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Abstract Mobile Edge Computing (MEC) utilizes wire-

less access network to provide powerful computing re-

sources for mobile users to improve the user experi-

ence, which mainly includes two aspects: time and en-

ergy consumption. Time refers to the latency consumed

to process user tasks, while energy consumption refers

to the total energy consumed in processing tasks. In
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this paper, the time and energy consumption in us-

er experience are weighted as a mixed overhead and

then optimized jointly. We formulate a Mixed Overhead

of Time and Energy (MOTE) minimization problem,

which is a non-linear programming (NLP) problem. In

order to solve this problem, the Block Coordinate De-

scent (BCD) method to deal with each variable step by

step is adopted. We further analyze the minimum value

of delay parameters in the model, and examine two spe-

cial cases: 1-offloading and 0-offloading. In 1-offloading,

all the task data is offloaded to MEC server, and no

data offloaded in 0-offloading. The necessary and suffi-

cient conditions for the existence of two special cases are

also deduced. Besides, the multi-user situation is also

discussed. In the performance evaluation, we compare

MOTE with other offloading schemes, such as Exhaus-
tive Strategy (ES) and Monte Carlo Simulation (MCS)

method based strategy to evaluate the optimality. The

simulation results show that MOTE always achieves the

minimal overhead compared to other algorithms.

Keywords Full granularity · Partial offloading ·
Mixed overhead · Mobile edge computing

1 Introduction

In recent years, the fifth generation (5G) of mobile com-

munication systems have emerged to cope the explosive

growth of mobile data traffic, massive device connec-

tions and new services etc [1] [2]. Many typical applica-

tion scenarios involves the 5G technology, such as the

applications in dense residential areas, offices, stadi-

ums, subways etc, and the various applications could

be augmented reality, virtual reality, ultra-high defi-

nition video, cloud storage etc, which in general re-

quire for high speed and low latency. Faced with the
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requirements, Mobile Cloud Computing (MCC) came

into play, which refers to that user equipment accesses

computing resources such as storage, computing, and

database through remote connections. However, MC-

C is often far away from the end users, causing users

to experience long delays. Therefore, to overcome this

problem, MEC has been proposed as a promising solu-

tion [3] [4].

With the development of the Internet of Things

(IoT), many devices have to exchange lots of informa-

tion safely in real time, which requires very high perfor-

mance of the network and communication environment.

In the network layer, the wireless routing protocols are

adopted to collect data [5], and in many scenarios they

have different properties such as identifying and mea-

suring jamming areas [6], protecting source node loca-

tion [7], charging the sensor node [8], considering the

energy constraint [9], and selecting the relay node on

curve road [10] and intersection [11] for mobile wireless

network.

Unlike the routing and data collection algorithms in

the network layer of IoT, MEC is more relevant to un-

derlying communication. Specifically, MEC refers to the

computing capability sunk to a distributed base station,

and conducts tasks such as calculation, storage, and

processing for the IoT applications, such as video ana-

lyzing, indoor location [12], smart charging [13] [14] and

demand response in smart grid [15]. Hence, the conven-

tional wireless base station is upgraded to an computing

competent base station [16]. The base station enables

data to be processed on the wireless network side with-

out being transmitted to a remote cloud server. There-

fore, many researchers have paid attention to the task

offloading of MEC. However, there are many issues to

be considered in task offloading, such as service latency,

energy consumption, caching management, computing

resource distribution, the profit maximization of mobile

service provider [17], and cooperative resource alloca-

tions [18] etc. For the mobile users, how to minimize the

time or latency of the task execution and energy con-

sumption of the user equipment is also an important

issue.

2 Related Works

The computing offloading model in MEC can be divided

into full offloading model and partial offloading model

according to whether the tasks are separable or not.

2.1 Full Offloading Model

In this full offloading model, tasks are highly integrated,

which means all the tasks can only be executed locally

or offloaded to the MEC server as a whole. Full offload-

ing model is also called binary offloading [3].

In [19], a theoretical framework of energy-optimal

mobile cloud computing under stochastic wireless chan-

nel was provided. The goal was to save energy by per-

forming mobile application tasks on mobile devices or

offloaded to the edge cloud. It was divided into two

sub-problems. The first one was solved at the user e-

quipment by optimizing the CPU frequency. The serv-

er solves the second one by optimizing the transmis-

sion data rate. In [20], Wu et al. explored the tradeoff

between shortening execution time and extending bat-

tery life of mobile devices, and based on which a novel

adaptive full offloading scheme was proposed to select a

optimal MEC server to offload all tasks. In [21], a nov-

el solution that seamlessly integrates two technologies,

mobile cloud computing and microwave power transfer

(MPT), was proposed. In mobile cloud computing, the

full offloading model was presented for mobile user to

execute the task locally or offload the data to the MEC

server. In MPT, the mobile user harvested the energy

from base station to execute local computing. In [22],

S. Barbarossa et al. analyzed different scenarios with

the delay constraint, computation constraint to opti-

mize the energy consumption. Both the single user and

multi-users scenarios were analyzed. In [23], Wang et

al. studied the joint energy minimization and resource

allocation in C-RAN with MCC under the time con-

straints of the given tasks, and a multiple users full

offloading model was formulated as a non-convex prob-
lem, which was transformed into convex problem and

solved iteratively. Sun et al. in [24] formulated an op-

timization problem with the objective to maximize the

sum of computation efficiency among users with weight-

ed factors. The problem was solved efficiently with the

iterative and gradient method, and the relationship be-

tween the size of data volume and local computation

and data offloading was revealed.

2.2 Partial Offloading Model

One user may have served tasks to be processed, and

the partial offloading refers to that the user’s tasks can

be partially offloaded to the MEC server and partially

executed locally for better user experience.

Hao et al. in [25] proposed a hybrid linear program-

ming problem with joint optimization of task caching

and offloading, which was splited into two sub-problems

and solved separately by using the branch and bound
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method. Ren et al. in [26] studied a resource alloca-

tion problem to minimize the delay. Firstly, a closed-

form expression for optimizing the data segmentation

strategy was obtained. Based on this expression, the o-

riginal problem was divided into a sub problem, which

was solved by using the sub-gradient algorithm. Cao et

al. [27] proposed a three-node mobile edge computing

system including user nodes, assistant nodes and ac-

cess nodes, and applied a four-slot protocol to jointly

calculate and offload cooperation. Jia et al. [28] devel-

oped a heuristic program partitioning algorithm to min-

imize the execution latency by leveraging the overhead

balancing concept between mobile users and servers,

and proposed a polynomial-time approximate solution

with guaranteed performance. In [29] Liu et al. pro-

posed a Markov decision process approach to offload

the tasks in the queue buffer to the MEC server or

not. The average delay and power consumption of each

task were analyzed, and a power-constrained delay min-

imization problem was formulated and solved. In [30],

the authors introduced a wireless aware joint schedul-

ing and computation offloading (JSCO) for multicom-

ponent applications to shorten execution times by par-

allel processing appropriate components in the mobile

and cloud. Mao et al. in [31] planned a stochastic op-

timization problem to achieve energy efficiency trade-

offloading in order to solve the randomness of chan-

nel conditions and task arrival. In [32], a comprehen-

sive computation offloading solution using multiple ra-

dio links was proposed. An energy minimization prob-

lem for mobile devices was formulated and solved it-

eratively, and the local optimal solution was obtained.

Zhang et al. in [33] researched the energy consumption

minimization problems on mobile device and meeting

a time deadline by strategically offloading tasks to the

cloud. The optimization problem was formulated as a

constrained shortest path problem, and approximately

solved by the LARAC (Lagrangian Relaxation Based

Aggregated Cost) algorithm.

2.3 Full Granularity Partial Offloading Model

The partial offloading models introduced above are main-

ly related to multiple tasks partial offloading. In prac-

tice, a single task can also be partially offloaded. For

example, assume analyzing a video is a task. We can

divide the video file into several segments and upload

them to different servers to analyze, which can improve

the efficiency and reduce the user’s waiting time. In

addition, we can also perform data segmentation for

virus scanning, image compression and other tasks. S-

ince task data can be arbitrarily divided into multiple

fragments and proceeded either locally or offloaded to

MEC server, we call this partial offloading as full gran-

ularity partial offloading [34].

Recently, a few studies have been done on full granu-

larity partial offloading. In [34], Wang et al. investigated

partial computation offloading by jointly optimizing the

computational speed and transmission power of mobile

device, and offloading ratio to minimize the energy con-

sumption of user as well as the latency of application.

However, this work did not consider the optimization

of energy consumption and latency at the same time, in

other words this work did not reflect user preferences

in terms of time and energy consumption in the ob-

jective function. Besides, the work also did not discuss

the situation of multiple users. In [35], O. Munoz et al

analyzed the energy-latency tradeoff from the point of

the mobile users, and then formulated an energy min-

imization problem to optimize the communication and

computing resources. Kao et al. in [36] formulated an

NP-hard problem to minimize the application laten-

cy while meeting prescribed resource utilization con-

straints. They also proposed a novel fully polynomial

time approximation scheme Hermes to approximately

solve this problem, and also an online algorithm was

proposed to guarantee the bounded performance gap

compared to the optimal strategy. Wang et al. in [37]

exploited a multi-antenna non-orthogonal multiple ac-

cess (NOMA) technique for multiuser computation of-

floading, and a weighted sum-energy consumption min-

imization problem at all users subject to their latency

constraints was formulated. The partial offloading and

binary offloading situations were considered and solved

approximately in this work.

As the description above, in the full granularity par-
tial offloading model, few papers considered the joint

optimization of time and energy consumption for the

mobile user. In this paper, we consider a full granu-

larity partial offloading model, where the input data

of the task is divided into local execution and MEC

server execution in any proportion. We focus on jointly

minimizing the user’s overhead consisting of weighted

execution time and consumed energy, and the weight

is the user preferences in terms of time and energy

consumption. By using the BCD method, we obtained

closed-form solutions for all variables. We further an-

alyze the time interval during which the user actually

perform the full granularity partial offloading. In ad-

dition, we find the sufficient and necessary conditions

for mobile user to choose 0-offloading and 1-offloading.

As for the multi-user situation, the solution discussion

is proposed. Finally, the simulation results illustrated

the optimality and the superiority of MOTE compared

with exhaustion algorithm, Monte Carlo algorithm and

other optimization methods.



4 Qiang Tang et al.

The rest of this paper is organized as follows. In

section 3 and 4, the system model and optimization

problem are formulated and solved respectively. In sec-

tion 5, we further analyze the optimization model. The

numerical results are introduced in section 6. In section

7, we summarize this paper.

3 System Model

Let’s consider a typical IoT scenario, where a mobile

user such as a policeman has a laptop to find a criminal

from a video file with large size, as shown in Fig.1.,

which consumes a lot of computing resource and time.

If partial video data can be transferred to MEC server,

the processing time will be greatly reduced.

According to the scenario in Fig.1, we consider a

mobile edge computing scenario that consists of one

user device and one MEC server, where user device

has computationally intensive task. Additionally, MEC

server has computing and storage resources that de-

ployed at the edge of the wireless access network. There-

fore, user device can offload their task data to the MEC

server through the wireless channel. We use a tuple

A = (T, F,D) to represent the user’s task A, where

T is the delay threshold, and F represents the number

of CPU cycles required to complete task A, and D is

the input of task data size.

Mobile User

MEC Server

Remote Cloud

Video 
Analysis

Task

Video Analysis Task

Video Data 
Block1

Video Data 
Block2

Offload Partial Task 
Data to MEC Server

Locally Processing 
Partial Task Data

Video File

Fig. 1 A typical mobile edge computing scenario

3.1 Local Computing Model

For local computing tasks, we assume a linear relation-

ship can be established between the number of CPU

cycles F and the amount of data D bits input [34].

F = αD (1)

where α (α > 0) depends on the nature of application,

Since our partial offloading is a full-granular program

partition. Thus, according to [35], we define λ (0 ≤ λ ≤ 1)

as the ratio, where λ is the ratio of the number of local

execution data bits to the total number of input data

bits. Therefore, the number of data bits executed local-

ly is λD. The data size executed by the MEC server is

(1− λ)D.

We define fl as the user’s CPU frequency, and fmax
is the user’s maximum CPU frequency. Then the con-

straint of fl is:

fl ≤ fmax (2)

Therefore, the user’s local execution time Tl can be

expressed as follows:

Tl =
αλD

fl
(3)

According to the reference [38], the energy consump-

tion performed locally by the user can be expressed as:

El = kαλDf2l (4)

where k is the coefficient depending on the chip struc-

ture, we usually set k = 10−26.

3.2 MEC Server Computing Model

According to the reference [39], there are two processes

for the task execution in the MEC server computing: (1)

task data is transmitted to the MEC server through the

uplink channel. (2) task is executed in the MEC server.

In the first phase, the user’s uplink transmission rate r

can be expressed as:

r = Blog2(1 +
pho
ω

) (5)

where B is the bandwidth, ω is the noise power, ho
represents the channel gain from the user to the MEC

server, p represents the transmission power, and pmax is

the maximum transmission power. The constraint con-

dition of p is:

p ≤ pmax (6)

Therefore, the transmission time Tu of the user task

on the upstream channel is defined as follows:

Tu =
(1− λ)D

r
(7)

In the second phase, we define fc as the CPU fre-

quency of the MEC server, and the execution time Tce
of the user in the MEC server is given by:

Tce =
α (1− λ)D

fc
(8)
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Therefore, the total time Tc spent in the MEC server

is the sum of time Tu and Tce (Because the data size

of the result is very small, the time taken to obtain the

results is often neglected [40].):

Tc =
(1− λ)D

r
+
α (1− λ)D

fc
(9)

The user’s energy consumption in the MEC server

can be expressed as follows:

Ec = pTu =
(1− λ)pD

Blog2(1 +
pho
ω

)

(10)

4 Problem Formulation

The objective function is defined from the perspective

of mobile users. As for the mobile user, they only care

the task execution delay and energy consumption. Al-

though the execution delay and energy are two indica-

tors in different dimensions, they can be weighted and

then combined as a mixed indicator like other research

work had done [38] [39]. We define overload U of a mo-

bile user as a function consist of weighted time and

energy consumption:

U = β (Tl + Tc) + (1− β) (El + Ec) (11)

where β (0 ≤ β ≤ 1) represents the weighting coefficient

of the execution time for user task. The weighting factor

of user energy consumption is 1− β. The optimization

problem is:

P1:

minimize
fl,p,λ

U

s.t.

C1 : 0 ≤ λ ≤ 1

C2 : 0 ≤ fl ≤ fmax

C3 : 0 ≤ p ≤ pmax

C4 : Tl ≤ T

C5 : Tc ≤ T

In P1, the constraint C1 represents the range of λ,

and if λ = 0 all the task data is offloaded to the MEC

server, while if λ = 1 all the task data is executed local-

ly. The constraints C2 and C3 represent the maximum

CPU frequency and the maximum transmission power

of the mobile user. The constraint C4, C5 represent the

local execution time constraint and the offloading time

delay constraint respectively. Because the local execu-

tion and MEC server execution can be done in parallel

and there is no correlation between the two parallel exe-

cution processes, then we limit the local execution time

and MEC server execution time to C4 and C5 respec-

tively.

One can see that P1 is not a joint convex with re-

gards to (w.r.t) fl, p and λ, which is a nonlinear pro-

gramming problem (NLP). In this paper, we firstly ver-

ify the convexity of NLP for each single variable, and

then the Block Coordinate Descent (BCD) method is

adopted to solve the NLP approximately.

4.1 Optimization of the local computing frequency fl

In order to solve fl, we get the following sub-problem:

P1.1:

minimize
fl

U1

s.t.

C2 : 0 ≤ fl ≤ fmax

C4 : Tl ≤ T

where U1 is:

U1 = βTl + (1− β)El

= αλD[
β

fl
+ (1− β)kf2l ]

(12)

Let:

y (fl) =
β

fl
+ (1− β)kf2l (13)

Then we can get the second-order derivative of y (fl),

which is 2βf−3l +2(1−β)k > 0. Besides, the constraints

C2 and C4 are linear inequality, thus, P1.1 is a convex

problem w.r.t fl. We obtain the optimal value of fl:

f∗l = 3

√
β

2 (1− β) k
(14)

According to the C2 and C4, we get the domain of fl:

fmin ≤ fl ≤ fmax (15)

where fmin = αλD
T deduced by C4. Finally, the bound-

ed optimal value of fl is:

fl
∗ =



fmin, if 3

√
β

2 (1− β) k
< fmin

3

√
β

2 (1− β) k
, if fmin ≤ 3

√
β

2 (1− β) k
≤ fmax

fmax, if 3

√
β

2 (1− β) k
> fmax
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(16)

4.2 Optimization of the transmission power p

After obtaining the optimal solution fl
∗, we solve the

variable p to get the optimal transmission power. The

sub-problem is:

P1.2:

minimize
p

U2

s.t.

C3 : 0 ≤ p ≤ pmax

C4 : Tl ≤ T

where U2 is:

U2 = βTu + (1− β)Ec

=
D (1− λ) (1− β)

B

p+
β

1− β

log2

(
1 +

pho
ω

) (17)

In order to prove the U2 is convex w.r.t p, we let:

f(p) =

p+
β

1− β

log2

(
1 +

pho
ω

) (18)

We further suppose b =
β

1− β
and a =

ho
ω

. Then:

f(p) =
p+ b

log2 (1 + ap)
(19)

Lemma 1 f (p) is quasi-convex functions in the posi-

tive real number domain R+.

Proof : According to reference [41], for quasi-convex

functions defined on positive real number, the second

derivative of the point where the first-order derivative

is zero is non-negative.

Note that the first-order derivative of f (p) is:

df (p)

dp
=

log2 (1 + ap)− a

ln 2
· p+ b

1 + ap

log2
2 (1 + ap)

(20)

if we let the first derivative to zero, we get only one

optimal point denoted by p̂:

p̂ =
ab− 1

lambertw (0, e−1 (ab− 1)) · a
− 1

a
(21)

where lambertw (•) function is a product log function,

and is a inverse function of f(x) = x.ex. In this paper,

p̂ is always a positive real number. Besides, we also get

the following condition by letting the first derivative of

f(p) as zero:

log2 (1 + ap̂) =
a

ln 2
· p̂+ b

1 + ap̂
(22)

Then, we further get the second derivative of f (p)

as:

d2f (p)

dp2
=

a (2ap+ ba ln (ap+ 1) + 2ba)

ln2 (2) (log2 (1 + ap))
3
(1 + ap)

2−

a (ap ln (ap+ 1) + 2 ln (ap+ 1))

ln2 (2) (log2 (1 + ap))
3
(1 + ap)

2

(23)

if we substitute condition (22) into (23), then we have:

d2f (p̂)

dp̂2
=

a3(b+ p̂)
2

(1 + ap̂) 3(ln 2)
2

log3
2 (1 + ap̂)

≥ 0 (24)

Therefore, this function is a quasi-convex function in

the domain. �

According to C3 and C5, we get the bounded do-

main of p:

pmin ≤ p ≤ pmax (25)

where pmin is deduced by C5:

pmin =

2

fc (1− λ)D

[Tfc − α (1− λ)D]B − 1

 · ω
ho

(26)

Then, the optimal value of p is:

p∗ =


pmin, if pmin > p̂

p̂, if pmin ≤ p̂ ≤ pmax
pmax, if p̂ > pmax

(27)

4.3 Optimization of the offloading ratio λ

After optimizing the variables fl and p, the rest variable

is λ, the sub-problem w.r.t λ is:
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P1.3:

minimize
λ

U3

s.t.

C1 : 0 ≤ λ ≤ 1

C4 : Tl ≤ T

C5 : Tc ≤ T

where U3 is β(Tl + Tc) + (1 − β)(El + Ec). We can

observed that P1.3 is a linear program of λ, and we can

get the upper bound and the lower bound according to

C4 and C5 respectively:

1− T

D(
1

Blog2(1 +
pho
ω

)

+
α

fc
)
≤ λ ≤ Tfl

αD
(28)

Then according to the condition C1, lower bound of λ

is:

λmin = max

0, 1− T

D(
1

Blog2(1 +
pho
ω

)

+
α

fc
)

 (29)

And the upper bound is:

λmax = min

(
1,
T fl
αD

)
(30)

Then, we get the optimal value of λ:

λ∗ =

{
λmax, if U3 (λmax) ≤ U3 (λmin)

λmin, if U3 (λmax) ≥ U3 (λmin)
(31)

4.4 Overall Algorithm

When the variables fl, p and λ are solved separately

by using the BCD method, we can calculate out the

optimal value of objective function in equation (11) by

substituting the optimum values of this variables. Then

the problem P1 is solved approximately. The optimiza-

tion progress is repeated some times until the objective

function value is stable. MOTE algorithm is presented

in Algorithm 1, where ε is a very small positive value.

5 Analysis

In this section, we firstly analyze the minimum delay

for the parameter T . Then, we analyze the conditions

for 0-offloading and 1-offloading.

Algorithm 1: Mixed Overhead of Time and En-

ergy consumption (MOTE) Algorithm

Input: p0, λ0, ε

Output: f∗l , p∗, λ∗

1 repeat

2 Obtain the CPU frequency f∗l according to

(16);

3 Obtain the transmission power p∗ according

to (27);

4 Obtain the ratio λ∗ according to (31);

5 Calculate the value of U t(f∗l , p
∗, λ∗);

6 t = t+ 1;

7 until
∣∣U (t) − U (t−1)

∣∣ < ε;

8 return f∗l , p∗, λ∗.

5.1 Minimum delay threshold

In the sub-problem P1.3, the upper bound and lower

bound of λ are determined by the parameter T . If we

fixed other parameters and change T , we can get two

curves for λmax and λmin respectively, which are shown

in Fig.2:

T

λ

1

Tmin0 T1 T2

Infeasible Region Feasible Region

Critical Point

λmin=0

λmin=0, λmax=1

Line of λmax

Line of λmin

Fig. 2 Variation curves of feasible region with T

As shown in the figure above, the black broken line

indicates λmax, and the black solid line indicates λmin.

The intersection of these two lines is the minimum delay

threshold Tmin, which is:

Tmin =
1

fl
αD

+
1

(
1

B log2(1 +
pho
ω

)

+
α

fc
)D

(32)

Therefore, the delay threshold T we set must be greater

than Tmin. Otherwise this overhead optimization prob-

lem is not feasible. When delay threshold T is greater
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than T1, where T1 is:

T1 = D(
1

Blog2(1 +
pho
ω

)

+
α

fc
) (33)

There may exist 0-offloading if λ selects the value of

λmin, while if λ selects the value of λmax the full gran-

ularity partial offloading still exists.

When the delay threshold T is greater than T2,

where T2 is:

T2 =
αD

fl
(34)

Then the offloading strategy is either 0-offloading or 1-

offloading, and the optimal value of λ is either 1 or 0.

Therefore if the partial offloading exists, i.e. the value of

λ can be a decimal between 0 and 1, the delay threshold

T should belong to the interval (Tmin,Tmax), where the

Tmax is:

Tmax = min

αD
fl
, D

 1

Blog2(1 +
pho
ω

)

+
α

fc


 (35)

In this subsection, we propose the conditions for the full

granularity partial offloading and full offloading w.r.t

parameter T . In the next subsection, we propose the

sufficient and necessary conditions for 0-offloading.

5.2 Necessary and Sufficient Conditions for

0-offloading

In this section, we discuss the necessary and sufficient

conditions for all task to be executed locally, which con-

tains two conditions, which are (a) λ = 1 is a feasible

solution, and (b) dU(λ)
dλ

∣∣∣
λ=1
≤ 0. According to condition

(a) and equation (30), we have the following condition:

T ≥ flαD (36)

In order to prove the validity of the condition (b) above,

firstly we have to prove the function U(λ) is convex,

secondly we also have to prove the optimal function

value can be obtained at the point λ = 1 shown in

Fig.3.

λ 

U 

1λ <1

dU(λ)/dλ<0  

Fig. 3 The first derivative of function U(λ) is less than 0

As shown in Fig.3, only when λ = 1, the optimal

value of U(λ) can be obtained. If we can further prove

that U(λ) is a convex function w.r.t λ, we can say the

condition (a) and (b) are the necessary and sufficient

conditions for local execution.

5.2.1 Convexity Proof

In order to prove the necessary and sufficient condition-

s, we should prove the convexity of the prime problem.

Theorem 1 U(λ, fl, p) is a convex function w.r.t λ.

Proof : Firstly, according to P1.3 we can get the ex-

pression of U(λ) as follows:

U (λ) =

β

αλDf∗l +
(1− λ)D

Blog2

(
1 +

p∗ho
ω

) +
α (1− λ)D

fc

+

(1− β)

kαλD(f∗l )
2

+
(1− λ) p∗D

Blog2

(
1 +

p∗ho
ω

)


(37)

where p∗ and f∗l are given in equation (16) and (27)

respectively. Although we can prove that U (λ) is con-

vex by the form of piecewise function, what we want to

prove is that the original function U(λ, fl, p) is a convex

function w.r.t λ. Besides, this function P1.3 obtained is

based on BCD method, which is the intermediate func-

tion of sub-optimal solution, and we need to prove that

the prime problem is convex w.r.t λ.
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The prime problem target function U(λ, fl, p) is:

U (λ, fl, p) =

β

αλDfl +
(1− λ)D

Blog2

(
1 +

pho
ω

) +
α (1− λ)D

fc


+ (1− β)

kαλDfl2 +
(1− λ) pD

Blog2

(
1 +

pho
ω

)


(38)

which can be decomposed into two sub functions:

Ua(λ, fl) = β

(
αλD

fl
+
α (1− λ)D

fc

)
+ (1− β) kαλD(fl)

2
(39)

and

Ub (λ, p) = β
(1− λ)D

Blog2

(
1 +

pho
ω

)
+ (1− β)

(1− λ) pD

Blog2

(
1 +

pho
ω

) (40)

The Ua(λ, fl) is not joint convex w.r.t λ and fl. We

then use the variable substitution method and let:

x =
λ

fl
⇒ fl =

λ

x
(41)

Then (39) can be rewritten as:

Ua(λ, x) =
βα (1− λ)D

fc
+ αD

(
βx+ (1− β)k

λ3

x2

)
(42)

The convexity of Ua(λ, x) is determined by the following

function:

g (λ, x) =
λ3

x2
(43)

we can easily get its Hessian matrix and its character-

istic values as 0 and λ2

x2 + 1, then the function g (λ, x)

is joint convex w.r.t λ and x. Therefore Ua(λ, x) is

a joint convex function. Because x has a convex set

x ∈
[
0, 1

fmin

)
, then the Ua(λ, x) is a convex function

w.r.t λ according to the following lemma:

Lemma 2 If f is convex in (x, y), and C is a convex

nonempty set, then the function:

g (x) = inf
y∈C

f (x, y) (44)

is convex in x.

Proof : See [41] �

Then we have proved that Ua(λ, x) is a convex func-

tion w.r.t λ. In the following, we continue prove Ub (λ, p)

is also a convex function w.r.t λ.

We let:

x =
1− λ

log2

(
1 +

pho
ω

) ⇒ p =
(

2
1−λ
x − 1

) ω

ho
(45)

Then Ub (λ, p) can be rewritten as:

Ub (x, λ) =
D

B

(
βx+ (1− β) 2

1−λ
x x

ω

ho
− (1− β)x

ω

ho

)
(46)

The convexity of Ub (x, λ) is determined by:

g (λ, x) = 2
1−λ
x x (47)

we can easily get the characteristic values of its Hessian

matrix, which are non-negative. So, Ub (x, λ) is convex

w.r.t x and λ. Because x belongs to a convex set, ac-

cording to Lemma 2, the Ub (λ, p) is a convex function

w.r.t λ.

Besides the target function is convex, we can also

easily find that the constraints C1, C2, C3, C4 and C5

are linear constraints w.r.t λ, x in Ua(λ, x) and x in

Ub (x, λ), then the constraints are all convex.

In summary, U(λ, fl, p) is a convex function w.r.t λ,

and the Theorem 1 is proved. �

5.2.2 Necessary and Sufficient Conditions Proof

According to the Theorem 1, we know the prime prob-

lem is convex w.r.t λ. If all the task data is executed

locally, i.e λ = 1, then we can derive that (a) λ = 1 is

a feasible solution, and (b) in the domain of λ, the tar-

get function U(λ, fl, p) are monotonically decreasing,

i.e.
∂U (λ, fl, p)

∂λ
≤ 0.

According to conditions (a) and (b), we can easily

derive all the task data is executed locally.

5.3 Necessary and Sufficient Conditions for

1-offloading

Similar to the above subsection, if all the task data is

executed at MEC server, two conditions can be derived:

(c) λ = 0 is a feasible solution, and (d) in the domain

of λ, the target function U(λ, fl, p) are monotonically

increasing, i.e.
∂U (λ, fl, p)

∂λ
≥ 0.

According to conditions (c) and (d), we can easily

derive all the task data is executed at MEC server.
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5.4 Discussion about Multi-User Situation

Except for a single user, multi-user scenarios are very

common. As for this situation, our single user’s model

MOTE is still suitable.

In the multi-users scenario, we assume there are N

mobile users, and we formulate the optimization prob-

lem as minimizing the sum of all the users’ overhead:

P2:

minimize
fc,i,fl,i,pi,λi

N∑
i=1

Ui

s.t.

C6 : 0 ≤ λi ≤ 1, 1 ≤ i ≤ N

C7 : 0 ≤ fl,i ≤ fmax,i, 1 ≤ i ≤ N

C8 : 0 ≤ pi ≤ pmax,i, 1 ≤ i ≤ N

C9 : Tl,i ≤ Ti, 1 ≤ i ≤ N

C10 : Tc,i ≤ Ti, 1 ≤ i ≤ N

C11 : 0 ≤
N∑
i=1

fc,i ≤ fc,max

C12 : 0 ≤ fc,i ≤ fc,max, 1 ≤ i ≤ N

where Ui is βi (Tl,i + Tc,i) + (1− βi) (El,i + Ec,i). λi is

the offloading ratio for user i. fl,i is the local computing

frequency of user i. fc,i is the MEC computing frequen-

cy for user i, and fc,max is the maximum computing

frequency of MEC server. pi is the transmission pow-

er for user i, and pmax,i is the maximum transmission

power for user i. Tl,i and Tc,i are the time of local com-

puting and MEC computing respectively.

In the problem P2, all the mobile users are coupled

by the constraint C11. According to equation (9) and

(11), one can find that if the value of fc,i is maximized

the overhead of user i is minimized. Then the equation

is valid for the constraint C11. After combining the C11

and C12 together, we can obtain a new equation con-

straint: fc,i = fc,max −
N∑
j=1

fc,j(j 6=i).

At the beginning, we assume there is a MEC fre-

quency distribution algorithm to distribute all the MEC

computing frequency to each mobile user. Let’s take us-

er i as an example, and its initial MEC frequency is f0c,i.

According to above analysis, the fc,i should be maxi-

mized, which means the optimal value of fc,i is f0c,i, and

fc,i is solved. Then, the problem P2 can be converted

into:

P3:

minimize
fl,i,pi,λi

N∑
i=1

Ui

s.t.

C6 : 0 ≤ λi ≤ 1, 1 ≤ i ≤ N

C7 : 0 ≤ fl,i ≤ fmax,i, 1 ≤ i ≤ N

C8 : 0 ≤ pi ≤ pmax,i, 1 ≤ i ≤ N

C9 : Tl,i ≤ Ti, 1 ≤ i ≤ N

C10 : Tc,i ≤ Ti, 1 ≤ i ≤ N

The problem P3 is separable, then we have the fol-

lowing N sub-problems:

P3.1:

minimize
fl,i,pi,λi

Ui

s.t.

C6 : 0 ≤ λi ≤ 1

C7 : 0 ≤ fl,i ≤ fmax,i

C8 : 0 ≤ pi ≤ pmax,i

C9 : Tl,i ≤ Ti

C10 : Tc,i ≤ Ti

where 1 ≤ i ≤ N . The problem P3.1 can be solved

by using the BCD method proposed in Algorithm 1

separately to get an approximate optimal value. Then

the sum of all the users’ objective function values is
obtained for the primal problem P2.

6 Numerical Results

6.1 Benchmarks

We propose other two schemes, i.e. the one Without lo-

cal Computing Frequency Optimization (WCFO), and

the one Without the Transmission Power Optimization

(WTPO). In WCFO, the computing frequency fl is set

as 0.5fmax. In WTPO, the transmission power p is set

as 0.5pmax.

In order to evaluate the optimality of MOTE, an Ex-

haustive Strategy (ES) is proposed. In ES, each domain

of variables fl, p and λ is discretized into 1000 points,

then the total number of partial offloading strategies is

1012. All the strategies in ES will be calculated and the

minimal overhead of all the strategies can be obtained

for the optimal global minimal overhead of ES.
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Besides, a Monte Carlo Simulation (MCS) method

is adopted to search the optimal value of P1. We use u-

niform distribution to sample data from each variable’s

domain. The simulation times is set as 108, and for each

simulation, we can update the minimal value of P1 un-

til the simulation is ended.

6.2 Environment Parameters Settings

We set α = 2.7 to fit the computing features [35], the

bandwidth B is set as 106 bps, channel gain ho is set as

−30 dB and noise power ω is set as −60 dBm. Besides,

we also set the value of ε as 10−8.

The simulation scenario parameters such as data

size D, maximum transmission power pmax, et al. are

set in each simulation subsection.

6.3 Optimality of MOTE

In order to evaluate the optimality of MOTE, we com-

pare the objective function value of MOTE with that

of ES and MCS. We set the data size D as 1.6 × 106

bits. pmax is 0.2 W, and fl,max is 2×107 Hz. The MEC

server’s CPU frequency fc is 8 × 108 Hz. In order to

make sure the feasibility of all the strategies in ES and

MCS, we set a big delay threshold T , which is 6 seconds.

Besides, the parameter β varies from 0.05 to 0.95 with

the step as 0.10. The simulation results are presented

in Fig.4. As we can see from the Fig.4, the objective

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
β

0.00

0.02

0.04

0.06

0.08

0.10

O
v
e
rh

e
a
d

MOTE
MCS
ES

Fig. 4 The optimality of MOTE

function value of MOTE is the same as that of ES and

MCS. Although ES and MCS have not calculated al-

l the possible offloading strategies, it’s very likely that

their objective function values are the same as the glob-

al optimal objective function values, which proves that

the MOTE strategy is almost a global optimal strategy.

We can also find that the MOTE objective function

value increases in a positive proportion with β. In fact,

when the value of β is less than 0.01 or less, the MOTE

objective function value will not increase in proportion

to β, but will increase with the increase of β.

In the following subsections, we compare MOTE

with WCFO and WTPO to illustrate the advantages

of MOTE.

6.4 Changing Data Size D

In this subsection, the data size D varies from 1.6×105

bits to 1.6 × 106 bits. The delay threshold T is set as

0.06 seconds. The maximum transmission power pmax
is 0.2 W. The user’s local maximum CPU frequency

fl,max is 2× 107 Hz. The MEC server’s CPU frequency

fc is 8× 108 Hz. We simulate two circumstances where

β = 0.9 and β = 0.05. The simulation results are shown

in Fig.5.
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(b) β = 0.05

Fig. 5 The relationship between overhead and data size.

As we can see from the Fig.5(a), the overhead of

MOTE is the best among these three offloading strate-

gies. At the first six points, the MOTE offloads all the
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task data to the MEC server, which is the same as s-

trategy WCFO, thus the overheads of MOTE and WC-

FO are the same at the first six points. At the last

four points, MOTE, WCFO and WTPO perform full

granularity partial offloading, and our strategy MOTE

performs best.

In Fig.5(b), we can see that the MOTE also per-

forms the best among these strategies, although at some

points the results of MOTE are overlap with that of

WCFO.

6.5 Changing Maximum Transmission Power pmax

In this subsection, pmax varies from 0.1 W to 1.0 W

with the step as 0.1 W. The data size D is 4.8 × 105

bits. fmax is 2 × 107 Hz. fc is 8 × 108 Hz. We also

simulate two scenarios where β = 0.9, T = 0.02 seconds

and β = 0.05, T = 0.03 seconds. The simulation results

are presented in Fig.6.
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Fig. 6 The relationship between overhead and maximum
transmission power.

As we can see from Fig.6, when β = 0.9, MOTE

performs best among the three strategies. All the three

strategies execute the full granularity partial offloading.

In the Fig.6(b), the β = 0.05, all the three strate-

gies execute full granularity partial offloading, and our

strategy MOTE is the best. Because the parameter

pmax is only an upper bound, and can not affect the

offloading ratio λ directly, then the MOTE and WC-

FO, which should optimize the transmission power p,

always have the same transmission powers at the sim-

ulated 10 points. Thus the overheads of MOTE and

WCFO at different points are the same. As for the WT-

PO, the offloading ratio λ is almost zero, and because

the transmission power p is always 0.5pmax, then the

overhead line is approximately in proportion to pmax.

6.6 Changing Maximum Local Computing Frequency

fmax

In this subsection, the fmax varies from 5 × 106 Hz to

5×107 Hz with the step as 5×106 Hz. The data size D

is 4.8×105 bits. T is 0.03 seconds. fc is 8×108 Hz. pmax
is 0.2 W. We simulate the scenarios with the β = 0.9

and β = 0.05 respectively. Simulation results are shown

in Fig.7.

According to Fig.7(a), we find that MOTE always

overlaps with WCFO or WTPO, and at all the 10 points,

MOTE performs best. According to the values of λ at

these 10 points, we find that the λ values in MOTE are

0 at the first 8 points and are 1 at the last 2 points,

which means MOTE performs the full offloading in this

scenario.

According to Fig.7(b), the overhead of MOTE is the

minimum among the strategies. At the first 8 points,

MOTE executes the full granularity partial offloading,

and its overhead is the best. At the last 2 points, MOTE

executes local computing, i.e. no data offloaded to the

MEC server, and has the same overhead with that of

WTPO.

6.7 Changing MEC Server’s Computing Frequency fc

In this subsection, we change the fc from 5 × 108 Hz

to 50 × 108 Hz with the step as 5 × 108 Hz. The data

size D is 4.8 × 105 bits. fmax is 2 × 107 Hz. pmax is

0.2 W. Two scenarios are simulated where the delay

threshold T and β are set as 0.02 seconds and 0.9, 0.03

seconds and 0.05 respectively. The simulation results

are presented in Fig.8.

In the Fig.8(a), all the three strategies execute full

granularity partial offloading, the overhead of MOTE
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Fig. 7 The relationship between overhead and maximum lo-
cal computing frequency.

is the minimum, and the same circumstances happens

in the Fig.8(b).

Because the parameter fc only affects the comput-

ing time at the MEC server, and its weight is β, then if β

is big, such as 0.9, its increase will cause the overhead

decrease, and the trend has been verified in Fig.8(a).

Otherwise, if β is very small, such as 0.05, then its in-

crease will not cause the overhead decrease obviously,

shown in Fig.8(b).

6.8 Changing Delay Threshold T

In order to evaluate the relationship between the delay

threshold T and overhead, we change the value of T

from 0.02 seconds to 0.038 seconds. The data size D is

4.8×105 bits. fmax is 2×107 Hz. fc is 8×108 Hz. pmax
is 0.2 W. The scenarios with β = 0.9 and β = 0.05 are

simulated. Results are shown in Fig.9.

In the Fig.9(a), the overhead of MOTE is the min-

imum, and at the last 5 points all the three strategies

offload all data to the MEC server and MOTE have the

same performance with that of WCFO. In the Fig.9(b),
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Fig. 8 The relationship between overhead and MEC server’s
computing frequency.

the three strategies execute the full granularity partial

offloading, and MOTE performs best.

7 Conclusion

In this paper, we have proposed a mixed overhead full

granularity partial offloading strategy for mobile user.

The overhead combines the weighted time and energy

consumption. The time includes the local computing

time, data transmission time and computing time at

MEC server. The energy consumption contains the local

computing energy consumption and the data transmis-

sion energy. We have formulated a NLP problem and

used the BCD method to solve it. We have analyzed

the minimum delay threshold for T , and also analyzed

the necessary and sufficient conditions for 0-offloading

and 1-offloading. We have compared the performance

of MOTE with that of ES and MCS to evaluate the

optimality, and also compared with that of WCFO and

WTPO to illustrate the advantages of MOTE.

We have discussed the multi-user scenario, and we

find that the MOTE strategy can also be used in this

scenario. But there is still lack of the initial MEC fre-
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Fig. 9 The relationship between overhead and delay thresh-
old.

quency distribution algorithm, which is adopted to dis-

tribute the optimal initial value of MEC computing fre-

quency for each user and make the objective function

minimized, which is a NP-hard problem and can be ap-

proximately solved by designing a heuristic algorithm.

This work will be done in our future research.
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