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Abstract
A Bloom filter is a special case of an artificial neural network with two layers. Traditionally, it is seen as a simple data

structure supporting membership queries on a set. The standard Bloom filter does not support the delete operation, and

therefore, many applications use a counting Bloom filter to enable deletion. This paper proposes a generalization of the

counting Bloom filter approach, called ‘‘autoscaling Bloom filters’’, which allows adjustment of its capacity with proba-

bilistic bounds on false positives and true positives. Thus, by relaxing the requirement on perfect true positive rate, the

proposed autoscaling Bloom filter addresses the major difficulty of Bloom filters with respect to their scalability. In

essence, the autoscaling Bloom filter is a binarized counting Bloom filter with an adjustable binarization threshold. We

present the mathematical analysis of its performance and provide a procedure for minimizing its false positive rate.

Keywords Bloom filter � Counting Bloom filter � Autoscaling Bloom filter � True positive rate � False positive rate

1 Introduction

Many applications require fast and memory-efficient

querying of an item’s membership in a set. A Bloom filter

(BF) is a simple binary data structure, which supports

approximate set membership queries.

From a neural processing point of view, BFs are a

special case of an artificial neural network with two layers

(input and output), where each position in a filter is

implemented as a binary neuron (see more details in [1]).

Such a network does not have interneuronal connections.

That is, output neurons (positions of the filter) have only

individual connections with themselves and the corre-

sponding input neurons. BFs are also related to a neural

network architecture called distributed connectionist pro-

duction system [2].

The standard BF (SBF) allows adding new elements to

the filter and is characterized by a perfect true positive rate

(i.e., 1), but nonzero false positive rate. The false positive

rate depends on the number of elements to be stored in the

filter, and the filter’s parameters, including the number of

hash functions and the size of the filter. However, SBF

lacks the functionality of deleting an element. Therefore, a

counting Bloom filter (CBF) [3], providing the delete

operation, is commonly used. When the size of CBF and

the number of elements to be stored are known, the number

of hash functions can be optimized to minimize the false

positive rate.

Another practical issue is that the parameters of a BF

(i.e., size of filter and number of hash functions) cannot be

altered once it is constructed. If the current filter does not

satisfy the performance requirements (e.g., false positive

rate), it is necessary to rebuild the entire filter, which is

computationally expensive. Therefore, the optimization of

a BF is problematic and costly when the number of ele-

ments to be stored is unknown or varies dynamically. In

fact, this is one of the major scalability difficulties of BFs.

This paper presents a solution allowing overcoming it.
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To address the issue of optimizing BF performance

without rebuilding the filter, we propose the autoscaling

Bloom filter (ABF), which is derived from a CBF and

allows minimization of the false positive rate in response to

changes in the number of stored elements without requiring

rebuilding of the entire filter. The reduction in false posi-

tive rate is achieved by optimizing a threshold parameter

used to derive the ABF from the CBF. ABF operates with

fixed resources (i.e., fixed size storage array and fixed

k hash functions) for a wide dynamic range of number of

input elements to be stored. The trade-off made by ABF for

this flexibility is a slight reduction of the true positive rate

(which is always 1 in CBF). It is important to note that a

less than perfect true positive rate can be tolerated in many

applications including networking [4], and generally in the

area of approximate computing where errors and approxi-

mations are acceptable as long as the outcomes have a

well-defined statistical behavior [5]. To the best of our

knowledge, ABF is a novel simple construction of BFs,

which makes them particularly useful in scenarios where a

reduced true positive rate can be tolerated and where the

number of stored elements is unknown or changes

dynamically with time.

ABF belongs to a class of binary BFs and is constructed

by binarization of a CBF with the binarization threshold

(H) as a parameter. Querying the ABF also uses a decision

threshold (T) to determine whether there is sufficient evi-

dence to respond that the query item is an element of the

stored set. Both parameters, H and T, can be varied, while

the ABF is in use without requiring the filter data structure

to be rebuilt. Figure 1 illustrates the main idea behind the

ABF. Figure 1a shows an example CBF of size 20, which

stores four elements (x1 to x4). Each element is mapped to

three different positions of the filter, one position for each

of the three hash functions. The value at each position is

the number of elements mapped to that position by the

three hash functions and varies between 0 and 4 (high-

lighted by different colors). The SBF (Fig. 1b) is formed by

setting all nonzero positions of the CBF to one1. The two

lower parts of the figure denoted as (c) and (d) present two

examples of the ABF for two different sets of parameters:

H ¼ 1 and T ¼ 2; H ¼ 3 and T ¼ 1, respectively. In all

four examples, the filter is queried with the unstored ele-

ment y, testing for membership of the set of stored ele-

ments. The correct answer in every case, obviously, is that

y is not a member of the stored set. In the SBF example, all

nonzero positions of y are set to one, which is interpreted

by the SBF algorithm as indicating that the query element

is a member of the stored set, thus generating a false

positive response. In contrast, in Fig. 1c, y has only one

position in common with the ABF, while all elements xi
have at least two positions. Thus, if a decision threshold T

(for the number of activated positions) is set to two, then y

will be correctly rejected by the ABF while all the stored

elements are correctly reported as present. On the other

hand, for the ABF in Fig. 1d, the binarization threshold

(H ¼ 3) is too low and it is not possible to set a decision

threshold T (even the smallest possible T ¼ 1) such that all

stored elements xi are reported as present.

Mathematically, the ABF has its roots in the theory of

sparse distributed data representations [6]. ABF can also be

interpreted in terms of hyperdimensional computing [7],

where everything is represented as high-dimensional vec-

tors and computation is implemented by arithmetic oper-

ations on the vectors. Both sparse distributed

representations and hyperdimensional computing can be

conceptualized as weightless artificial neural networks.

This paper presents a theoretical generalization of CBFs

by exploring a direct correspondence between BFs and

hyperdimensional representations along with the practical

implications. BFs are treated as a special case application

of distributed representations where each element stored in

the BF is represented as a hyperdimensional binary vector

constructed by the hash functions. The mathematics of

Fig. 1 a An example of the counting Bloom filter with size m ¼ 20.

The number of hash functions applied to each element was set to

k ¼ 3. The filter included n ¼ 4 elements. b The standard Bloom filter

derived from the counting Bloom filter. Note that it is equivalent to

the autoscaling Bloom filter with H ¼ 0 and T ¼ k ¼ 3. c The

autoscaling Bloom filter derived from the counting Bloom filter. The

autoscaling Bloom filter parameters were set to H ¼ 1 and T ¼ 2. d
The autoscaling Bloom filter derived from the counting Bloom filter.

The autoscaling Bloom filter parameters were set to H ¼ 3 and T ¼ 1

1 Note that the SBF is a special case of the ABF, arising when the

binarization threshold is set to zero and the decision threshold is set to

the number of used hash functions.
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sparse hyperdimensional computing [6] (SHC) is used for

describing the behavior of the proposed ABF. The con-

struction of the filter itself corresponds to the bundling

operation [6] of binary vectors.

The main contributions of the paper are as follows:

• It proposes the ABF, which is a generalization of the

CBF with probabilistic bounds on false positives and

true positives;

• It presents the mathematical analysis and experimental

evaluation of the ABF properties;

• It gives a procedure for automatic minimization of the

false positive rate adapting to the number of the

elements stored in the filter;

• For the first time, it shows that BFs are a special case of

hyperdimensional computing.

The paper is structured as follows: Sect. 2 presents a

concise survey of the related approaches. Section 3

describes the ABF and introduces analytical expressions

characterizing its performance. The evaluation of the ABF

is presented in Sect. 4. The paper is concluded in Sect. 5.

2 Related work

A recent probabilistic analysis of the SBF is presented in

[8]. Detailed surveys on BFs and their applications are

provided in [9] and [10]. BFs are often applied in the area

of pattern recognition [11, 12]. For example, recent

applications of BFs and their modifications include cer-

tificate revocation for smart grids [13], classification of text

strings [14], and detection of Transmission Control Proto-

col (TCP) network worms [15]. An important aspect for the

applicability of BFs in modern networking applications is

the processing speed of a filter. In order to improve the

speed of the membership check, the authors in [16] pro-

posed a novel filter type called ultra-fast BFs. In [17], it

was shown that BFs can be accelerated (in terms of pro-

cessing speed) by using particular types of hashing

functions.

This section overviews the approaches most relevant to

the presented ABF approach. One direction of research is

to propose new types of data structures supporting

approximate membership queries. For example, recently

proposed invertible Bloom lookup tables [18], quotient

filters [19], counting quotient filters [20], TinySet [21], and

cuckoo filters [22] support dynamic deletion. Another

popular research topic is to improve the performance of the

SBF via modifications of the original approach. The ternary

BF [23] improves the performance of the CBF as it only

allows three possible values of each position. The

deletable BF [24] uses additional positions in the filter,

which are used to support the deletion of elements from the

filter without introducing false negatives. The complement

Bloom Filter [25] uses an additional BF in order to identify

the trueness of BF positives. The on–off BF [26] reduces

false positives by including in the filter additional infor-

mation about those elements that generate false positives.

Fingerprint counting BF [27] is a modification improving

the CBF with the usage of fingerprints on the filter ele-

ments. In [13], the authors propose to use two BFs and an

external mechanism in order to resolve cases when the

membership is confirmed by both filters. In a similar

fashion, the cross-checking BF [28] constructs several

additional BFs, which are used to cross-check the main BF

if it issues a positive result. The scalable Bloom filter [29]

can maintain the desired false positive rate even when the

number of stored elements is unknown. However, it has to

maintain a series of BFs in order to do so. Another related

approach called variable-increment CBF (VICBF) was

presented in [30]. Similar to the CBF, the VICBF supports

the delete operation; however, it requires less memory for

achieving the same false positive rate. The improvement is

due to the usage of a hashed variable increment rather than

a counter increment as in the CBF. In comparison with the

VICBF, the ABF could fully operate with the binary

components; however, it would lose the ability to delete

elements. Nevertheless, once the VICBF is designed, it

does not have the built-in functional to tolerate large

variations in the number of stored elements. While the

VICBF is a generalization of the CBF, it would not be

trivial to apply the ABF to a given VICBF as the different

variable increments values are used to get the final values

in each position of a filter. The retouched BF (RBF) [4] is

conceptually the most relevant approach to the ABF since

it allows some false negatives as a trade-off for decreasing

the false positive rate. The major difference to the proposed

approach is that RBF eliminates false positives that are

known in advance. When the potential false positives are

not known in advance, the RBF could randomly erase

several nonzero positions of the filter.

In contrast to the previous work, the ABF is suitable for

reducing the false positive rate even when the whole uni-

verse of elements is either unknown or is too large to use

additional mechanisms for encoding the elements not

included in the filter.

3 Autoscaling Bloom filter

3.1 Preliminaries: BFs

At the initialization phase, a BF can be seen as a vector of

length m where all positions are set to zero. The value of

m determines the size of the filter. In order to store in the

filter an element q, from the universe of elements, the
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element should be mapped into the filter’s space. This

process is usually seen as application of k different hash

functions to the element. The result of each hash function is

an integer between 1 and m. This value indicates the index

of the position of the filter which should be updated. In the

case of the SBF, an update corresponds to setting the value

of the corresponding position of the SBF to 1. If the

position already has value 1, it stays unchanged. In the case

of the CBF, an update corresponds to incrementing the

value of the corresponding position of the CBF by 1. Thus,

when storing a new element in the filter, at most k positions

of the filter update their values. Note that there is a pos-

sibility that two or more hash functions return the same

result. In this case, there would be less than k updated

positions. However, it is usually recommended to choose

hash functions such that they have a negligible probability

of returning the same index value. Therefore, without loss

of generality, suppose that the k results of k hash functions

applied to q never coincide. That is, all k indices pointing

to positions in the filter are unique.

Instead of considering the result of mapping q as the

k indices produced by the hash functions, it is convenient

to represent the mapping in the form of the SBF that

stores the single element q. This SBF is sometimes called

the individual BF. It is a vector with m positions, where

values of only k positions are set to one, and the rest to

zero. The nonzero positions are determined by the hash

functions applied to q. The representation of an element q

in this form is denoted as q. Note that throughout this

section bold terms denote vectors. Given this vectorized

form of representation, the CBF (denoted as CBF) storing

a set of n elements xi can be calculated as the sum of

representations (denoted as xi) of each individual element

xi in the set:

CBF ¼
Xn

i¼1

xi: ð1Þ

The SBF (denoted as SBF) representing the set of ele-

ments is related to the CBF representing the same set of

elements as follows:

SBF ¼ ½CBF[ 0�; ð2Þ

where [] means 1 if true and 0 otherwise (applied ele-

mentwise to the argument vector).

Given the values of m and n, the value of k that mini-

mizes the false positive rate (see also [31, 32] for recent

improvements) for the SBF (CBF) can be found as:

k ¼ ðm=nÞ ln 2: ð3Þ

When performing the set membership query operation

with query element q (represented by q) on an SBF

containing q, the dot product (d) between SBF and q must

equal the number of nonzero positions in q, i.e., k:

dðSBF; qÞ ¼ SBF � q ¼ k ð4Þ

3.2 Preliminaries: probability theory

Two probability distributions are useful for the analysis

presented here. These are binomial and hypergeometric

distributions. Both are discrete. They describe the proba-

bility of s successes (draws for which the drawn entities are

defined as successful) in g random draws from a finite

population of size G that contains exactly S successful

entities. The difference between binomial and hypergeo-

metric distributions is that the binomial distribution

describes the probability of s successes in g draws with

replacement, while the hypergeometric distribution

describes the probability of s successes in g draws without

replacement. Binomial and hypergeometric distributions

are the most natural choice for modeling BFs since they

correspond to the discrete nature of values in BFs. It is

worth mentioning that when the number of random draws

g is large, both distributions could be approximated by

normal or Poisson distributions depending on relations

between g, s, and G. We do not use the approximations in

this paper as this allows avoiding errors introduced by

approximations.

Note that if 1 denotes a successful draw while 0 denotes

a failure draw, then we can represent g draws from a dis-

tribution as a binary vector of length g. This binary vector

corresponds to a realization of a (hypergeometric/binomial)

experiment. The probability of a success in a particular

position of the realization for both distributions is:

ps ¼ S=G: ð5Þ

The difference is that for the binomial distribution

positions are independent while for the hypergeometric

distribution they are not. For example, if the actual values

of some positions are known for the realization of a

hypergeometric experiment, then the probability of a suc-

cess for the rest of the positions should be updated

accordingly. This is because draws from the population are

done without replacement.

If the random variable Z is described by the binomial

distribution (denoted as Z�Bðg; psÞ), then the probability

of getting exactly s successes in g draws is described by the

probability mass function:

PrðZ ¼ sÞ ¼
g

s

� �
pssð1� psÞg�s: ð6Þ

As the probability mass function for the hypergeometric

distribution is not used below, it is omitted here.
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3.3 Preliminaries: relation between BFs
and probability theory

The hypergeometric distribution comes into play when

considering the mapping of an element q. Given the

assumption that the results of hash functions do not coin-

cide, the mapping q of an element q is a binary vector of

length m with exactly k positions having value 1 and the

rest 0. It is worth noting that this assumption is very real-

istic since it is a usual requirement during the design of a

filter that the used hash functions are independent, and

therefore, for large filters, there is a small chance of

overlapping. The assumption will introduce a subtle dif-

ference as discussed below, and however, this difference is

only important for impractical small lengths of the filter.

Because hash functions map different elements into dif-

ferent indices, a mapping q can be seen as a single real-

ization of the experiment from the hypergeometric

distribution with g ¼ m draws from the finite population of

size G ¼ m that contains exactly S ¼ k successes (positions

set to 1). In this case g ¼ G. Therefore, the probability of

exactly s ¼ k successes is 1 and all other probabilities are

0. The probability of a success in a particular position is:

p1 ¼ ps ¼ k=m: ð7Þ

A value in ith position of CBF [see (1)] can be seen as a

discrete random variable (denoted as I) in the range

I 2 Zj0� I� n, where n denotes the number of elements

stored in a filter. Because representations xi stored in CBF

are independent realizations of the hypergeometric exper-

iment, I follows the binomial distribution: I�Bðg; psÞ
where g ¼ n, ps ¼ p1.

Given the parameters of the binomial distribution, the

probability that I takes the value v can be calculated

according to (6):

PrðI ¼ vÞ ¼
n

v

� �
pv1ð1� p1Þn�v: ð8Þ

According to (8), the probability of an empty position p0
in the CBF (and also for SBF) is:

p0 ¼ PrðI ¼ 0Þ ¼ 1� k

m

� �n

: ð9Þ

It should be noted that the probability of an empty

position p0 in the CBF (SBF) when the results of hash

functions can coincide, is:

p0 ¼ 1� ð1=mÞð Þkn: ð10Þ

In fact, (9) differs from the standard expression (10) for

p0. However, both produce different results only for small

lengths of the filter (m\50), which are not of practical

importance.

Because each position in CBF can be treated as an

independent realization of I, the expected number of

positions l with value v equals:

lðvÞ ¼ m PrðI ¼ vÞ ¼ m
n

v

� �
pv1ð1� p1Þn�v: ð11Þ

3.4 Definition of autoscaling Bloom filter

Given a CBF, the derived ABF is formed by setting to zero

all positions with values less than or equal to the chosen

binarization threshold H; positions with values greater than

H are set to one:

ABF ¼ ½CBF[H�: ð12Þ

Note that when H ¼ 0, the ABF is equivalent to the

SBF.

In general, the expected dot product (denoted �dx)
between the ABF and an element x included in the filter is

less than or equal to k.2 As the binarization threshold H
increases, more of the nonzero positions in the CBF are

mapped to zero values in the corresponding ABF. This

necessarily reduces the dot product of the ABF vector with

the query vector. Therefore, there is a need for the second

parameter of the ABF, which determines the lowest value

of dot product indicating the presence of an element in the

filter. Denote this decision threshold parameter as T

(0� T � k), then an element of the universe q is judged to

be a member of the ABF if and only if the dot product

between ABF and q is greater than or equal to T.

3.5 Probabilistic characterization
of the autoscaling Bloom filter

When the binarization threshold H for the ABF is more

than zero, the probability of an empty position in the ABF

(denoted as P0) is higher than in the SBF because some of

the nonzero positions in the CBF are set to zero. For a

given H, the expected P0 is calculated using (8) as

follows:

P0 ¼
XH

v¼0

PrðI ¼ vÞ ¼
XH

v¼0

n

v

� �
pv1ð1� p1Þn�v: ð13Þ

Then, the probability of 1 in the ABF (denoted as P1)

is:

P1 ¼ 1� P0 ¼ 1�
XH

v¼0

n

v

� �
pv1ð1� p1Þn�v: ð14Þ

2 It should be noted that the calculation of expected similarity (e.g.,

dot product) between two vectors, one of which may store the other, is

a general problem formulation in hyperdimensional computing and

can be seen as the ‘‘detection’’ type of retrieval (see [33] for details).
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The expected dot product �dx for an element x included in

the ABF is calculated as:

�dx ¼ k � m

n

XH

v¼0

v PrðI ¼ vÞ: ð15Þ

Note that when H ¼ 0, �dxðABF; xÞ ¼ k which corre-

sponds to the SBF [see (4)]. In other words, the SBF can be

seen as a special case of the ABF. The calculations in (15)

when H[ 0 can be interpreted in the following way. The

dot product between SBF and x is k. A position in CBF

with value v[ 0 contributes 1 to the values of dot products

of v stored elements. Thus, if this position is set to zero in

the SBF, there will be v elements with the dot product

equal to k � 1 while the dot products for the rest of the

elements still equal k. Then, the expected dot product

between the filter and an element is decremented by v / n.

In fact, the number of positions with value v is unknown,

but it is possible to calculate the probability PrðI ¼ vÞ of

such position in CBF using (8). Then the expected number

of such positions in CBF is determined via (11) and equals

mPrðI ¼ vÞ. When the ABF suppresses all such positions,

each of them decrements the expected dot product by v / n.

Then, the total decrement of the expected dot product by

the suppressed positions with value v is expected to be

mvPrðI ¼ vÞ=n. Because the ABF suppresses all positions

with values less than or equal to H, the decrements of the

expected dot product introduced by each value v should be

summed up.

The expected dot product (denoted �dy) between the ABF

and an element y which is not included in the filter is

determined by the number of nonzero positions in the filter

and calculated as:

�dy ¼ kP1: ð16Þ

Both dot products dx and dy are characterized by discrete

random variables (denoted as X and Y, respectively) which

in turn are described by binomial distributions:

X�Bðk; pxÞ and Y �Bðk; pyÞ.
The success probabilities (px and py) of these distribu-

tions are determined from the expected values of dot pro-

duct as in (15) and (16):

px ¼�dx=k ¼ 1� m

nk

XH

v¼0

v PrðI ¼ vÞ; ð17Þ

py ¼�dy=k ¼ P1: ð18Þ

3.6 Performance properties of ABF

Given the decision threshold T, the true positive rate (TPR)

of the ABF can be calculated using the probability mass

function of X as:

TPR ¼
Xk

d¼T

PrðX ¼ dÞ ¼
Xk

d¼T

k

d

� �
pdxð1� pxÞk�d: ð19Þ

Similarly, the false positive rate (FPR) is calculated

using the probability mass function of Y as:

FPR ¼
Xk

d¼T

PrðY ¼ dÞ ¼
Xk

d¼T

k

d

� �
pdyð1� pyÞk�d: ð20Þ

4 Evaluation of ABF

4.1 Optimization of ABF’s parameters

In order to choose the best value of T (or even both H and

T), an optimization criterion is needed. It is proposed to

optimize the accuracy (ACC) of the filter. This is defined as

the average value of true positive rate and true negative

rate: ACC ¼ ðTPRþ ð1� FPRÞÞ=2. Note that this defini-

tion of accuracy is also known as unweighted average

recall. Note also that the accuracy does not have to be the

only choice for the optimization criterion. The choice of

ACC implies that false positives and false negatives are

treated as equally costly. However, in a practical applica-

tion this may not be true. Instead, each of the four possible

outcomes (true positive, false positive, true negative, false

negative) will have an associated domain-dependent cost.

The designer would then optimize the design parameters so

as to minimize the cost in the application scenario. For

example, if the total number of elements and the number of

elements stored in the filter are known, then such perfor-

mance metrics as F1 score and Matthews correlation

coefficient [34] can be used for optimization. In the

absence of a specific application, we are forced to use a

general performance summary. We have chosen to use

accuracy as a general summary because it is simple and

well understood.

In addition, an application may specify the lowest

acceptable TPR (denoted as LTPR). Then, the optimal value

of T (for fixed H) is found as:

Topt ¼ max
T

ðACCjTPR� LTPRÞ: ð21Þ

In general, both parameters of the ABF, H and T, can be

optimized as:

max
H;T

ðACCjTPR� LTPRÞ: ð22Þ

4.2 An example: ABF in action

The behavior of ABF for different H is illustrated in Fig-

ure 2. The length of the CBF (and all derived ABFs) is
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m ¼ 10;000. It stores n ¼ 500 unique elements, and each

element is mapped to an individual BF with k ¼ 100

nonzero positions. Note that the value of k in this example

is intentionally not optimized for the given m and n. The

particular value of k is chosen for demonstration purposes

to clearly illustrate the situation when the SBF has a high

false positive rate which can be significantly decreased by

the ABF. Similar effects can be seen for other values of k,

m, and n.

Six ABFs are formed from the CBF using different

thresholds in the range 0�H� 5. Each plot in Fig. 2

corresponds to one ABF and depicts probability mass

functions for X (circle markers) and Y (diamond markers).

where X and Y denote random variables characterizing

distributions of dot products for elements stored in the filter

(X) and elements not included in the filter (Y).

The plot for H ¼ 0 corresponds to the SBF. In this case,

X is deterministic and located at k ¼ 100 as expected given

k ¼ 100 nonzero positions for the SBF. Hence, the optimal

value of T is trivially equal to k and TPR ¼ 100%. A large

portion of the distribution for Y is also concentrated at

k ¼ 100, which leads to high FPR ¼ 52%. On the other

hand, the ABFs with H[ 0 have better separation of the

two distributions. Much lower FPR can be achieved by

reducing the TPR below 100%. The optimal values of T

(indicated by black vertical bars) were found for each value

of H according to (21). The lowest acceptable value of

TPR, LTPR was set to 0.97. This particular value was

chosen to demonstrate that, in principle, a large reduction

of the FPR can be achieved via a small reduction in the

TPR. The best values of TPR, FPR, and ACC for each plot

are depicted in the figure. For example, even changing H

from 0 to 1 allows FPR to be reduced from 0.52 to 0.24 at

the cost of reducing TPR by only 3%. Overall, the accuracy

is improved by 0.13. The best performance among the

considered range is achieved for H ¼ 4, resulting in

TPR ¼ 0:98, FPR ¼ 0:04, ACC ¼ 0:97, thus improving

the accuracy of the SBF by 31%. It should be noted that the

presented example considered only a narrow range of H. In

principle, H could be chosen between 0 and n, and there-

fore, it is important to observe the performance of the ABF

for larger H. Figure 3 demonstrates the dependency

between H and ACC, where for each H in the range

0�H� 20, T was optimized according to (21) without

limiting LTPR. The first six values of ACC in Figure 3

correspond to the values depicted in Figure 2. These val-

ues lie in the region where the ACC was increasing for

each new value of H. However, for values of H[ 5, we

observe that ACC is constantly decreasing until it reaches

0.5. This decrease happens because with the increased H
the sparsity of the ABF is increasing until all positions in

the filter are set to zero. This moment corresponds to

ACC ¼ 0:5 because an empty filter has no information

about the stored elements, and thus, its TPR is zero, but it

also has no false positives (i.e., FPR ¼ 0), which results in

ACC ¼ 0:5. Therefore, we observed that the dependency

between H and ACC is nonlinear and that there is a peak

value of ACC, which in the considered example was

achieved for H ¼ 4.

4.3 Comparison with the optimized BF

Figure 4 demonstrates the results of comparison of four

filters: the autoscaling BF (dash-dot line), the optimized BF

Fig. 2 Probability mass functions for X (query present) and Y (query absent) for different thresholdsH in the range 0�H� 5; k ¼ 100, n ¼ 500,

m ¼ 10;000
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(solid line), the nonoptimized BF (dashed line), and the

nonoptimized RBF (dotted line). The nonoptimized RBF

was created via randomly erasing 0.1% of nonzero posi-

tions in the nonoptimized BF. The nonoptimized BF shows

the performance of the CBF (SBF) without using the ABF,

and thus, it shows a fair comparison of the proposed

approach and the standard approach. The nonoptimized

RBF is chosen for comparison, as it is conceptually the

most relevant modification of the SBF to the ABF, and

thus, it shows an alternative, also decreasing FPR by

introducing some false negatives. Finally, the optimized

BF demonstrates the best possible performance achievable

by the CBF (SBF). Each panel in Fig. 4 corresponds to a

performance metric: left—TPR; center—FPR; right—

ACC. Please recall that ACC is not the only possible metric

cumulatively characterizing TPR and FPR, however, it was

adopted in this paper as the optimization criterion for the

ABF. Please see the discussion in Sect. 4.1 for the moti-

vation of that choice and possible alternatives. The per-

formance was studied for a range of numbers of unique

elements stored in the filter (50� n� 5000). The length of

the filters was the same as in Fig. 2, m ¼ 10;000. For the

optimized BF, k was calculated as in (3) for each value of n

and varied between 1 and 139. For three other BFs, k was

fixed to 100. The values used in the experiments are

summarized in Table 1. The ABF was formed from the

CBF according to (12). Only two parameters (H and T) of

ABF were optimized for each value of n according to (22)

with LTPR ¼ 0:9. Note that these two parameters do not

change the hardware resources required for an ABF

implementation since k and m are fixed, while an optimized

BF implementation might require 40% more hash func-

tions. This overhead directly translates to a larger silicon

area or slower speed for the hardware implementation of

the optimized BF compared to the ABF.

The TPR of the optimized and nonoptimized BFs is

always 1, while for the ABF and nonoptimized RBF it can

be less. In particular, the TPR of the ABF varies in the

allowed range between LTPR and 1. For large values of n

([1000), the TPR of the ABF is approximately equal to

LTPR. In the case of nonoptimized RBF the TPR was

around 0.9 over the whole range of n. The FPR of all the

filters grows with increasing n. As anticipated, the

nonoptimized BF soon (at n � 1000) achieves FPR ¼ 1

and stays there until the end. A similar behavior is

demonstrated by the nonoptimized RBF with the exception

that the highest value of FPR is 0.9. Note that with RBF,

the price one has to pay for the lower FPR is the decreased

TPR. Two other filters, the ABF and the optimized BF,

demonstrate a smooth increase in FPR. The FPR is lower

than 1 for both filters even when n ¼ 5000 (approximately

0.6 and 0.4, respectively). The accuracy curves aggregate

the behavior for TPR and FPR. For most values of n, the

nonoptimized BF and RBF reach ACC ¼ 0:5 as their FPRs

reach the maximal values. Their accuracies for large values

of n are the same because the gain in FPR equals the loss in

TPR for the nonoptimized RBF. The accuracies of the ABF

and the optimized BF smoothly decay with the growth of n,

being 0.66 and 0.8 when n ¼ 5000. Thus, the ABF sig-

nificantly outperforms the nonoptimized BF and RBF when

Fig. 3 Comparison of the highest possible accuracy (ACC) for

different thresholds H in the range 0�H� 20; k ¼ 100, n ¼ 500,

m ¼ 10;000

Fig. 4 Comparison of performance (TPR, FPR, and ACC) of four different BFs against varying number of stored elements n (50� n� 5000 step

50)
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their FPRs are increasing. In general, the performance of

the ABF follows that of the optimized BF with some

constant loss. The increase in accuracy from ABF to

optimized BF can be understood as the value delivered by

being able to specify in advance precisely the number of

elements to be stored in the filter. The best trade-off

between TPR and FPR is in the region of n where FPR of

the nonoptimized BF is steeply increasing from 0 to 1.

It is important to reemphasize the advantages of the

ABF over the optimized BF. In the experiments above, the

ABF addressed the major difficulty of the SBF, which is its

limited scalability, since the ABF does not require the

recalculation of the whole filter as the number of the stored

elements is increasing. Thus, the ABF allows adopting the

performance of the filter even when the number of ele-

ments to be stored simultaneously is not known in advance.

On the contrary, the SBF (i.e., the optimized BF in the

experiments) is not scalable as it must be rebuilt if a new

value of k is chosen. In the experiments reported in Fig. 4,

k varied between 1 and 139 and the optimized BF was

rebuilt 23 times (cf. Table 1). The fact that the optimized

BF has to be rebuilt every time when k changes limits its

use-cases for situations with dynamic ranges of elements

such as in Fig. 4. Another very important advantage of the

ABF is that due to its adaptiveness, the number of hash

functions k can be fixed for a wide range of stored ele-

ments. Fixed k allows significantly simplifying hardware

implementations since there would be no need to account

for increased area and power of a chip [5] when k grows.

Obviously, since the optimized BF has to work in a

dynamic range of k, it does not have this advantage.

5 Conclusion

This paper introduced the autoscaling Bloom filter. The

ABF is a generalization of the standard binary BF, derived

from the counting BF, with procedures for achieving

probabilistic bounds on false positives and true positives. It

was shown that the ABF can significantly decrease the

false positive rate at a cost of allowing a nonzero false

negative rate. The evaluation revealed that the accuracy of

the ABF follows the standard BF with the optimized

number of hash functions with some constant loss. As

opposed to the optimized BF, the ABF provides means for

optimization of the filter’s performance without requiring

the entire filter to be rebuilt when the number of stored

elements in the filter is changing dynamically. This opti-

mization can be achieved while the number of hash func-

tions remains fixed.

There are several limitations to this study. First, since

the paper focused on presenting and characterizing the

algorithm rather than a solution to any problem, no par-

ticular attention has been paid to study the effect of an

optimization criterion on the ABF’s performance. Instead,

we simply adopted the accuracy. Second, the analysis of

the ABF presented in this paper used counting BFs with the

unlimited range of counters. In practice, however, the size

of counters is limited to several bits [35]. In the future

work, we will focus on analyzing the effect of restricted

counters in counting BFs on the ABF.
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