past few years, a number of model-based approaches have been presented and dis-
cussed in the literature, which constitute effective methods to detect, localise and track pal-
lets in range data. In contrast to vision-based algorithms, such approaches do not suffer
from image distortions (related to camera calibration), varying illumination issues or ob-
ject scaling problems, which can result in false detections or mis-detections of significant
features, and are characterised by lower computational requirements. The early work by
Hebert et al. [26] describes techniques for scene segmentation, object detection, and object
recognition with an outdoor robot using range data. In [28], the authors present a method
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for detecting and classifying objects using range information. A model-based technique that
leverages prior knowledge of an object’s surface geometry to jointly classify and estimate
the surface structure was proposed in [46]. However, such models are characterised by bold
assumptions related to perfect data association and absence of noise.

Starting from these initial results, range data have been applied to the pallet detection
problem. Data acquired from a laser rangefinder are used in [6] to detect and localise pallets,
but the approach cannot deal with ambiguous matches, i.e., it requires perfect data associ-
ation. The solution discussed in [65] uses a fast linear programming method for detecting
line segments in range data, as applied to pre-filtered points selected by a human using an
image provided by a camera mounted on a forklift. In particular, pallets are identified by the
classification of detected line segments belonging to its front, and their position is therefore
computed. However, such a method requires a pre-processing step, and its precision can be
hampered in the case of specific pallet poses. In [33], the authors present two approaches
based on 2D range data: the former assumes the availability of pallets modified with reflec-
tors to compute their position and orientation, whereas the latter uses only their geometrical
characteristics as it may be unfeasible to place reflector marks in all pallets. In the second
case, the Iterative Closest Point (ICP) algorithm is used to match range data with the pallet
model. However, the main drawback of the approach is that ICP needs an initial (although
approximate) pallet’s location, otherwise the iterative computation can become very time
consuming and leading to inaccurate results. As discussed above, this may be unrealistic in
real-world situations. The work presented in [25] discusses a feature-to-feature matching for
pallets, which first detects line segments, and then matches them with the pallet’s geometric
model. However, such an approach can lead to a number of false positives and to ambiguous
pose estimations. Other methods for 2D data segmentation, feature detection, fitting, and
matching have been presented in [9, 52], but all these approaches are characterised by the
same drawbacks. An integrated laser and camera sensory system, for solving the problem of
simultaneously identifying and localising pallets whose location is characterised by a great
uncertainty, has been presented in [7]. However, such an approach suffers from a number of
drawbacks typically associated with vision processing.

In summary, rangefinder-based systems avoid certain limitations associated with vision-
based approaches, but are nonetheless limited as far as detection capabilities are concerned,
such as: (i) the need for a model-based approach grounded on pallet geometry; (ii) the ne-
cessity of computing features enabling model matching processes; (iii) the ease at which
detection estimates can diverge.

Discussion. At a first glance, model-based approaches seem appealing because pallets
are characterised by a well-defined shape and geometrical features. However, in order to
enable a reliable and robust detection, experience suggests that many assumptions are to
be made. In fact, all the approaches in the literature, in a way or another, are characterised
by recurring limitations: while vision-based methods are highly dependent on light condi-
tions (or assume them to be stable), camera calibration issues, and pallet-to-camera distance,
or assume to retrofit the environment with the adoption of fiducial markers on each pallet,
range-based methods are based on models grounded on pallet’s geometry, and require the
stable detection of certain characterising features. From our analysis, it appears that the use
of machine learning techniques for the problem of pallet detection and localisation, coupled
with solutions for pallet’s pose tracking, and when only range information is used, has not
been explored in the literature. Such an approach is expected to avoid the drawbacks associ-
ated with vision-based approaches, does not assume any a priori model for pallets, does not
compute high level features, and can be potentially ported to other similar applications via
retraining of the object recognition module. In addition, the method includes a sequential
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classification procedure to reduce the occurrence of false positives. Furthermore, it can be
seen generally that the most used sensors for object detection, classification and tracking
based on machine learning techniques are 3D LiDARs [5, 19, 68], cameras5 or a combina-
tion of LiDARs and cameras [35, 43], while 2D laser rangefinders are usually avoided for
this task despite their convenience, as they provide only partial contour information. This
fact poses the challenge of how to make use of sparse data with limited information content,
while still achiving a system with robust tracking capabilities and a small number of false
positive detections.

2.2 The Reference Scenario

The scenario we target in this paper includes a purposely modified model EXU low lift
pallet truck manufactured by STILL GmbH, which has been put in operation in a warehouse
environment in Tortona, Italy. The forklift, depicted in Figure 1, can lift up to 2.200 Kg
at a 760 cm height. It has been equipped with two safety laser rangefinders operating at
16 Hz for obstacle detection and safety purposes, placed as to cover a full 360 deg scan
around the truck, and one of them, namely the rear sensor as shown in Figure 1, can be
used to provide the data required by our architecture. Furthermore, it has been extended
with a localisation system performing tri-lateration using a number of intelligent devices
distributed in the environment [12, 36, 40, 42]. Being able to localise and avoid obstacles,
the forklift can freely move in the warehouse. The map of the environment is assumed to be
known (either available a priori or built off-line), and a number of relevant locations, such
as forking and placing areas, are identified as semantic tags in the map. It is noteworthy
that forking and placing areas are roughly 3× 3 m2 regions where a pallet can be located
anywhere inside it. Therefore, it is not possible to assume in advance a specific location
or pose for the pallet, as it is typically done by other approaches in the literature described
above, but it can be fairly assumed that it lies within the area. Once the pallet truck gets close
to the placing and forking areas, it slows down to a suitable speed for safe pallet loading and
unloading, namely 0.2 m/s.

Missions are defined using a knowledge representation and planning framework previ-
ously developed for mobile robots [37]. The framework is able to express a high-level goal
in an ontology-based representation, and to determine a corresponding set of planning prob-
lems, whose solutions (i.e., plans) are guaranteed to achieve the goal, if feasible. Missions
are typically configured as sequences of forklift motions to a given goal location, approach-
ing the pallet to fork, forking, delivering the pallet to the placing area. Once the forklift
moves towards the forking area, it needs to detect, localise and then track the pallet (which
is still) to compensate its own motion. As per functional requirements of the use case we
consider, only one pallet is present in the forking area, and therefore the specification is
related to the detection of one pallet only. In the paper, we also consider the case in which
two pallets may be present in the forking area at the same time, in order to better discuss the
capabilities of our approach. In principle, given the forklift’s localisation system, tracking
would not be necessary, as pallets do not move and robot motion information could be used
for pallet localisation. However, in our case we decided to determine whether it is possible
to perform pallet tracking without relying on the robot’s localisation capabilities, therefore
taking inspiration from the literature on the use of minimal information for localisation and
navigation in mobile robotics [41].

5 Web: http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf

http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf
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Obviously enough, the problem has been already explored in the literature. In partic-
ular, the work described in [1, 3] integrates visual information with robot’s odometry to
implement a smooth and non-stop transition from autonomous navigation to visual servo-
ing. However, in order to perform such a transition, it is necessary to understand when visual
servoing can be activated to avoid scattering motions. When using commercially available
rangefinders, the typical maximum pallet detection range from a robot is approximately 4
m [2]. A few systems include multiple-view rangefinders, and therefore are capable of at-
taining longer detection distances in the forklift’s workspace, i.e., up to 6 m [64, 65]. As we
better discuss below, being able to detect a pallet from longer distances is a nice-to-have
feature when sequential classification processes are employed.

In our scenario, the forklift does not employ any specific strategy to approach pallets.
When moving towards the picking area, pallet detection, localisation and tracking are acti-
vated, and the forklift slows down to a speed suitable for pallet loading and unloading. At
this point, 2D range scans from the sensor are processed by the proposed algorithm in order
to detect pallets. It is noteworthy that such data is acquired at all times independently from
our algorithm, manily for safety reasons, and that a pallet detecion and tracking solution
may consume such data at a lower frame rate than the one provided by the sensor, if the
algorithm is robust enough and accordingly with the vehicle operating speed.

In details, we focus on standard EUR/EPAL pallets, whose dimensions are 120 cm× 80
cm × 14.4 cm. Multiple range scans are subsequently used to localise and track pallets, and
to remove false positive detections. When a sufficient confidence level on a tracked pallet is
reached, then the pallet is considered successfully detected. Such a sequential classification
process can benefit from the fact that, when the forklift is approaching the forking area, it
can already ascertain whether a pallet is present and where it is located. The whole process
is described in details in Section 4.

3 Methods

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specifically suited for image processing appli-
cations [34]. They are specialised multi-layer perceptrons that include a hard inductive bias
in the form of a strongly constrained structure that is especially suited to signal processing.
To this purpose, the main component of CNNs is convolutional layers. These layers feature
a local connectivity patterns, forcing the network to operate on limited-size receptive field.
Since the weight values are repeated over each of these receptive fields, the result is that a
trained convolutional layer effectively implements the convolution of its input signal with a
learned filter. Nonlinear layers are then used to decimate the output of multiple filter banks
and to provide the capacity of learning more general non-linear mappings.

In addition to being tailored to signal-processing applications, this constrained structure
is necessary to avoid an unmanageable number of parameters to train even for small sized
images. Since each filter is defined only by a small number of parameters compared to a fully
connected layer, the number of parameters to be trained in the network is greatly reduced.

A number of hyper-paramenters are should be set when designing a convolutional layer,
such as: (i) its depth, i.e., the number of filters to be used; (ii) the receptive field, i.e., the
size of each filter; (iii) the stride, being how much to slide the filters; and finally (iv) the
zero-padding, i.e., how many zeros to pad a layer’s input with, so to control the output’s
size.
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A CNN is usually composed of more than a single convolutional layer, and often in-
cludes other kinds of layers. A typical structure involves:

– an input layer, having the same dimensions as the input data (e.g., a colour image having
dimensions 250×250×3 pixels by colour channels);

– the convolutional layer, as described in the previous paragraph, usually increasing the
depth of the volume by computing multiple filters;

– a Rectifier Linear Unit (ReLU) layer, which applies an element-wise nonlinear activation
function and keeps dimensions unchanged;

– a pooling layer, to perform downsampling on spatial dimension (i.e., width and height);
– a final fully connected layer, to classify the input data based on the previously computed

features, i.e., a vector with length equal to the number of possible classes.

Not all of these layer types have learnable parameters, as ReLU and pooling layers do not,
but all of them except ReLU are characterised by some hyper-parameters to be defined.

Based on the advancements in CNNs, Region-based Convolutional Neural Networks
(R-CNNs) have been proposed to perform object detection tasks [23, 24, 54], i.e., the task
of associating a number of bounding boxes with an image, each one possibly correspond-
ing to (i.e., enclosing in image space) an object of interest. The R-CNN family includes
R-CNNs [24], Fast R-CNNs [23] and Faster R-CNNs [54]. In general, these region-based
approaches are organised as a 2-step process: they generate a set of bounding box proposals,
and submit those regions of interest to a classifier to determine whether any of them is an
object (i.e., their objectness) and which object they correspond to. In brief, R-CNNs and Fast
R-CNNs rely on external region proposals generated by Selective Search [59], and present a
rather complex training pipeline. On the contrary, Faster R-CNNs add a fully convolutional
layer on top of the features maps generated by the last convolutional layer, called Region
Proposal Network (RPN). The RPN works by passing a n×n sliding window over a set of
convolutional feature maps on the last convolutional layer, so as to propose bounding box
candidates of predefined scales and aspect ratios. RPN defines a number of region boxes
in the image space (called anchors) and ranks them on the basis of their likelihood of con-
taining objects, in our case pallets. As it is customary in Faster R-CNNs, for each sliding
window on the convolutional feature map 9 anchors are generated with 3 different sizes and
3 different aspect ratios in all possible combinations [23,24,54], all of them compatible with
standard EUR pallets. Furthermore, for each anchor a value o, is computed, which refers to
the overlap ratio between the areas of anchors and of ground truth bounding boxes:

o =

{
1 → Decision: Object if IoU > 0.7,

0 → Decision: Not an object if IoU < 0.3,
(1)

where IoU (which stands for intersection over union) can be defined as:

IoU =
Area(anchor)∩Area(ground truth bounding box)
Area(anchor)∪Area(ground truth bounding box)

. (2)

In (1), the thresholds over IoU can be tuned experimentally. Eventually, these features are
then fed to a network with two main tasks, namely regression and classification. The regres-
sion output determines the predicted bounding boxes, each with a form of [xmin,ymin,xlen,ylen],
while the output of the classification network is the value o indicating whether each predicted
bounding box contains an object, according to (1).

This implies that Faster R-CNNs achieve efficient and fully end-to-end training, as a
single CNN is used for region proposal and classification. Hence, Faster R-CNNs address



10 Ihab S. Mohamed et al.

the limitations of other architectures and achieve greatly improved performance, being much
faster than regular R-CNNs.

3.2 Sequential Classification

We have approached the problem of detecting a pallet across multiple 2D scans as a se-
quential decision problem. Sequential decision [22, 63] is an approach to classify multiple
observations on the basis of assigned confidence intervals. When the joint probability of
the observed sequence is sufficiently high or low to escape from an uncertainty range, the
decision is taken.

The simplest sequential analysis method applies a Bayesian analysis to compare the
joint class-conditional probabilities of the observations so far, by evaluating their ratio. If,
at observation number i, the posterior probabilities of Class 1 (e.g., a pallet is present) and
Class 0 (no pallet is present) given the observations x1, . . ., xi are p1(i) and p0(i) respectively,
and if A, B (A > B) are two thresholds related to the balance between errors related to false
positives and to false negatives, then the decision criterion is:



p1(i)
p0(i)

≥ A → Decision: Class 1,

p1(i)
p0(i)

≤ B → Decision: Class 0,

B <
p1(i)
p0(i)

< A → Decision: continue observing the sequence.

(3)

In the original formulation, the probabilities are assumed to be known and observations
to be mutually independent, so if at step i the class-conditional probabilities of the current
observation xi are f1(xi) = Pr(Class = 1 | xi) and f0(xi) = Pr(Class = 0 | xi), respectively,
we can write the basic sequential probability ratio as:

p1(i)
p0(i)

=
f1(x1) f1(x2) · · · f1(xi)

f0(x1) f0(x2) · · · f0(xi)
=

i

∏
j=1

f1(x j)

f0(x j)
. (4)

In the present case, this method has been applied with scores generated by a soft clas-
sifier rather than true probabilities, as described in the previous Section. More importantly,
the assumption of independence is not realistic when considering subsequent 2D scans at a
high refresh rate, as the ones obtained from a laser rangefinder. Methods taking into account
dependencies, for instance under a Markov assumption [47], are available. These have a
higher computational time, possibly incompatible with real-time operation. Moreover, they
have a higher number of parameters, since they explicitly model the expected dynamics (for
instance as a Markov chain), so they have higher sample complexity and are more prone
to overfitting. It should be noted that the independence assumption in this context is safe,
although maybe suboptimal, since it gives a worst-case estimate. As shown in Section 5,
this worst-case approach proved to yield good results, so considering its computational and
learning complexity advantages this was the preferred approach.
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Fig. 2: An overview of the proposed system for pallet detection, localisation and tracking. Black labels on
arrows represent the size of exchanged data.

4 System’s Architecture

In this Section, we discuss the structure of the proposed architecture, which is depicted
in Figure 2. It consists of three parts. First (Phase 1), raw range data are acquired, and
each scan is converted into a 2D bitmap-like image, so that it is in the most appropriate
format for a CNN. Then (Phase 2), a dataset of real-world 2D scans, each one converted
into a bitmap, is collected and offline training of a Faster R-CNN is performed. The network
will detect regions of interests (ROIs), and eventually classify them as pallet candidates
using a separate CNN. Once training is complete (Phase 3), the pallet detection module
trained in the previous step is coupled with a Kalman filter-based tracker, which is used
online to match potential pallet detections over time. The novelty of this step is that, instead
of immediately accepting a potential pallet, the decision can be deferred until sufficient
confidence in the candidate is achieved, reducing the chance to pursuit a false positive and
stabilising true positives in case of a temporary occlusion or sensor noise. On the other hand,
if the candidate’s confidence falls below a certain threshold or the it disappears for a several
frames, the candidate pallet is just discarded.

4.1 Data Acquisition

A single laser rangefinder scan si taken at the time instant i can be represented using a set of
polar coordinates:

si = {(r1,φ1), . . . ,(r j,φ j), . . . ,(rM,φM)}, (5)

being M the number of single range points, i.e., related to the angular sensor’s resolution.
Hence, r j is the measured distance of an object with respect to the rangefinder location in the
direction given by the angle φ j. For a single point in range data, we can obtain a binary image



12 Ihab S. Mohamed et al.

Fig. 3: The main steps of the data acquisition (preparation) phase.

of the operating area’s floor plan, converting the acquired data to Cartesian coordinates with
the following formula: {

x j = r j cos(φ j),
y j = r j sin(φ j).

(6)

This second representation is preferred for object detection and tracking as it allows for
recovering correlations among neighbouring pixels in 2D images, which can be exploited
by the CNN layers. In particular, we first convert data from a laser rangefinder, which has
been limited to 6 m maximum depth, into 533× 681 pixel binary images. Such images
are then resized to 250× 250 pixels, leading each pixel to cover an area of 4.5 cm2. Such
discretisation has been deemed sufficient to take into account motion noise during pallet
forking actions.

When such operation is done, images are ready to be used for online detection, local-
isation and tracking. However, two additional steps are required to prepare the necessary
datasets for training purposes, namely the use of artificially generated images and the def-
inition of specific regions of interest (ROIs). ROIs are 2D bounding boxes of the objects
(e.g., pallets) in the dataset images and, as described above, are defined by their top-left
and bottom-right corner points, i.e., (xmin,ymin) and (xmax,ymax), which uniquely identify a
region’s position and size. First, the available dataset of real-world data is augmented with
artificially generated images. The new images can be obtained by translations and rotations
of the original ones, in order for the network better generalise with respect to pallet locations
and poses. The generation of artificial data with the aim of reducing overfitting in image-
based training has already been used [10, 58]. Such a technique also has the advantage of
reducing the time and efforts devoted to: (i) collecting a large amount of real-world data,
and (ii) labelling such data with ground truth so that they can be used for training, as it is
possible to infer the new labels whilst the corresponding data is generated. This first dataset
is used to train the Faster R-CNN detector. Once this first network has been trained, it can
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be used to extract the ROIs associated with the objects in the dataset. The ROIs dataset, as it
is described in Section 5, is then used to train the CNN-based classifier, that detects which
ROIs may correspond to a pallet. A summary of these steps can be found in Figure 3.

4.2 Neural Networks for Pallet Detection

In order to track pallets in 2D images obtained via range data, we need first an approach to
reliably detect them in each single image. As anticipated, we designed such module using
neural networks. This Section is focused on the general architecture of such neural networks.
Details on the training process for our specific experiments, such as size and composition of
datasets, are given in Section 5.2.

The pallet detection process is made-up of two steps: a state-of-the-art Faster R-CNN
detector which detects the ROIs in each image, and a CNN-based classifier taking as input
the previous step detections and discriminating which of them could be a possible pallet
candidate. In the first step, we use a Faster R-CNN for two reasons: (i) it allows for detecting
possibly multiple pallets while being robust to false positives, and in this sense the Faster R-
CNN provides us with a number of ROIs that can undergo further inspection in the second
step; (ii) we want to estimate the position of each detected pallet, and the centroid of an
associated ROI can be used to that purpose. However, the Faster R-CNN is not sufficient for
a reliable identification of each ROI, and this is why a CNN-based classifier is necessary. It
is noteworthy that in so far as the 2D laser rangefinder is a robust and reliable sensor, the
amount of data it provides is limited to partial objects’ contours on a plane. A CNN-based
classifier is able to detect pallets in a ROI with a small number of false positives despite the
limited amount of cues. As anticipated above, the two networks are completely independent,
and are trained with different training sets.

The Faster R-CNN detector is composed of several layers, divided in three main stages:
the input layer, an intermediate convolutional stage, and a final fully connected stage. The
input layer consists of the input image corresponding to the 2D scan, downscaled to a 32×32
pixel grey-scale or RGB images to improve general performance. The central convolutional
stage is made up of two convolutional layers, interleaved by two ReLU layers, and followed
by a final max-pooling layer. Each convolutional layer applies 40 filters, with a size of 3
and a stride and a padding of 1, whereas the max-pooling layer employs pooling regions
of size 3 and a stride of 1, which produces output images of size 30× 30. The final stage
is composed of two fully connected layers, followed respectively by one ReLU layer and
a softmax classification layer. The first fully connected layer is composed of 64 neurons,
which is followed by the ReLU layer. The output size of this layer is an array with a length
of 64, which represents the most significant features in the image. Such features are then
used by the last fully connected layer combined with the softmax classification layer to
determine whether a ROI proposed by the RPN belongs to one of the object classes (i.e.,
pallets) or to the background, using sequential classification. The overall output is a list of
candidate ROIs, defined by two corner points as described in the previous Section.

The CNN-based classifier that follows is trained to classify the most promising ROIs
detected by the Faster R-CNN as pallets. The classifier is trained using a dataset obtained
based on the ROIs bounding boxes and the original images, as detailed in Section 5.2. Com-
pared to the first network, the CNN-based classifier is simpler in its structure. The input
layer gets as input filtered full-size images so that they contain only the ROIs, and therefore
it has a 250× 250 size. The input layer is then followed by a convolutional layer, a ReLU
layer, and a max-pooling layer. The convolutional layer has depth of 25, filter size of 20, and
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stride and padding set to 1, whereas the max-pooling layer applies pooling regions of size 5
and stride equal to 2. Finally, a fully connected layer and a softmax classification layer are
employed to compute the salient features and classify the image accordingly. Eventually,
the performance of the proposed networks is evaluated by empirical validation with k-fold
cross-validation, as it provides a reliable assessment of the network accuracy [4] without
excessive burdening on computation time.

4.3 Online Pallet Tracking

The two networks described in the previous Section are trained to detect ROIs as bounding
boxes and determine which of them correspond to a pallet. It is tempting to assume that
the pallet detection problem is solved and consider tracking just as a step necessary to ap-
proach pallets. We argue that deferring the decision about pallet detection until a sufficient
confidence level is reached is a wiser approach, and that tracking should play an important
role in the detection process. The aim is to avoid all those situations where a single spurious
sensor reading can mislead the system towards a false positive or immediately give up on a
promising candidate pallet. Consequently, we do not immediately accept a certain ROI as a
true positive pallet classification, but rather like a candidate that must be validated. This can
be achieved adopting a sequential classification approach, i.e., by tracking all candidate pal-
let detections but taking a final decision only later, when different scans have been acquired
and the system has gained sufficient confidence.

As it is typical when performing object tracking, the overall tracking process involves
two steps:

– detecting candidate pallets in each single frame using the pre-trained networks as per-
ception models, therefore obtaining a set of ROIs;

– performing data association, i.e., associating ROIs related to the same pallet over differ-
ent scans, which we refer to as a track.

In our system, data association for each track is based on perceived track displacements.
Assuming that the robot is moving with a constant velocity, each detected pallet in the cur-
rent frame is located in a slightly different location with respect to the previous one. In
reality, pallets are still, but robot perceptions create such illusion of displacement because
of ego-motion effects. Data association is achieved by estimating the motion of each can-
didate pallet over several frames using a linear Kalman filter [15, 44]. The filter is used to
predict the position of the centroid of each track in the current frame based on past posi-
tions, and the corresponding bounding box is updated accordingly. In the current version
of the system, rotations are not considered. Then, the associations between ROIs and tracks
are computed and ranked. The association is done using the Hungarian algorithm [32]. The
algorithm minimises a cost function computed using the overlap between the bounding box
location as predicted by the Kalman filter, and the bounding box detected by the pre-trained
networks. The minimum is achieved when the predicted bounding box is perfectly aligned
with the detected bounding box, i.e., the overlap ratio is one. In any frame, some of the ROIs
may be assigned to tracks, while others may remain unassigned. At the same time, already
available tracks may not be associated with any ROIs in the current scan. Estimated cen-
troids of assigned tracks are updated using the corresponding ROIs inversely weighted by
the corresponding confidence values acting as covariance matrices, while unassigned tracks
are not updated. It is foreseen that each unassigned ROI originates a new track. In order
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not to propagate older tracks, each track is associated with a counter related to the num-
ber of consecutive frames where no associations have been made with such a track, and
to the recent average confidence values. If such a counter exceeds a specified threshold or
the average score associated with the ROI’s likelihood of being an object is below a certain
threshold, the algorithm assumes that the pallet associated with the ROI is no longer in the
rangefinder’s field of view, or it is a false positive, and therefore it deletes the track.

The data acquisition process is better described in Algorithm 1, which employs the two
networks described above. The set C of candidate pallets (i.e., the corresponding ROIs) is
first initialised (line 2). A scan is acquired (line 3), and converted to a bitmap-like image
(line 4). Then, the Faster R-CNN detects all possible ROIs (line 5). The neural network
is embedded in a function called DETERMINEROIS(). For each ROI ri, if the associated
objectness score oi is above a given threshold εob jectness, then ri is passed down to the CNN-
based classifier in function SCORE() to compute the associated confidence score csi (line 9).
If such a score is higher than a threshold εcandidate (line 7), then ri is included in the set C of
candidate pallets.

Algorithm 1 Acquisition of candidate pallets
1: function ACQUISITION()
2: C← /0
3: si← ACQUIRESCAN()
4: ii← CONVERT(si)
5: R← DETERMINEROIS(ii)
6: for all ri ∈ R do
7: if oi > εob jectness then
8: csi← SCORE(ri)
9: if csi > εcandidate then

10: C← C∪ ri

11: end if
12: end if
13: end for
14: return C
15: end function

Online pallet tracking is described in Algorithm 2 with more detail. The set of candidate
pallets to track (i.e., the corresponding ROIs) is referred to as T, is initially empty (line
3), and it is updated as long as the Algorithm proceeds. The set D of unassigned possible
candidates and the set U of updated pallet candidates are initialised (lines 4 and 5), and
updated afterwards. At each iteration, the Algorithm first calls the ACQUISITION routine
(line 7), and the set C of candidate pallets is determined. Then, for each already tracked
candidate pallet ti ∈ T, a number of parameters are retrieved, i.e., the number of times di it
has been detected (line 9), its average confidence Savgi (line 10), and its pose pi (line 11).
Afterwards, its predicted pose is computed using the robot velocity V (line 12).

For each candidate pallet c j in the current acquisition, one of the following cases is
foreseen:

– if the associated ROI closely matches with the expected pose pi of an already tracked
candidate pallet ti (line 16), the ROI is associated with the same candidate, the candidate



16 Ihab S. Mohamed et al.

Algorithm 2 Pallets tracking
1: function PALLETSTRACKING()
2: Requires the velocity V of the robot, a time window W

3: T← /0
4: D← /0
5: U← /0
6: loop
7: C← ACQUISITION()
8: for ti ∈ T do
9: di← RETRIEVEROIS(ti)

10: Savgi ← RETRIEVEAVERAGECONFIDENCE(ti)
11: pi← RETRIEVEPOSE(ti)
12: pi← KALMANPREDICTION(pi , V )
13: end for
14: for all c j ∈ C do
15: for all ti ∈ T do
16: if AREA(c j ∩ ti) < εoverlap then
17: pi← KALMANUPDATE(pi , c j )
18: di← di +1
19: Savgi ← UPDATE(W )
20: U← U∪ ti
21: else
22: D← D∪ c j

23: end if
24: end for
25: end for
26: for all di ∈ D do
27: tnew← INITIALISE(di)
28: T← T∪ tnew

29: U← U∪ tnew

30: end for
31: for all ti ∈ T\U do
32: Savgi ← UPDATE(W )
33: end for
34: for all ti ∈ T do
35: if Savgi > εaccept and di > NminRead then
36: ti is marked as a pallet

37: else if Savgi < εre ject or ti has not been detected for more than τtimeout

38: T← T− ti
39: end if
40: end for
41: end loop
42: end function

pallet’s pose pi is updated with the new observation (line 17), the number of times di the
pallet has been detected is increased (line 18), the confidence Savgi in the candidate is
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updated taking the average of each detection’s confidence score in a recent time window
W (line 19), and ti is labelled as updated (line 20); data association is achieved by com-
puting how much of the two relative bounding boxes overlap and comparing the result
to an acceptance threshold εoverlap;

– if the candidate pallet c j does not match with sufficient precision any currently tracked
candidate, it starts to be tracked as a new candidate, and it is labelled as unassigned (line
22).

For all unassigned candidate pallets, a corresponding tracked candidate pallet tnew is gener-
ated and initialised (lines 27-29). If a tracked candidate pallet does not match any detected
prospect ROI (line 25), then it is assumed as currently not visible and the average confi-
dence Savgi in that candidate pallet decreases (line 32). The Algorithm can attempt to take a
decision on every currently tracked candidate ti based on the associated confidence:

– if the average confidence Savgi exceeds a given threshold εaccept , and it has been detected
for more than NminRead times (line 35), then the candidate is recognised as a pallet;

– if the average confidence Savgi decreases below a threshold εre ject , or the candidate has
not been detected for a number of times (line 37), it is removed.

Also note that more than a candidate can be confirmed at any time, effectively allowing
to track multiple pallets in the environment, if present. Finally, the detection, localisation,
and tracking system loops through these steps, and whenever a detection is confirmed, it
communicates to the robot control architecture the pallet’s pose pi, so that further action can
take place (e.g., approaching the pallet).

Considering trade-offs, such an approach adds a small delay from the instant a pallet
is first detected by the classifier to the moment when it is actually recognized as such by
the system, allowing the robot to act on the pallet. On the other side though, we argue that
such delay is usually very short even on modest hardware, and can be managed acting on
the choice of parameters used in Algorithm 2, especially εaccept and NminRead . Considering
also the moderate speed at which these robots are meant to operate, this is a reasonable
trade-off in order to achieve extremely few false positives and a more stable detection of
true positives.

5 Experimental Validation

5.1 Setup and Implementation

Our setup employs a commercially available 2D laser rangefinder from SICK AG, model
S3000 Pro CMS. The rangefinder is connected to a PC through a RS422-USB converter.
As we described in Section 2.2, the forklift is assumed to mount two units of such sensor,
but only one will be employed for pallet detection and tracking. The sensor has a maxi-
mum range of 49 m (20 m at 20% reflectivity), a resolution of 0.25 deg, a maximum 16 Hz
refresh frequency, and an empirical error of 0.003 m. The maximum field of view of the
rangefinder is 190 deg, which is largely sufficient for the detection of objects in front of the
robot. As mentioned in Section 4, the sensor generates an array of points expressed in polar
coordinates, each array having size 761.

Two different computers have been used for experimental validation: a lower-end PC is
used online for range data acquisition and pallet detection, whereas a more powerful work-
station has been adopted for offline training and testing the proposed networks. In particular,
the former is equipped with an Intel® Core i5-4210U 1.70 GHz CPU and 6 GB of RAM,
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(a) Before suppression. (b) After suppression.

Fig. 4: On the left hand side, the ROIs provided by the Faster R-CNN and their confidence scores. On the
right hand side it is shown how ROIs are reduced using non-maximum suppression with an overlap threshold
of 0.3.

and runs Ubuntu 16.04 64 bit. The latter mounts an Intel® Core i7-4790 3.60 GHz CPU, 32
GB of RAM and an Nvidia Geforce® GTX970 GPU, and runs Ubuntu 14.04 64 bit.

The overall architecture has been implemented using MATLAB 2017b and ROS-based
software components. In particular, range data are acquired using an ad hoc ROS node
developed in C++, whereas pallet detection, classification and tracking are implemented
in MATLAB using the Computer Vision System Toolbox. The Robotics System Toolbox
has been used to interface MATLAB with ROS in order to perform online pallet detection,
classification and tracking, and offline training of the two neural networks.

We decided to run our algorithm at a lower target frequency than the maximum one
allowed by the sensor, namely 4 Hz, by feeding to our system an average of every four con-
secutive frames. In the coming sections, we will show that the proposed solution is able to
achieve performance far beyond the requirements described in Section 2.2, despite such lim-
itation in operating frequency and the current implementation being an unoptimized proof
of concept.

5.2 Offline Training

The first step in our experiments consisted in training the neural networks described in the
previous Section. A dataset has been collected in an indoor environment (measuring 40
m2), including pallets, trolleys, multiple obstacles such as walls as well as other robots,
and furniture. The dataset consists of 340 2D range scans, each one corresponding to a
frame from the 2D laser rangefinder located in a different position, as presented in details
in [45]. Raw data are converted to 2D bitmap-like images and augmented by generating new
artificial images, obtained by rotating the original images clockwise and anticlockwise of 90
deg. As a consequence, the total dataset consists of 1020 images. Each image is resized to
250×250 and stored in a CSV file. In the file, each line corresponds to a single 2D bitmap-
like image which has mainly two entries for training the Faster R-CNN detector. The first
entry is the path to each image, while the second entry contains the ROI labels in the image,
i.e., pallet. More different entries are added, after the Faster R-CNN processing step, so as to
list all the ROIs detected in the image in two classes for training the CNN-based classifier.
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In order to train the Faster R-CNN detector, the whole dataset has been divided in two
parts: 70% (714 samples) as a training set and 30% (306 samples) as a test set. Stochastic
Gradient Descent (SGD) has been used to train the network and the initial learning rate α

has been set to 10−6. The training process runs for 20 epochs, leading to an approximately
45-minute training time on our workstation. Once training is complete and all the ROIs are
generated, the corresponding bounding boxes are additionally filtered using non-maximum
suppression with an overlap threshold of 0.3, as shown in (1). Figure 4(a) shows a sample
image, the ROIs detected in it, and their corresponding confidence scores, while Figure 4(b)
shows only the ROIs remaining after suppression.

Fig. 5: An example of how training data for the CNN-based classifier are generated from the ROIs obtained
by the Faster R-CNN detector. From each ROI a new image is generated, having the same size of the original
one but only containing the detected object. The image on the left hand side (Class 0), represents a generic
object, while the one on the right hand side (Class 1), represents a pallet.

As anticipated above, the set of all ROIs obtained through this procedure can be labelled
and used as an input for training the CNN-based classifier. Considering for example the
case in Figure 4(b), 4 different ROIs are detected and therefore 4 new images are generated
with the same size as the original one, but including only data inside the ROI’s bounding
box. This process is better depicted in Figure 5. Class 0 objects (i.e., objects unlikely to be
pallets) are sorted out by Class 1 objects (i.e., pallets) on the basis of the confidence score
associated with the related bounding box, as shown in (3). Considering that each image has
to be labelled manually, a smaller set is actually used to train the CNN-based classifier,
i.e., only an amount of images that are strictly necessary to achieve satisfying accuracy
results on the test set are used. Hence, 950 images have been randomly selected and labelled
among the available samples: 450 of them represent a pallet (Class 1 in Figure 5), while
the other 500 represent some undefined object (Class 0 in Figure 5). SGD and k-fold cross-
validation (with k = 10) are used to train the CNN-based classifier with an initial learning
rate α = 0.03, and mini-batch size set to 50, leading to an 99.58% accuracy on the test set
after a 26 minutes training time.
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5.3 Online Validation of the Pallet Tracking Process

After having developed the architecture described in Section 4.3, and having trained the
Faster R-CNN detector and the CNN-based classifier, we have run several real-world exper-
iments to validate the proposed approach. The first step was to gather the data generated by
the laser rangefinder sensor as it moved with constant velocity in our test area. As previously
stated in Section 5.1, this has been performed at an effective frequency of 4 Hz, while the
sensor has been manually moved at around 0.5 m/s, which is much faster than the reference
scenario requirement of 0.2 m/s. Twelve different trajectories about 4 m long have been
recorded, each involving 40 scans. The different trajectories are grouped in 4 sets, which
differ by the initial and final rangefinder’s position, the pallet’s pose in terms of position and
orientation, and the location, size and shape of obstacles in the area. Trajectories in the same
set differs by the path taken while approaching the pallet, i.e., with sensor approaching di-
rectly the pallet or keeping the target either on the right or left side. The recorded trajectories
also take into account dynamic obstacles, such as humans or other piece of equipement that
could enter or leave the scene.

In this Section, we report our analysis of the employed pallet tracking approach. As
far as the used parameters are concerned, the time window size W on which we compute
the average confidence score on a tracked candidate pallet has been set to 6, whereas the
maximum time τtimeout a tracked candidate pallet can be invisible before being discarded by
the system has been set to 0.6. The average confidence acceptance εaccept and the average
confidence rejection εre ject thresholds have been set to 0.6 and 0.35, respectively, whereas
the minimum number of times (i.e., frames) NminRead a tracked candidate pallet must be
acquired before it can be confirmed as a pallet given a sufficient average confidence score is
set to 10.

Single pallet tracking. We applied the process illustrated in Algorithm 2 to real-world
data obtained by imposing the trajectories described above. For all of the twelve trajectories,
the approach is able to detect the pallet and avoid false positives. As an example, Figure 6
shows the salient events in one of these trajectories up to frame 17. In the frames, each ROI
represents a tracked candidate pallet. For the sake of clarity, ROIs are generically contoured
in yellow when they first appear in the robot’s field of view, and then get assigned with
an identification number and characteristic colour only after they are detected more than
NminRead/2 times and in case they have a high confidence score. In frame 1, a ROI is imme-
diately detected (T1), while a second one appears in frame 3 (T2). T2 is a weak candidate,
and its average confidence becomes less than εre ject = 0.35 in frame 16. Consequently, the
Algorithm stops tracking that candidate considering it as a likely false positive (i.e., a Class
0 detection). It is noteworthy that higher values for εre ject lead the Algorithm to delete weak
candidates faster, but also increase the likelihood of deleting a true positive pallet. As a con-
sequence, εre ject should be kept fairly small. On the other hand, in frame 17 the Algorithm
takes a positive decision on T1 as its average confidence surpasses εaccept and it has been
detected at least NminRead times.

The success of our tests shows that the proposed architecture allows pallet detection
and tracking at a speed 150% higher than the one specified in our reference scenario re-
quirements, despite running at a lower frequency than the maximum one allowed by the
sensor. In details, the average computation time for a frame is 0.1358 s with a variance of
1.6853×10−4 s2. This result suggests that it is possible to run our pallet tracking algorithm
at a frequency of almost 8 Hz on the current hardware, a 100% higher frequency than the one
we decided to adopt. On this side, significant performance gains may be achieved through
system optimizations, such as a native C++ implementation instead of a MATLAB-based
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frame 1 frame 2 frame 3

frame 6 frame 7 frame 8

frame 15 frame 16 frame 17

Fig. 6: An example of single pallet tracking. Each image represents a frame. Yellow: tracked ROIs. Filled
boxes: ROIs with a stable tracking. Red: ROIs confirmed to be pallets. See text for details.

one, making use of GPU computing as it is increasingly common in autonomous vehicles,
or just employ a more powerful machine rather than the mid-range one we employed here for
testing purposes. This way, it may be possible to push the system up to the sensor-imposed
16 Hz limit, allowing the algorithm to be applied to vehicles moving much faster than what
is currently common in internal logistics applications.

Finally, on a more qualititative side, notice that due to the simple nature of the data
provided by the 2D laser rangefinder, the system could be prone to false positives. Yet, we
have not experienced any issues in our testing despite objects with similar contours were
present in the environment. This may be partially due to the online pallet tracking strategy
outlined in Section 4.3.

Multiple pallets tracking. As anticipated above, we used artificially generated data to get
preliminary results in scenarios possibly involving multiple pallets. This was not part of the
reference scenario presented in Section 2.2, but it was worth exploring as it is an intrinsic
property of the proposed system. Our results confirm the ability to detect pallets and avoid
false positives even in the case two pallets are present in front of the robot. Figure 7 depicts
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frame 1 frame 3 frame 5

frame 6 frame 8 frame 10

frame 15 frame 16 frame 17

Fig. 7: An example of multiple pallets tracking, same conventions as in Fig. 6. Regions of different colors
indicate ROIs recognized simultaneously.

one example using the same graphical representation as the one introduced above. In this
case, the Algorithm detects three possible candidates in the first five frames, but the third
one (T3) is dropped on frame 16, due to its low average confidence score. Furthermore, the
first two (T1 and T2) are stronger candidates and they finally get accepted as pallets in frame
17. Concerning performance metrics, we have not observed any significant loss compared
to the single pallet tracking case.

At the moment, the main limitation in the multiple pallet case is that the system is not
able to univocally identify pallets, but only distinguish them with respect to each other. This
was not a limitation in our reference scenario as described in Section 2.2, but it can be
an issue in other applications. We will explore in the future solutions to this problem, for
example employing identification markers, which are much less prone to robustness issues
compared to localization ones.
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6 Conclusions

The paper presents and discusses a possible application of object detection with CNNs to
the problem of detecting, localising, and tracking pallets using 2D laser rangefinder data
only. This is achieved by converting 2D rangefinder data into bitmap-like images where
CNNs can look for possible candidate pallets. Pallet candidates detected by the two CNNs
in cascade are passed down to a Kalman filter based tracker, which allows for having an
estimate of pallet positions at any time, even when they are momentarily not visible, as
well as helping the system filter out false positives. In the paper, we detail the proposed
architecture and present detection and classification results. We conclude that our approach
is a viable solution to correctly detect, localise and track pallets reliably, while attaining
reasonable performance for real-world applications.

Future work includes refining the precision of position estimate for pallets with respect
to a robot-centred reference frame, as well as integrating orientation estimation and running
a series of experiments onsite to further validate the approach. Such experiments will also
allow us to provide more data on the correlation between the algorithm operating frequency
and maximum speed the vehicle can keep for robust tracking, and optimize our implemen-
tation accordingly for applications and scenarios that require stronger performances. On the
functionality side, we intend to explore the possibility of targeting pallet types or different
objects at the same time, in so far as the approach offers a certain degree of modularity,
since it is possible to add more CNN-based classifiers in parallel without the necessity to
retrain the existing networks or substantially modify the tracking algorithm. Finally, we will
explore methods that may allow in the the future to univocally identify an item identified
and tracked by the system.
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